SCHAUM'S ouTli nes INTROOTUOC TION PROBABAINLOI TY STATISTICS �- Covearlpslr obabfiulnidtaym entals Statiwsittilhca st aepsptc laitions � Noc alcunleeudse d � 3fJ7 fulslovyle pdr oblems Perfaeicfdto bre tter grades Uswei tthhce osuer ri!sI enlsr:lo Podr uocblaainSbodlin al liri!il Psyrol biacsb ility ri!S lalri!i Isnllirocsd Sulcalliiosnl ics 10 SCHAUM'SO UTLINE OF THEORY PROBLEMS AND of INTRODUCTITOON PROBABILITY ANDS TATISTICS • SEYMOUR LIPSCHUTZP,h .D. PreoslsMoatrh ecmsa ti 1 Te0mUpinlvee rsity JOHN J. SCHILLER, Jr., Ph.D. AssoceisastMoaetr h Pecrmsoa lti 1 TemUpin0lvee rsity • SCHAUM'SO UTLINES ERIES NweY rokS aFnar ncWiassMchcgGiRotADn o W.n. -CA, HcuI LkLl BaongdCo atráa Lciassb on LoonnMd aiddrM exiCciotM Uya Mno ntNrweeD aell hi SaJnu aSnip nogrSadeyn eTyo kTyrooo nto SEYMOURL lPSCI-IUTwZh,oi psr eseotthlmeya themfacatuilcotsfy 00 TempUlnei verforsmietrytl,ay u gahttt hP eo lyteIcnhsntiictB ruotoek loyfn anwda vsi siptrionfgei snts hoCero mpuStceire Dnecpea rtomfBe rnoto klyn ColleHgeer .cc cihveiPdsh .iDn.1 96a0tt hCeo urIannst titMuatteh of ematSicciaelon fcN eeswY orUkn iverSsoimtoeyfh . i ost hbeoro iknts h e SchauOmu'tsl Sienreia ersBe e gI/iil/lL/igl /Aelagre bDrias;c rele Malhe mali2cnsed,d P.r;o babaioldi lLyi;n ear2 nedAd l.g ebra, JOUNJ .S CI-lIttiEsaRn A ssocPiraotfeeo sfMs aotrh emaattT iemcpsl e UniverHseir teyc.e ihviPeshd . aDtt. h Uen iveorfsP ientnsyy lvaanndi a hapsu blirsehsede apracphei rnts h e areas soufr fRadicieesmsca,rn ent e mathemaatnimdca st,h ematica1 hbaiasol lscooog ayu.t htoeHrxeiedt o s finimtaet hemaptrcieaclsc,ua lncudas l,c ulus. Schaunl'Osu tlionfeT heorayn dP robleomfs INTRODUCfION TO PROBABlUTY AND STATISTICS CopyriIt>g h1t9 9b8y T heM cGraw-HiCHo mpaniesInc.A H righrtes red. Printiendt he . UnitcdS tatoefAs m ericaE.x ceapstp ermitutncdde r Ctohpey riAgsehcvtt 1o9f7 6no, p arotf thipsu blicamtaiybo enr cproduocred di stribiunat neyfd o rmosr b y amneya nso,rs torienda data baseor r crtievsayltse m. withot etp hriro wrilpleernm issioofnt hep blsiehr. u u 123456708 I9I11 2\ 31 41 51 6 17 2108P R1SP 9R S O9 20 9I8 ISBN0 -07-038084-8 SponsonrgiE ditBoarr:b aGrial son ProductSiuopne rviTsionraC: a meron EditiSnugp erviMsaoUJr'C:e nB .W alker ProjectS upervsiion:K eywordP ublishi$negn'Í ces LibraurfCy o ngCreassl aloging-iDna-lPau blication McGraw-Hill � A Diviosi{oThenM cGraw-HComiIlpa nies Preface Probaabnisdlt lsialctttsay p peexaprl oiric miptlliiynmc aintdyli ys ecsip,l in inclcuodmipnaugnt deo rri mnafstciiopenhn ycseci,hc esmg,ie sotlrboyig,oy l,o gy, medipcsiynceh,so olcoigoyl,o gy,e dpuooclnaei,tct ioincoabmluie