ebook img

Schaum's outline of theory and problems of introduction to probability and statistics PDF

378 Pages·2011·6.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Schaum's outline of theory and problems of introduction to probability and statistics

SCHAUM'S ouTli nes INTROOTUOC TION PROBABAINLOI TY STATISTICS �- Covearlpslr obabfiulnidtaym entals Statiwsittilhca st aepsptc laitions � Noc alcunleeudse d � 3fJ7 fulslovyle pdr oblems Perfaeicfdto bre tter grades Uswei tthhce osuer ri!sI enlsr:lo Podr uocblaainSbodlin al liri!il Psyrol biacsb ility ri!S lalri!i Isnllirocsd Sulcalliiosnl ics 10 SCHAUM'SO UTLINE OF THEORY PROBLEMS AND of INTRODUCTITOON PROBABILITY ANDS TATISTICS • SEYMOUR LIPSCHUTZP,h .D. PreoslsMoatrh ecmsa ti 1 Te0mUpinlvee rsity JOHN J. SCHILLER, Jr., Ph.D. AssoceisastMoaetr h Pecrmsoa lti 1 TemUpin0lvee rsity • SCHAUM'SO UTLINES ERIES NweY rokS aFnar ncWiassMchcgGiRotADn o W.n. -CA, HcuI LkLl BaongdCo atráa Lciassb on LoonnMd aiddrM exiCciotM Uya Mno ntNrweeD aell hi SaJnu aSnip nogrSadeyn eTyo kTyrooo nto SEYMOURL lPSCI-IUTwZh,oi psr eseotthlmeya themfacatuilcotsfy 00 TempUlnei verforsmietrytl,ay u gahttt hP eo lyteIcnhsntiictB ruotoek loyfn anwda vsi siptrionfgei snts hoCero mpuStceire Dnecpea rtomfBe rnoto klyn ColleHgeer .cc cihveiPdsh .iDn.1 96a0tt hCeo urIannst titMuatteh ­of ematSicciaelon fcN eeswY orUkn iverSsoimtoeyfh . i ost hbeoro iknts h e SchauOmu'tsl Sienreia ersBe e gI/iil/lL/igl /Aelagre bDrias;c rele Malhe­ mali2cnsed,d P.r;o babaioldi lLyi;n ear2 nedAd l.g ebra, JOUNJ .S CI-lIttiEsaRn A ssocPiraotfeeo sfMs aotrh emaattT iemcpsl e UniverHseir teyc.e ihviPeshd . aDtt. h Uen iveorfsP ientnsyy lvaanndi a hapsu blirsehsede apracphei rnts h e areas soufr fRadicieesmsca,rn ent e mathemaatnimdca st,h ematica1 hbaiasol lscooog ayu.t htoeHrxeiedt o s finimtaet hemaptrcieaclsc,ua lncudas l,c ulus. Schaunl'Osu tlionfeT heorayn dP robleomfs INTRODUCfION TO PROBABlUTY AND STATISTICS CopyriIt>g h1t9 9b8y T heM cGraw-HiCHo mpaniesInc.A H righrtes red. Printiendt he . UnitcdS tatoefAs m ericaE.x ceapstp ermitutncdde r Ctohpey riAgsehcvtt 1o9f7 6no, p arotf thipsu blicamtaiybo enr cproduocred di stribiunat neyfd o rmosr b y amneya nso,rs torienda data baseor r crtievsayltse m. withot etp hriro wrilpleernm issioofnt hep blsiehr. u u 123456708 I9I11 2\ 31 41 51 6 17 2108P R1SP 9R S O9 20 9I8 ISBN0 -07-038084-8 SponsonrgiE ditBoarr:b aGrial son ProductSiuopne rviTsionraC: a meron EditiSnugp erviMsaoUJr'C:e nB .W alker ProjectS upervsiion:K eywordP ublishi$negn'Í ces LibraurfCy o ngCreassl aloging-iDna-lPau blication McGraw-Hill � A Diviosi{oThenM cGraw-HComiIlpa nies Preface Probaabnisdlt lsialctttsay p