ebook img

Scattering of EM waves by many small perfectly conducting or impedance bodies PDF

0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Scattering of EM waves by many small perfectly conducting or impedance bodies

Scattering of EM waves by many small 6 perfectly conducting or impedance bodies 1 0 2 A.G.Ramm n a KansasStateUniversity,Manhattan,KS66506-2602,USA J 9 [email protected] ] h p - Abstract h at Atheoryofelectromagnetic(EM)wavescatteringbymanysmallparti- m cles of an arbitrary shape is developed. The particles are perfectly con- [ ducting or impedance. For a small impedance particle of an arbitrary shape an explicit analytical formula is derived for the scattering ampli- 1 v tude. Theformulaholdsas a 0, where a isacharacteristicsize ofthe 0 → small particle and the wavelength is arbitrary but fixed. The scattering 6 0 amplitudeforasmallimpedanceparticleisshowntobeproportionalto 2 a2 κ, where κ [0,1) is a parameter which can be chosen by an experi- − 0 ∈ menterashe/shewants. Theboundaryimpedanceofasmallparticleis . 1 assumedtobeoftheformζ ha κ,whereh const,Reh 0. Thescat- − 0 = = ≥ teringamplitudeforasmallperfectlyconductingparticleisproportional 6 1 toa3,itismuchsmallerthanthatforthesmallimpedanceparticle. : v The many-body scattering problem is solved under the physical as- i sumptions a d λ, where d is the minimal distance between neigh- X ≪ ≪ boring particles and λ is the wavelength. The distribution law for the r a smallimpedanceparticlesisN (δ) N(x)dxasa 0.HereN(x) 0is ∼ δ → ≥ anarbitrarycontinuousfunctionthatcanbechosenbytheexperimenter R and N (δ) is the number of particles in an arbitrary sub-domain ∆. It is proved that the EM field in the medium where many small particles, impedanceorperfectlyconducting,aredistributed,hasalimit,asa 0 → andadifferentialequationisderivedforthelimitingfield. Onthis basis the recipe is given for creatingmaterialswith a desired refractioncoefficientbyembeddingmanysmallimpedanceparticlesinto agivenmaterial. 1 Keywords: electromagnetic waves; scattering; impedance bodies; small bod- ies. MSC:78A45;78A25;Z8A40;78M40;35825;35J2;35J57. 1 Introduction Electromagnetic(EM) wave scatteringis a classical area of research. Rayleigh statedin1871.see[17],thatthemainpartofthefield,scatteredbyasmallbody, ka 1,wherek isthewavenumberanda isthecharacteristicsizeofthebody, ≪ is thedipoleradiation,butdidnot giveformulasfor calculatingthisradiation forbodiesofarbitraryshapes. ForsphericalbodiesMie(1908)gaveasolution toEMwavescatteringproblemusingseparationofvariablesinthesphericalco- ordinates. Thismethoddoesnotworkforbodiesofarbitraryshapes. Rayleigh andMieconcludedthatEMfield,scatteredbyasmallbody,isproportionalto O(a3).Weprovethatthefieldscatteredbyasmallimpedancebody(particle)of anarbitraryshapeisproportionaltoa2 κ,whereκ [0,1)isaparameterwhich − ∈ can be chosen by the experimenteras he/she wishes, see formula (1.3) below. Since 2 κ 3, it follows, for a 0, that the scattering amplitude for small − < → impedanceparticleis