scssisscn,,i e nce, operraetsieoaannarsdlc b lhr ,a nocefhn egsi neering. Thpeu rptohsbieos io otksfpo r easnie nnttr otdpour citniaconimndpe Itehso ds ofp robbialainstdty a twihsiwtcoihucb lsed uults oae lifln disvr iedguaaorlfd less thfeiierol fsd pse ciaIlitids ze astiigonne.da s ufepomprel tnuoats l el acsu rrent standaorrd a a tste exxttsbb,eo goikcn oniuinirn pnsgra e o baabnsidtl aittiys tics withs chhiaoglohgl ae tsbh roean plrye requisite. Thmea teirdsii avlii ndttewodo spianrtcthleseo , g diecvaell ionspo mte nt distbuyrt bhdeeid v isiouns uenwlfehsislat e e aaxtsnth d ee rreebnfocoieks increased. Parcto vdeerssc srtiapttaiinesvdlte ei mocepfsnr tosb aTbhifeli icrthsyat.p ter 1 tredaetssc rsitpattwiihvsietmc iohct si vatecso ncvaeapprptiesoai unrts ih neg chapotnpe rrosb aabnidl sitethcyceo,h n adpc toevsree rtssc onautnidn g which are nfeoaer d meodd erno ft rapebraiotlPbmiaetranytlt. is noc lau dcehsa pter 1 onr andvoamr iabldeesf eiwxnhpeee rcveta arwtieia onsnct,ea ,nd deaavrnidda tion orfa ndvoamr iaanbdl ewshd,ei rsaecn updwsr esoC vhee byisnheeqvau'nasdl itthye laowlf a rgee rnsTuh.imi fsbslo lobwyae ds ecphaaropanttt ehebre i nomial and nordmiaslt ornwishb,eu rtceie ntlthiretma hilet o irdsei ms ciutnsh cseoe ndot fe xt the naoprpmraolxt iom atthieod nib sitnroimbiuatli on. ParItIt reiaentrfse nsttiaatlIi stbt eigwciisnta.sch h apotnse arm pling distrfiobsrua tmipwolinitsnh gw iatnhrdoe uptl aacnefdmo sermn aatln llda rge sampTlheetsnh. ea rrceeh apotnee srtsi (mcaotnifoiinnd teeanrncvhdeay lpso)t h estiessf toaisr ni gnp golpeu laantdi otsnhe,ep nac rhaaa ctpoetv eertr hiensge topics fotrwp oo pulaLtaistothnleisyars.,c e h aopntc ehri -tseqasuntaadsrn ea loyfs is vanance. Each cbheagwpiitncteslhr es atra teomfpe enrttdsie nfeoinnnptsir ,ti incipIes, antdh eotroegmewsti hitehlr l usatnordta hteirv e dmeastcerTrihipiiatssli .v e flolobwye d grsaeodtfess d o lavnesddu pplepmreomnbstlaT.erh ye solved probsleermvisel ltuaosn atdmr patlthieef y maantpder roivairlde,ep etothfie t ion bapsriicn scvoii ptIeaefflse cltteoia vren isnugp.p leTpmhreeon btlaermys serve as ac omprleevotitfeeh mwea teirni cathlha ep ter. Wew itsoth h amnaknf iyre nadncsdo llfeoarg uienssv uaglgueaasnbtdli eo ns crirteivcoiatfelh mw ea nuscWreai lpstot. eo wx ipsorhueg rsr sa ttitoth suetd aeff ofM cGrawp-aHritlitlcoB,u a lrabGrailrlyaas n oMdna rLyo eGbiislgf,e o trh eir excecloloepnetr ation. SEYMOLUIRP SCHUTZ JOHJN.S CHILLER TemUpinlvee rsity 111 Contents PARTI DescriSpttaitvieas ntPdir cosh ahility ChapterP RELlMINDAERSYC:IR PTlSVTEA TlST.l.CS. . . . ... .1. . . . . . . 