peexaprl oiric miptlliiynmc aintdyli ys ecsip,l in inclcuodmipnaugnt deo rri mnafstciiopenhn ycseci,hc esmg,ie sotlrboyig,oy l,o gy, medipcsiynceh,so olcoigoyl,o gy,e dpuooclnaei,tct ioincoabmluie scssisscn,,i e nce, operraetsieoaannarsdlc b lhr ,a nocefhn egsi neering. Thpeu rptohsbieos io otksfpo r easnie nnttr otdpour citniaconimndpe Itehso ds ofp robbialainstdty a twihsiwtcoihucb lsed uults oae lifln disvr iedguaaorlfd less thfeiierol fsd pse ciaIlitids ze astiigonne.da s ufepomprel tnuoats l el acsu rrent standaorrd a a tste exxttsbb,eo goikcn oniuinirn pnsgra e o baabnsidtl aittiys tics withs chhiaoglohgl ae tsbh roean plrye requisite. Thmea teirdsii avlii ndttewodo spianrtcthleseo , g diecvaell ionspo mte nt distbuyrt bhdeeid v isiouns uenwlfehsislat e e aaxtsnth d ee rreebnfocoieks increased. Parcto vdeerssc srtiapttaiinesvdlte ei mocepfsnr tosb aTbhifeli icrthsyat.p ter 1 tredaetssc rsitpattwiihvsietmc iohct si vatecso ncvaeapprptiesoai unrts ih neg chapotnpe rrosb aabnidl sitethcyceo,h n adpc toevsree rtssc onautnidn g which are nfeoaer d meodd erno ft rapebraiotlPbmiaetranytlt. is noc lau dcehsa pter 1 onr andvoamr iabldeesf eiwxnhpeee rcveta arwtieia onsnct,ea ,nd deaavrnidda tion orfa ndvoamr iaanbdl ewshd,ei rsaecn updwsr esoC vhee byisnheeqvau'nasdl itthye laowlf a rgee rnsTuh.imi fsbslo lobwyae ds ecphaaropanttt ehebre i nomial and nordmiaslt ornwishb,eu rtceie ntlthiretma hilet o irdsei ms ciutnsh cseoe ndot fe xt the naoprpmraolxt iom atthieod nib sitnroimbiuatli on. ParItIt reiaentrfse nsttiaatlIi stbt eigwciisnta.sch h apotnse arm pling distrfiobsrua tmipwolinitsnh gw iatnhrdoe uptl aacnefdmo sermn aatln llda rge sampTlheetsnh. ea rrceeh apotnee srtsi (mcaotnifoiinnd teeanrncvhdeay lpso)t h­ estiessf toaisr ni gnp golpeu laantdi otsnhe,ep nac rhaaa ctpoetv eertr hiensge topics fotrwp oo pulaLtaistothnleisyars.,c e h aopntc ehri -tseqasuntaadsrn ea loyfs is vanance. Each cbheagwpiitncteslhr es atra teomfpe enrttdsie nfeoinnnptsir ,ti incipIes, antdh eotroegmewsti hitehlr l usatnordta hteirv e dmeastcerTrihipiiatssli .v e flolobwye d grsaeodtfess d o lavnesddu pplepmreomnbstlaT.erh ye solved probsleermvisel ltuaosn atdmr patlthieef y maantpder roivairlde,ep etothfie t ion bapsriicn scvoii ptIeaefflse cltteoia vren isnugp.p leTpmhreeon btlaermys serve as ac omprleevotitfeeh mwea teirni cathlha ep ter. Wew itsoth h amnaknf iyre nadncsdo llfeoarg uienssv uaglgueaasnbtdli eo ns crirteivcoiatfelh mw ea nuscWreai lpstot. eo wx ipsorhueg rsr sa ttitoth suetd aeff ofM cGrawp-aHritlitlcoB,u a lrabGrailrlyaas n oMdna rLyo eGbiislgf,e o trh eir excecloloepnetr ation. SEYMOLUIRP SCHUTZ JOHJN.S CHILLER TemUpinlvee rsity 111 Contents PARTI DescriSpttaitvieas ntPdir cosh ahility ChapterP RELlMINDAERSYC:IR PTlSVTEA TlST.l.CS. . . . ... .1. . . . . . . 