much larger than the scatteringamplitudefor perfectly conductingordielectricsmallparticle. Thisconclusionmaybeofpracticalim- portance. There is a large literature on low-frequency wave scattering and multiple scattering,see[1],[3],[6],[7],[19]. InthispaperatheoryofEMwavescatteringbyperfectlyconductingandby impedance small bodies of arbitraryshapes is developed. For one-body scat- tering problem explicit formulas for the scattering amplitudes are derived for perfectlyconductingand for impedancesmallbodiesof arbitraryshapes. For many-bodyscatteringproblemthesolutionisgivenasasumofexplicitterms withthecoefficientsthatsolvealinearalgebraicsystem. Ifthesizeofthesmall bodies a 0 and their number M M(a) , a limiting integral equation → = → ∞ is derived for thefield in thelimitingmedium. This equationallows us to ob- tainalocaldifferentialequationforthefieldinthelimitingmediumandtogive explicitanalyticformulasfortherefractioncoefficientofthelimitingmedium. As a result we formulate a recipe for creating materials with a desired re- fraction coefficient by embedding many small impedance particlesin a given material. Themethodsdevelopedinthispaperwereappliedtoacousticproblemsin 2 [11], to heat transfer in themedium where many small bodies are distributed in[13],towavescatteringbymanynano-wiresin[14]. In Section 2 the theory of EM wave scattering is developed for small per- fectlyconductingbodies(particles)ofarbitraryshapes. InSection3thetheoryisdevelopedforEMwavescatteringbyoneimpedance particleofanarbitraryshape. InSection4thetheoryisdevelopedforEMwavescatteringbymanysmall impedanceparticlesofanarbitraryshape. In Section 5 a recipe for creating materialswith a desired refraction coeffi- cient is given is given. The problem of creating materials with a desired mag- neticpermeabilityissolved. Physicalassumptionsinthispapercanbedescribedbytheinequalities: a d λ, (1.1) ≪ ≪ where λ is the wavelength in R3\Ω, Ω is a bounded domain in which many small particles D are distributed, 1 m M M(a), d is the minimal dis- m ≤ ≤ = tancebetweenneighboringparticles. Theboundaryimpedanceisassumedtobe h(x ) m ζ , (1.2) m = aκ wherex D isanarbitrarypointinsideD ,h(x)isanarbitrarycontinuous m m m ∈ functioninΩsuchthatReh 0,κ [0,1)isaparameter. Onecanchooseh and ≥ ∈ κasonewishes. The distributionof the small impedance particles in D is given by the for- mula 1 N (∆): N(x)dx(1 o(1)), a 0, (1.3) = a2 κ ∆ + → − Z where∆ Ωisanarbitraryopenset,N (∆)isthenumberofsmallparticlesin ⊂ theset∆,andN(x) 0isanarbitrarycontinuousfunctioninΩ. ≥ TheexperimentercanchoosethefunctionN(x) 0ashe/shewishes. ≥ Onehas N (∆) 1. (1.4) = xm ∆ X∈ By ω the frequency is denoted, k ω is the wave number, c is the velocity of = c lightintheair. 3 2 Scattering by perfectly conducting particles. 