1 1.I1n trod1u2.Fc rteiqounTe.an bHcliye sst,o g1r.Ma3em ass.ou fr es CentTreanld eMnecaaynn: Md e di1a4.nM .e asoufrD eiss persion: VariaannSdct ea nDdeavrida 1t.Mi5eo ans.ou fr ePso Qsuiatritoinl:e s and Pielre1c6s.Me .en atsoufCr oemsp aSrtiasnoUdnna:iar tndCsd o efficoiVfeanrti a1t.Ai7dod ni.tD ieosncarolif pDtai1t8o.Ba ni.sv ariate DatSac,ap tltoe1t9r.sC .o rreCloaetffiico1in0.eM n1ett.h oofLd esa st SquaRreegssrs,eiL oinnCe u,rF viet ting. ChapterS ETASN DC OUNTlN.G. . . . . . . . . . . . . .. .4.5. . . . . . . . . . . . . . . . 2 21.I ntrod2u.Sc2et atinsoEd nl .e smSe,un btsets.D iam2gs.r.3a Venn 2.S4e Otp era2t.iF5oin nsai.nt Cdeo untSaebt2ls.e.C6 o unting ElemiennF tisnS iettes , InclPursiinoc2ni.-Pp7ErI xoecd.lu ucsti on Set2s..C8 l asosfSe estP so,wS eertP sat,ri toi2n.sM9.a thematical Induc2t1.iC0oo nu.nP triipnnIgce 2is1..F1 a ctoriaBli nNoomtiaatli on, Coeffici21e.2nP etrsm.ou nts2a1..t3 Ci omboinnsa2.t. Ti1r4eD ei a grams. ChapterB ASIPCR OBABILlTY 87 3 3.I1n trod3u.Sc2at miSpoplnaea.c n Eedv es3n..tA 3x ioomPfsr obabil it3y..F 4i nPirtoeb aSbpialc3ie.Its5ny.f SianmiSptpleae c 3e.Cs6l. a s siBciarlt hday3 .EP7xr poebclteamt.i on. ChapterC ONDITlOPNRAOLB ABILAlNTDIY N DEPENDENCE 109 4 41.I ntroduction. 4.24 .F3Cio nnSidttioetc ihoansatli c Probability. Proceasnds esDT iraeger 4a.mT4so .tP arlob bialaintdBy a yes' Formu4l.Ia5n. d epEevnedne4tn.Ist6n. d epReenpdeeTanrttie adl s. ChapterR ANDOM VARIA.B.LE.S. . . . . . . . . . . . .1.32. . . . . . . . . . . . . . . . . 5 5.I1n trod5u.c2t iRoVanan.rd ioam5b .Pl3re osb.a Dbirisiltbiuttyi on oafF inRiatnedV oamr iabElxep.e cot5afaF. ti4in Roiantn edV oamr i- abl5e.V.5a riaannSdct ea nDdeavrida 5t.Ji6oo inDn.irt si tbuotfi on Random V5a.rI7in adbeplReeansnd.deV onamtr ia5b.Fl8ue nsc.t ions oafR andVoamr ia5b.Dl9ice sr.Re atned Voamr iiaGnbe lnees5r .al1.0 ContiRnaunoduVosam r ia5b1.l1Ce usm.u lDaitsitvreFi ubnuct-ion tio5n..C1 h2e bysIs nheeqvau'nadl LiattowhyfL e a rgmeb eNrus. ChapterB INOMIAANLD NORMDAILS TRIBUT..l O N.S . . . . . . . . . . . . . . 180 6 6.I1n troduBcetrinoTonru.ilB alil6ins. o,D2m i isatlr i6b.Nu3ot ri-on. maDli stribEuvtailounNa.ot rimP6nar.glo4 b ab6i.lN5io trimeasl. Approxoiftm haBeti inooDnmi isatlr i6b.Pu6ot iisosno.n Distribution. 6.M7u ltinomial Distribution. v CONTENTS VI PART 11 InfereSnttaitails tics ChapterS AMPLlDNIGS TRIBUTlONS 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7.I1n trodSaumcptWliiiotnnhg: anRde pWliatch7eo.Smu2aet mn ptl.e Mean7..S 3a mPprloep ortionV.a ri7a.n4c eS.a mple ChapterC ONFIDEINNCTEE ARLVS F ORA SINGLPEO PULATlON 236 8 8.P1a ramaenStdte arsts.i sTt8hiNe.co 2t oifaoC no nfidence Interval. 