1 1.I1n trod1u2.Fc rteiqounTe.an bHcliye sst,o g1r.Ma3em ass.ou fr es CentTreanld eMnecaaynn: Md e di1a4.nM .e asoufrD eiss persion: VariaannSdct ea nDdeavrida 1t.Mi5eo ans.ou fr ePso Qsuiatritoinl:e s and Pielre1c6s.Me .en atsoufCr oemsp aSrtiasnoUdnna:iar tndCsd o ­ efficoiVfeanrti a1t.Ai7dod ni.tD ieosncarolif pDtai1t8o.Ba ni.sv ariate DatSac,ap tltoe1t9r.sC .o rreCloaetffiico1in0.eM n1ett.h oofLd esa st SquaRreegssrs,eiL oinnCe u,rF viet ting. ChapterS ETASN DC OUNTlN.G. . . . . . . . . . . . . .. .4.5. . . . . . . . . . . . . . . . 2 21.I ntrod2u.Sc2et atinsoEd nl .e smSe,un btsets.D iam2gs.r.3a Venn 2.S4e Otp era2t.iF5oin nsai.nt Cdeo untSaebt2ls.e.C6 o unting ElemiennF tisnS iettes , InclPursiinoc2ni.-Pp7ErI xoecd.lu ucsti on Set2s..C8 l asosfSe estP so,wS eertP sat,ri toi2n.sM9.a thematical Induc2t1.iC0oo nu.nP triipnnIgce 2is1..F1 a ctoriaBli nNoomtiaatli on, Coeffici21e.2nP etrsm.ou nts2a1..t3 Ci omboinnsa2.t. Ti1r4eD ei a­ grams. ChapterB ASIPCR OBABILlTY 87 3 3.I1n trod3u.Sc2at miSpoplnaea.c n Eedv es3n..tA 3x ioomPfsr obabil­ it3y..F 4i nPirtoeb aSbpialc3ie.Its5ny.f SianmiSptpleae c 3e.Cs6l. a s­ siBciarlt hday3 .EP7xr poebclteamt.i on. ChapterC ONDITlOPNRAOLB ABILAlNTDIY N DEPENDENCE 109 4 41.I ntroduction. 4.24 .F3Cio nnSidttioetc ihoansatli c Probability. Proceasnds esDT iraeger 4a.mT4so .tP arlob bialaintdBy a yes' Formu4l.Ia5n. d epEevnedne4tn.Ist6n. d epReenpdeeTanrttie adl s. ChapterR ANDOM VARIA.B.LE.S. . . . . . . . . . . . .1.32. . . . . . . . . . . . . . . . . 5 5.I1n trod5u.c2t iRoVanan.rd ioam5b .Pl3re osb.a Dbirisiltbiuttyi on oafF inRiatnedV oamr iabElxep.e cot5afaF. ti4in Roiantn edV oamr i- abl5e.V.5a riaannSdct ea nDdeavrida 5t.Ji6oo inDn.irt si tbuotfi on Random V5a.rI7in adbeplReeansnd.deV onamtr ia5b.Fl8ue nsc.t ions oafR andVoamr ia5b.Dl9ice sr.Re atned Voamr iiaGnbe lnees5r .al1.0 ContiRnaunoduVosam r ia5b1.l1Ce usm.u lDaitsitvreFi ubnuct-ion tio5n..C1 h2e bysIs nheeqvau'nadl LiattowhyfL e a rgmeb eNrus. ChapterB INOMIAANLD NORMDAILS TRIBUT..l O N.S . . . . . . . . . . . . . . 180 6 6.I1n troduBcetrinoTonru.ilB alil6ins. o,D2m i isatlr i6b.Nu3ot ri-on. maDli stribEuvtailounNa.ot rimP6nar.glo4 b ab6i.lN5io trimeasl. Approxoiftm haBeti inooDnmi isatlr i6b.Pu6ot iisosno.n Distribution. 6.M7u ltinomial Distribution. v CONTENTS VI PART 11 InfereSnttaitails tics ChapterS AMPLlDNIGS TRIBUTlONS 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7.I1n trodSaumcptWliiiotnnhg: anRde pWliatch7eo.Smu2aet mn ptl.e Mean7..S 3a mPprloep ortionV.a ri7a.n4c eS.a mple ChapterC ONFIDEINNCTEE ARLVS F ORA SINGLPEO PULATlON 236 8 8.P1a ramaenStdte arsts.i sTt8hiNe.co 2t oifaoC no nfidence Interval. 