2.1 Scatteringbyoneparticle TheproblemistofindthesolutiontoMaxwell’sequations E iωµH, H iωǫE, inD : R3\D, (2.1) ′ ∇× = ∇× =− = where D is the small body, ka 1, a 0.5diamD, ǫ and µ are dielectric and ≪ = magneticconstantsofthemediumin D′, k ωpǫµ, andtheboundarycondi- = tionis: [N,[E,N]] 0 onS: ∂D. (2.2) = = HereandbelowN : N istheunitnormaltoS pointingintoD ,[E,N] E N s ′ = = × isthevectorproductoftwovectors,E N (E,N)isthescalarproduct, S isthe · = | | surfacearea. TheincidentfieldE is: 0 E E Eeikαx, H ∇× 0, (2.3) 0 · 0 = = iωµ whereα S2 isaunitvector,thedirectionoftheincidentplanewave,anditis ∈ assumedthatE α 0.Thisassumptionimpliesthat · = E 0, H 0. (2.4) 0 0 ∇· = ∇· = ThefieldE tobefoundis: E E v , (2.5) 0 E = + wherethescatteredfieldv satisfiestheradiationcondition E ∂v E r ikv o(1), r : x . (2.6) E ∂r − = =| |→∞ µ ¶ Inequation(2.6)theo(1)isuniformwithrespecttothedirectionβ: x ofthe = r scatteredfieldasr . →∞ ThescatteringamplitudeA(β,α,k)isdefinedasusual: eikr 1 x v A(β,α,k) o , r x , β . (2.7) E = r + r =| |→∞ = r µ ¶ ThemagneticfieldH H v , 0 H = + E v E H ∇× , v ∇× . (2.8) H = iωµ = iωµ 4 Letuslookforthesolutiontothescatteringproblem(2.1)-(2.6)oftheform: eikx t | − | E E g(x,t)J(t)dt, g(x,t) , (2.9) 0 = +∇× = 4π x t ZS | − | where J is a tangential field to S. We assume that S C2, that is, S is twice ∈ continuouslydifferentiable. Equations(2.1)aresatifiedif E E k2E, H ∇× . (2.10) ∇×∇× = = iωµ SinceE satisfiesequations(2.10),theseequationsareequivalentto 0 v v k2v , v ∇× E. (2.11) E E E ∇×∇× = = iωµ Equationforv isequivalenttotheequations: E ( 2 k2)v 0, v 0inD , (2.12) E E ′ ∇ + = ∇· = because v v 2v and v 0.Conversely,equations(2.12) E E E E ∇×∇× =∇∇· −∇ ∇· = areequivalentto(2.10)andto(2.1). Theradiationconditionissatisfiedby v g(x,t)J(t)dt E =∇× ZS foranyvector-function J(t). Theboundarycondition(2.2)yields J J TJ : [N ,[ g(s,t),J(t)]]dt [N ,E ], (2.13) s s s 0 2+ = 2+ ∇ =− ZS wheretheformula J(s) lim[N, g(x,t)J(t)dt] TJ, (2.14) x→s− ∇×ZS = 2 + was used, see [15]. Let us prove that equation (2.13) has a solution and this solutionisuniqueinthespaceC(S)ofcontinuousonS functions. Thisproves thatthescatteringproblemcanbesolvedbyformula(2.9)with J solving(2.13). 5 Theorem2.1. IfD issufficientlysmall,thenequation(2.13)isuniquelysolvable inC(S)anditssolution J istangentialtoS. Proof. Notethatanysolutiontoequation(2.13)isatangentialtoS field.Tosee this,justtakethescalarproductof N withbothsidesofequation(2.13). This s yieldsN J(s) 0.Inotherwords, J isatangentialtoS field. s · = Let uscheckthattheoperatorT iscompact inC(S). Thisfollows fromthe formula ∂g(s,t) TJ g(s,t)N J(t) J(t) dt. (2.15) S s = ∇ · − ∂N ZSµ s ¶ Indeed,if J isatangentialtoS fieldthen N J(s) 0. (2.16) s · = SinceS C2,relation(2.16)implies ∈ 1 N J(t) O( s t ) J(t), g(s,t)N J(t) O J(t). (2.17) s s s | · |= | − | | | |∇ · |≤ s t | | µ| − |¶ Thus, thefirst integral in (2.15) is a weakly singularcompact operator inC(S). Thesecondintegralin(2.15)isalsoaweaklysingularcompactoperatorinC(S) because ∂g(s,t) 1 O , (2.18) ∂N = s t ¯ s ¯ µ| − |¶ ¯ ¯ ifS C2. ¯ ¯ ∈ ¯ ¯ Consequently,equation(2.13)isofFredholmtypeinC(S).Thecorrespond- inghomogeneousequationhasonlythetrivialsolutionifDissufficientlysmall. Thisfollowsfromthefollowingargument. Thehomogeneousversionofequa- tion(2.13)meansthatthefunction