8.C3o nfiIdnetnefcrroMev e aalns8s .C.4o nfiIdnetnefcroPevrr a olpso r tio8n.sC5.o nfiIdnetnefcrroVev a arlcisea sn. ChapterH YPOTHESTEESS TFSO RA SINGLPEO PULATlON 261 9 9.I1n troduction:A bToPeuastrt aismn.e9g t.H e2yHr pyoptohtehseesse s TesfrotM se an9s.H.3y potTheesfstoPesrrs o por9t.Hi4yo pnost.h eses TesftoVsra reisa.n c ChapterI NFERENFCOER TWPOOP ULATlONS 291 10 10C.o1n fiIdnetnefcroetvr haD eli sff eroefMn ecaen1 s0.H. y2p otheses TesftotsrhD ei ffeorefMn ecaen1 s0.C. o3n fiIdnetnefcroeDvr iae fflrs encoefPs r opor1t0Hi.yo4pn ost.Th eesfstoDesris ff eroefn cPerso por tio1n0s..C5o n fiIdnetnecfreov Rraa ltsio ofVs a reisa1.n0 c.6 HypotTheesfstoResras t oiVfoa sr iances. ChapterC HI-SQUTAERSET ASN DA NALYSOIFSV ARIANCE . . .3.2.2 . . . . . 11 1.1C1h qiu-aSGroeo dn-eFsist- 1o.T1fC2ehs qitu-.aS Treefs otEr q ual Distri1b31uC .thiio-nSTsqe.ufs arotIr ned epAetntdresin.1bt 41u t.e One-Wayo VfAa nrailay1n.s1Tc5iwes o. - Way oVAfna arliyasnicse . APPENDIX 359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INDEX 367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PART1 : DescripfSifvaef isfaincdPs r obabilify Chapter 1 Preliminary: DesSctraitpitsitviec s 1.I1N TRODUCTlON Statoint hsoetnh iea cnmsde,,al nisos nftu sm evrailefuaoeelrxs a;m tphsleae l,oa tfrh ieeem sp loy eeosfa e ompoartn hySe,A sTe ortehse oifn eomoifaun ngi vsetSrutsdaietatnisaytss .ste iieesn ee, ont he hoatnihdtse,h rb e r aonmfea ht hematoiregsa anwnihazileaeysnhzi,d en st,es ruprerahew t s datSat.a tmiestthiaoeradaepsl p ltioea anaybr loeefh a u meannd ewahveonrrue m eriaerael data eollfeoserot mteeydo p dfee eisiopnr-omeaeksisn.g Thpirse liemhianpsatiremyerp o lvye rsr elttaootgp eaidte hsae nrddie nsge rdiabetiaanl gl ed Depstcirviset iISwctit sbla.eult s iiebndo tthhfe i rsottf h tpeea wxrhtti,m e ahi nlPyr otbraebaitlsi ty Theoarntydh ,see epoanordtft h tee wxhti,me ahi nlIyne frterSnettaaittasil s ties. Real Line R Thneo taRtw iiboleunl s teodd e ntohtseeeo tfr e naulm bers, nwuhmibweeehur ssfaero r e the numerieWaeal s msdeua rtteaha.eid f sea irml wiiattrhhg e r aprheiperaelso eRfn ast aptooiniao n nt s strlaiiangpsehi ,te tiunr 1eFd-iW 1ge..r etfoseur a el hi anse r teUhaenol ert h ree UanRle. -:n; -,[5 -,fi :n; 1 1 1 1 i i i 1 i i i i i .. -4 -3 -2 - Threoe allein 2 3 4 R Fig1.