8.C3o nfiIdnetnefcrroMev e aalns8s .C.4o nfiIdnetnefcroPevrr a olpso r­ tio8n.sC5.o nfiIdnetnefcrroVev a arlcisea sn. ChapterH YPOTHESTEESS TFSO RA SINGLPEO PULATlON 261 9 9.I1n troduction:A bToPeuastrt aismn.e9g t.H e2yHr pyoptohtehseesse s TesfrotM se an9s.H.3y potTheesfstoPesrrs o por9t.Hi4yo pnost.h eses TesftoVsra reisa.n c ChapterI NFERENFCOER TWPOOP ULATlONS 291 10 10C.o1n fiIdnetnefcroetvr haD eli sff eroefMn ecaen1 s0.H. y2p otheses TesftotsrhD ei ffeorefMn ecaen1 s0.C. o3n fiIdnetnefcroeDvr iae fflrs­ encoefPs r opor1t0Hi.yo4pn ost.Th eesfstoDesris ff eroefn cPerso por­ tio1n0s..C5o n fiIdnetnecfreov Rraa ltsio ofVs a reisa1.n0 c.6 HypotTheesfstoResras t oiVfoa sr iances. ChapterC HI-SQUTAERSET ASN DA NALYSOIFSV ARIANCE . . .3.2.2 . . . . . 11 1.1C1h qiu-aSGroeo dn-eFsist- 1o.T1fC2ehs qitu-.aS Treefs otEr q ual Distri1b31uC .thiio-nSTsqe.ufs arotIr ned epAetntdresin.1bt 41u t.e One-Wayo VfAa nrailay1n.s1Tc5iwes o. - Way oVAfna arliyasnicse . APPENDIX 359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INDEX 367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PART1 : DescripfSifvaef isfaincdPs r obabilify Chapter 1 Preliminary: DesSctraitpitsitviec s 1.I1N TRODUCTlON Statoint hsoetnh iea cnmsde,,al nisos nftu sm evrailefuaoeelrxs a;m tphsleae l,oa tfrh ieeem sp loy­ eeosfa e ompoartn hySe,A sTe ortehse oifn eomoifaun ngi vsetSrutsdaietatnisaytss .ste iieesn ee, ont he hoatnihdtse,h rb e r aonmfea ht hematoiregsa anwnihazileaeysnhzi,d en st,es ruprerahew t s datSat.a tmiestthiaoeradaepsl p ltioea anaybr loeefh a u meannd ewahveonrrue m eriaerael data eollfeoserot mteeydo p dfee eisiopnr-omeaeksisn.g Thpirse liemhianpsatiremyerp o lvye rsr elttaootgp eaidte hsae nrddie nsge rdiabetiaanl gl ed Depstcirviset iISwctit sbla.eult s iiebndo tthhfe i rsottf h tpeea wxrhtti,m e ahi nlPyr otbraebaitlsi ty Theoarntydh ,see epoanordtft h tee wxhti,me ahi nlIyne frterSnettaaittasil s ties. Real Line R Thneo taRtw iiboleunl s teodd e ntohtseeeo tfr e naulm bers, nwuhmibweeehur ssfaero r e the numerieWaeal s msdeua rtteaha.eid f sea irml wiiattrhhg e r aprheiperaelso eRfn ast aptooiniao n nt s strlaiiangpsehi ,te tiunr 1eFd-iW 1ge..r etfoseur a el hi anse r teUhaenol ert h ree UanRle. -:n; -,[5 -,fi :n; 1 1 1 1 i i i 1 i i i i i .. -4 -3 -2 - Threoe allein 2 3 4 R Fig1.