v g(x,t)J(t)dt E =∇× ZS solvesequations(2.12),satisfiestheradiationcondition(2.6),and [N,v ] 0 onS. (2.19) E = Thisimpliesthatv 0inD . E ′ = Lemma2.1(seebelow)impliesthatif v 0inD then J 0. Thisconclu- E ′ = = sion and the Fredholm alternativeprove the existence and uniqueness of the solutiontoequation(2.13). ThesmallnessofthebodyD guaranteesthatk2 is notaDirichleteigenvalueoftheLaplacianinD. Theorem2.1isproved. 6 Lemma2.1. Assumethatthefollowingconditionshold: a)v 0inD , E ′ = b) J istangentialtoS, and c)k2isnotaDirichleteigenvalueoftheLaplacianinD. Then J 0. = Proof. Denote A: g(x,t)J(t)dt andusetheformula = S R A Bdx A Bdx N [A,B]ds A Bdx, (2.20) ∇× · = ·∇× − · = ·∇× ZD′ ZD′ ZS ZD′ validforanyB C (D ). If A 0inD ,thenformula(2.20)yields ∈ 0∞ ′ ∇× = ′ A·∇×Bdx=0, ∀B ∈C0∞(D′). (2.21) ZD′ Writethisformulaas dtJ(t) g(x,t)F(x)dx 0, F : B. (2.22) · = =∇× ZS ZD′ Thesetofvector-fieldsF coincidewiththesetofdivergence-freefields F 0 ∇· = inD ,whereF C (D ). ′ ∈ 0∞ ′ Thesetofvector-fields G(t) g(x,t)F(x)dx, F C (D ), = ∀ ∈ 0∞ ′ ZD′ whereitisnotassumedthatthecondition F 0holds,isdenseinthesetL2(S) ∇· = ofvectorfields.Indeed,ifthereexistsanh 0suchthat 6= h(t) g(x,t)F(x)dxdt 0, F C (D ), (2.23) = ∀ ∈ 0∞ ′ ZS ZD′ andw(x): g(x,t)h(t)dt,then = S R w(x)F(x)dx 0, F C (D ). = ∀ ∈ 0∞ ′ ZD′ Thus, w(x) g(x,t)h(t)dt 0 inD . (2.24) ′ = = ZS 7 Consequently, ( 2 k2)w 0 inD, w 0 on S. (2.25) ∇ + = = Sincek2 isnotaDirichleteigenvalueoftheLaplacianinD,equation(2.25)im- plies w 0 in D. Therefore, w 0 in D D . This implies h ∂w ∂w 0. = = ∪ ′ = ∂N − ∂N = Consequently,thesetG(t)isdenseinthesetL2(S)ofvectorfieldso+nS. − Weclaimthatif F 0inD ,whereF C (D ),then G 0onS. ∇· = ′ ∈ 0∞ ′ ∇· = Indeed, g(x,t)F(x)dx g(x,t) F(x)dx g(x,t) F(x)dx 0. (2.26) t x ∇ · =− ∇ · = ∇· = ZD′ ZD′ ZD′ Conversely,if G 0onS,thenequations(2.26)showthat ∇· = g(x,t) F(x)dx 0, t S. ∇· = ∀ ∈ ZD′ Let us use the local coordinate system with the axis x directed along the 3 outernormalN toS,andx (s),x (s)arecoordinatesalongtwoorthogonalaxes s 1 2 tangentialtoS.Letusdenotebye (s)ande (s)theunitvectorsalongtheseaxes 1 2 atapoints S. ∈ Equation(2.22)canbewrittenas J(t) G(t)dt 0 (2.27) · = ZS forallsmoothG(t)suchthat G 0onS,G g(x,t)F(x)dx, F 0. ∇· = = D′ ∇· = Let J(t) J (t)e (t) J (t)e (t) in the local coordinates. For an arbitrary = 1 1 + 2 2 R smallδ 0onecanchooseG (t)andG (t)suchthat 1 2 > J G J G δ, (2.28) 1 1 L2(S) 2 2 L2(S) || − || +|| − || < wheretheover-bardenotesthecomplexconjugate. WithG andG sochosen, 1 2 chooseG suchthat 3 G 0 on S, (2.29) ∇· = whichisclearlypossible.Thenequation(2.27)yields ( J 2 J 2)dt O(δ). (2.30) 1 2 | | +| | = ZS Sinceδ 0isarbitrarysmall,relation(2.30)impliesJ J 0.Therefore, J 0. 1 2 > = = =✷ Lemma2.1isproved. 