- 1 Frequweewn idtlell y a sle otwnfsiu tmhbe earlisln etsde .Sr pveeailffoairner yae nlaullmy b,ae rs anbdw, i ath b w,ed enaontddee fiinntsefe orrmatv boaa l fslo lows: < (a=,{ b:x) x a b }o,pi ennt erval < < [a=,{ :xb ]a b ::}c:;,l oixns te::edr:; v al [ba=),{ :x ab::}:;c, lx o siendt-eorpvaeln < (ba=],{ :x ba b ::}o:;e,p cn l-oinsteedr val < Thaeta ieinhst ,ee ornvosaafill slt st he apao nibdtn; htt ese "rbcmel toawsneedbed rn"aa aerkuees te d tion ditehtaahteteen dpboeilntoton gitsnh teae nrtdvht aeel "r omp aennd"p aar enatruhese tesodi s inditehaaantt e e ndpnoobiten ltto otndh gioe ne tse rval. SubscNroitpatt ion, SySrnubrnornla tion Consail dioesnfrtu medraitseaaat,ylh e woeefii ggshhtttus d enmtasay.lb ledT ehneobyty e:d The nu12m,,b, ew8rrs i btetletonhww esa reea lsluebds Acnar ribpittsr.ai rtnyh l eiwe siltle lm ent ... bed enobtye dT hseu bsjie esra ilaplntie ndbd eeexia gtui stvehe peso siottfih eoeln e mitneh net lis(tT.h eWj i'al nekdta traeelr fsesroq ueunstaelisdyn dexo lssy.m)b 2 PRELIMIDNEACSRRYI:P TSITVAET ISTICS [CHA1P o Thseu omtf h e weeiigoghtfhtht s est udmeabnyete sx priens fstoehrdem W+¡W +2W +3W +4W +sW +6W +7W g Cleatrhelixysp, r feostrsh ieo wnso uubmlev d e lroyan ngad w kwtaour sdie f thmearnemy o wreer e numbietnrh lsei sMta.t hehmaadste ivcesl opedfr os au cshhw ohsriuitcimshhns a d nedpo etfnh dee nt numboeifrt emsl iisnt .t he Summantoitoaunts ieossn u tmhmesam ytbio(oltn Gh ree leekts tiegrmS ap)e.c igfiivceanl lay , ¿ liXs,¡t, . X ,.n2Xo. nf n umbietsrsusm m,a byed enobtye d n or j=¡x · ¿ J whiicrshe ad: Thseu omtf hxe- sjauss b-j forgmot eno1s . It fhe nnou ifmtbeieumsrns d erwsemt aosyoi dm ply write x } ¿ More gseunpefproa(ilskasle)n ya ,l geebxrpariiecns vsoitlohvnvei a nrgik aa,bn nld¡ae n d2a rne intefogwreh rinsc::¡ h:; . Tnh2ewned efine n2 f(kf)() +n f =¡(¡ +n 1f)(¡ +n 2+ + ). +.f .(2) n k¿n¡= Thus wfeoe rxh aamvpel,e , g w}= W +¡W 2+ W +3W +4W +sW +6W +7W g ¿}¡ = s 2 2 2 2 k= +34 +5 =9 1++6 2 =55 0 ¿k3 = akbk= a ¡+ba b¡22+ . +.a n.bn ¿ ¿(x)- .lx= ( x-¡. lx+ ( X2- .lx+ . +.( .nx- .lx (Waes msetu he infdoremx t on1ig tnoh elesa sts utmwso. ) 1.F2R EQUENTCAYB LEHSI,S TGORAMS Onoetf h fei trhsiton nguess ualwliyat l hda orlegiosesnf tu medraiitcsaaf lot rsomo mteyo pfe ferquteanwbchlyete rh,teea bslheot whnseu mber aonif n dtiiivmtieedsmu aoltc hceu rnosuf m obre r itemsfa wltilht ahgtii nvi enant eTrhveafselrqe.u ednicsyt rmiabbyue pt iicotnuussr ihenidgs to graWmesi l.l usttercahtwneii ttqtwhuheo eix sa mples. EXAMP1L1.E An apahrotums4een5a t ph aarst wmiettnhhftel os l,o nwuimnbogtef er nants: 2 3 5 2 2 22 4 34 2 6 2 4 34 4 2 4 4 2 2 3 4 2 3 5 2 43 24 4 2 53 4 Obsetrhtvahetoe n nluym bwehriascp hp ientah rle ia sr1te2, 3, 4 ,5, a ,n 6d. T hfeer quednicsyt roifb ution thneusmeb aeprpsie Fnai r1gs2-. .S pecicfoilculamiltnsl htyles, n guimvbaeenncrd os l 2ug minv efesrq utehnec y