- 1 Frequweewn idtlell y a sle otwnfsiu tmhbe earlisln etsde .Sr pveeailffoairner yae nlaullmy b,ae rs anbdw, i ath b w,ed enaontddee fiinntsefe orrmatv boaa l fslo lows: < (a=,{ b:x) x a b }o,pi ennt erval < < [a=,{ :xb ]a b ::}c:;,l oixns te::edr:; v al [ba=),{ :x ab::}:;c, lx o siendt-eorpvaeln < (ba=],{ :x ba b ::}o:;e,p cn l-oinsteedr val < Thaeta ieinhst ,ee ornvosaafill slt st he apao nibdtn; htt ese "rbcmel toawsneedbed rn"aa aerkuees te d tion ditehtaahteteen dpboeilntoton gitsnh teae nrtdvht aeel "r omp aennd"p aar enatruhese tesodi s inditehaaantt e e ndpnoobiten ltto otndh gioe ne tse rval. SubscNroitpatt ion, SySrnubrnornla tion Consail dioesnfrtu medraitseaaat,ylh e woeefii ggshhtttus d enmtasay.lb ledT ehneobyty e:d The nu12m,,b, ew8rrs i btetletonhww esa reea lsluebds Acnar ribpittsr.ai rtnyh l eiwe siltle lm ent ... bed enobtye dT hseu bsjie esra ilaplntie ndbd eeexia gtui stvehe peso siottfih eoeln e mitneh net lis(tT.h eWj i'al nekdta traeelr fsesroq ueunstaelisdyn dexo lssy.m)b 2 PRELIMIDNEACSRRYI:P TSITVAET ISTICS [CHA1P o Thseu omtf h e weeiigoghtfhtht s est udmeabnyete sx priens fstoehrdem W+¡W +2W +3W +4W +sW +6W +7W g Cleatrhelixysp, r feostrsh ieo wnso uubmlev d e lroyan ngad w kwtaour sdie f thmearnemy o wreer e numbietnrh lsei sMta.t hehmaadste ivcesl opedfr os au cshhw ohsriuitcimshhns a d nedpo etfnh dee nt numboeifrt emsl iisnt .t he Summantoitoaunts ieossn u tmhmesam ytbio(oltn Gh ree leekts tiegrmS ap)e.c igfiivceanl lay , ¿ liXs,¡t, . X ,.n2Xo. nf n umbietsrsusm m,a byed enobtye d n or j=¡x · ¿ J whiicrshe ad: Thseu omtf hxe- sjauss b-j forgmot eno1s . It fhe nnou ifmtbeieumsrns d erwsemt aosyoi dm ply write x } ¿ More gseunpefproa(ilskasle)n ya ,l geebxrpariiecns vsoitlohvnvei a nrgik aa,bn nld¡ae n d2a rne intefogwreh rinsc::¡ h:; . Tnh2ewned efine n2 f(kf)() +n f =¡(¡ +n 1f)(¡ +n 2+ + ). +.f .(2) n k¿n¡= Thus wfeoe rxh aamvpel,e , g w}= W +¡W 2+ W +3W +4W +sW +6W +7W g ¿}¡ = s 2 2 2 2 k= +34 +5 =9 1++6 2 =55 0 ¿k3 = akbk= a ¡+ba b¡22+ . +.a n.bn ¿ ¿(x)- .lx= ( x-¡. lx+ ( X2- .lx+ . +.( .nx- .lx (Waes msetu he infdoremx t on1ig tnoh elesa sts utmwso. ) 1.F2R EQUENTCAYB LEHSI,S TGORAMS Onoetf h fei trhsiton nguess ualwliyat l hda orlegiosesnf tu medraiitcsaaf lot rsomo mteyo pfe ferquteanwbchlyete rh,teea bslheot whnseu mber aonif n dtiiivmtieedsmu aoltc hceu rnosuf m obre r itemsfa wltilht ahgtii nvi enant eTrhveafselrqe.u ednicsyt rmiabbyue pt iicotnuussr ihenidgs to­ graWmesi l.l usttercahtwneii ttqtwhuheo eix sa mples. EXAMP1L1.E An apahrotums4een5a t ph aarst wmiettnhhftel os l,o nwuimnbogtef er nants: 2 3 5 2 2 22 4 34 2 6 2 4 34 4 2 4 4 2 2 3 4 2 3 5 2 43 24 4 2 53 4 Obsetrhtvahetoe n nluym bwehriascp hp ientah rle ia sr1te2, 3, 4 ,5, a ,n 6d. T hfeer quednicsyt roifb ution thneusmeb aeprpsie Fnai r1gs2-. .S pecicfoilculamiltnsl htyles, n guimvbaeenncrd os l 2ug minv efesrq utehnec y

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.