8 As was stated above, it follows from Lemma 2.1 and from the Fredholm alternativethat equation (2.13) is uniquely solvable for any right-hand side if k2 σ(∆ ), that is, if k2 is not a Dirichlet eigenvalue of the Laplacian in D. If D 6∈ D is sufficientlysmall, which we assumesince a 0, then a fixed numberk2 → cannot be a Dirichlet eigenvalue of the Laplacian in D because the smallest DirichleteigenvalueoftheLaplacianinD isO( 1 ) k2ifa 0. a2 > → Remark2.1. The assumption k2 σ(∆ ) can be discarded if g(x,t) is replaced D 6∈ byg (x,t),theGreenfunctionoftheDirichletHelmholtzoperatorintheexterior ǫ ofaballB : {x: x ǫ},whereǫ 0ischosensothatk2 σ(∆ ). Thischoice ǫ = | |≤ > 6∈ D\Bǫ ofǫ 0isalwayspossible(see[8],p. 29). > Let us denote by V the operator that gives the tangential to S component v oftheuniquesolutionv tothescatteringproblem(2.1)–(2.3),(2.6): Eτ E E E v , v V( [N,E ]). (2.31) 0 E Eτ 0 = + = − If the tangential component v is known, then v is uniquely defined in D . Eτ E ′ Thisisaknownfact,see,forexample,[15].TheoperatorV islinearandbounded inC(S). It mapsC(S) ontoC(S) and v has the same smoothness as the data E [N,E ]. Forexample,ifS Cℓ,thenv Cℓ(D ),whereℓ 0. 0 E ′ ∈ ∈ > Define Q: J(t)dt. (2.32) = ZS Fromformulas(2.7),(2.9)and(2.32)itfollowsthat ik A(β,α,k) [β,Q]. (2.33) = 4π ForbodyD onehas [N,E ]ds E dx E D E c a3, (2.34) 0 0 0 0 D = ∇× =∇× | |=∇× ZS ZD where D isthevolumeofD andc 0isaconstantdependingontheshape D | | > ofD. Forexample,ifD isaballofradiusa,thenc 4π. D = 3 Onehastheformula(see[15],p.8): ∂g(s,t) 1 ds o(1), a 0. (2.35) − ∂N = 2+ → ZS S 9 SinceN J(s) 0andSisC2 smooth,itfollowsthat N J(t) c s t J(t). s s · = − | · |≤ | − || | Therefore 1 I : ds dt g(s,t)N J(t) c ds dt J(t), (2.36) s s = ∇ · ≤ s t | | ¯ZS ZS ¯ ZS ZS | − | ¯ ¯ ¯ ¯ and I O(a¯) J(t)dt. If I wouldsatis¯fytheestimateI o(Q),asa 0,then ≤ S| | = → the theorywould simplify considerably and one would haveQ E D R =−∇× | |= Ec a3. Unfortunately,estimateI o(Q)isnotvalid,andonehastogive D −∇× = anewestimatefortheintegralI : ds dt g(s,t)N J(t). Todothis,inte- 1 = S S ∇s s· grateequation(2.13)overS,useequations(2.15)and(2.35),andget R R Q I c a3 E . (2.37) 1 D 0 + =− ∇× LetuswriteI as 1 I e Γ (t)J (t)dt, (2.38) 1 p pq q = ZS where{e }3 isanorthonormalbasisofR3, p p 1 = ∂g(s,t) Γ (t): N (s)ds, (2.39) pq q = ∂s ZS p and the integral in formula (2.39) is understood as a singular integral. Thus, equation(2.37)takestheform (I Γ)Q c a3 E . (2.40) D 0 + =− ∇× HeretheconstantmatrixΓisdeterminedfromtherelation ΓQ e Γ (t)J (t)dt, (2.41) p pq q = ZS thesummationisunderstoodovertherepeatedindicesp,q,soΓisthematrix which sends a constant vector Q onto the constant vector I defined by the 1 equation(2.38). OnecanprovethattheconstantmatrixΓexistsandcanbedeterminedby equation(2.41),andthematrixI Γisnon-singular. + To prove that a constant matrix Γ exists assume that for every p 1,2,3, = thesetoffunctions{Γ (t)}3 islinearlyindependentinL2(S), Γ2 (t)dt 0 pq q 1 S pq 6= and Q J(t)dt 0. Here=J(t) 3 e J (t). For a fixed p let M be the = S 6= = q 1 q q R p set in L2(S) orthogonalto thelinearspa=n of Γ (t). Then every function J (t) R P pq q 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.