ebook img

Scattering of an Electromagnetic Plane Wave by a Luneburg Lens. II. Wave Theory PDF

12 Pages·2016·0.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Scattering of an Electromagnetic Plane Wave by a Luneburg Lens. II. Wave Theory

CClleevveellaanndd SSttaattee UUnniivveerrssiittyy EEnnggaaggeeddSScchhoollaarrsshhiipp@@CCSSUU Physics Faculty Publications Physics Department 12-1-2008 SSccaatttteerriinngg ooff aann EElleeccttrroommaaggnneettiicc PPllaannee WWaavvee bbyy aa LLuunneebbuurrgg LLeennss.. IIII.. WWaavvee TThheeoorryy James A. Lock Cleveland State University, [email protected] Follow this and additional works at: https://engagedscholarship.csuohio.edu/sciphysics_facpub Part of the Physics Commons HHooww ddooeess aacccceessss ttoo tthhiiss wwoorrkk bbeenneefifitt yyoouu?? LLeett uuss kknnooww!! Publisher's Statement This paper was published in Journal of the Optical Society of America A: Optics Image Science and Vision and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/josaa/ abstract.cfm?URI=josaa-25-12-2980. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. OOrriiggiinnaall CCiittaattiioonn Lock, James A. "Scattering of an Electromagnetic Plane Wave by a Luneburg Lens. II. Wave Theory." Journal of the Optical Society of America A: Optics Image Science and Vision 25 (2008): 2980-2990. Repository Citation Lock, James A., "Scattering of an Electromagnetic Plane Wave by a Luneburg Lens. II. Wave Theory" (2008). Physics Faculty Publications. 31. https://engagedscholarship.csuohio.edu/sciphysics_facpub/31 This Article is brought to you for free and open access by the Physics Department at EngagedScholarship@CSU. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. 2980 J.Opt.Soc.Am.A/Vol.25,No.12/December2008 JamesA.Lock Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory JamesA.Lock DepartmentofPhysics,ClevelandStateUniversity,Cleveland,Ohio44115,USA([email protected]) ReceivedJuly30,2008;acceptedSeptember11,2008; postedSeptember29,2008(Doc.ID99458);publishedNovember12,2008 Thepartialwavescatteringandinterioramplitudesfortheinteractionofanelectromagneticplanewavewith amodifiedLuneburglensarederivedintermsoftheexteriorandinteriorradialfunctionsofthescalarradia- tion potentials evaluated at the lens surface.ADebye series decomposition of these amplitudes is also per- formedanddiscussed.Theeffectivepotentialinsidethelensforthetransverseelectricpolarizationisquali- tatively examined, and the approximate lens size parameters of morphology-dependent resonances are determined. Finally, the physical optics model is used to calculate wave scattering in the vicinity of the ray theoryorbitingconditioninordertodemonstratethesmoothingofraytheorydiscontinuitiesbythediffraction ofscatteredwaves. © 2008OpticalSocietyofAmerica OCIScodes: 050.1960,080.2710,290.4020. 1. INTRODUCTION tential approach borrowed from quantum mechanics [4]. It is found that for f=1, scattering of the grazing inci- This is the second in a series of papers whose purpose is denceraycorrespondstothesemiclassicalphenomenonof to examine electromagnetic scattering by a modified orbiting[5,6].Forf(cid:1)1,theeffectivepotentialhasawide, Luneburglensasaprototypeexampleforunderstanding shallow well inside the modified Luneburg lens that can the scattering phenomena of a radially inhomogeneous support a series of morphology-dependent resonances sphere and to compare and contrast them to the way in (MDRs). The approximate size parameter of the reso- whichtheyoccurforscatteringbyahomogeneoussphere. nances is derived as a function of partial wave number The first paper [1] considered ray theory transmission andradialmodenumber.InSection4,thephysicaloptics through a sphere of radius a whose dielectric constant N2(cid:1)r(cid:2)variesparabolicallyinrinsuchawaythatthefocal model for scattering of the grazing incident ray is devel- opedforf=1,andthesmoothingoftheraytheorydiscon- point of all the transmitted rays is fa. Such a sphere is tinuities at the orbiting condition by wave diffraction is called a modified Luneburg lens. A discontinuity was demonstratedandphysicallyinterpreted.Finally,Appen- found as a function of f in the trajectory of the ray with grazingincidenceonthesphere.Forf(cid:1)1,thegrazingin- dix A gives the details of orbiting for classical scattering cidenceraywasscatteredthrough(cid:2)=180°,forf=1itwas ofaparticlebyaforcecenter.AppendixBderivestheDe- scattered through (cid:2)=90°, and for f(cid:3)1 it was scattered bye series expansion of the partial wave scattering and through(cid:2)=0°.Similarly,therewasadiscontinuityinthe interior amplitudes for a sphere with an arbitrary radi- scattered intensity of the grazing incident ray. For f(cid:3)1 ally inhomogeneous refractive index profile. This Debye the intensity diverged as f→1 due to the transmission serieshasaslightlydifferentphysicalinterpretationthan rainbowapproaching(cid:2)=90°.Butforf=1,theintensityat itdoesforahomogeneoussphere,whichiscommentedon (cid:2)=90° vanished. Both of these discontinuities signal a inAppendix B as well. The results obtained here and in [1]arenumericallytestedin[7]whereamodifiedLuneb- nonuniform convergence of ray theory in the vicinity of urglensisapproximatedbyafinelystratifiedmultilayer thegrazingincidenceray. sphere. In [7] also, a new algorithm for computing scat- In this paper the ray theory discontinuities are teringbyamultilayerspherebasedonananalogytothe smoothed by diffractive effects when scattering by light successivedoublingstrategyofthefastFouriertransform wavesisconsidered.InSection2,anincidentplanewave (FFT)algorithmisdevelopedandimplemented. is decomposed into partial waves. The scattering of each partialwavebyaspherehavinganarbitraryradiallyin- homogeneous refractive index profile is determined in terms of the solutions of the second-order differential 2. FORMAL SOLUTION TO THE WAVE equationfortheradialfunctionsofthetransverseelectric SCATTERING PROBLEM (TE) and transverse magnetic (TM) scalar radiation po- tentials. For TE scattering by a modified Luneburg lens, A.RadialWaveEquations the radial functions are related to Whittaker functions In analogy to the procedure followed in Mie theory for [2,3]. In order to obtain an intuitive understanding of a scatteringofaplanewavebyahomogeneoussphere,the numberoftheresultingscatteringphenomena,inSection TEandTMfieldsinsideaspherehavingthearbitraryre- 3thedifferentialequationfortheTEpartialwaveradial fractiveindexprofileN(cid:1)r(cid:2) areobtainedbytakingvarious function is qualitatively analyzed using the effective po- vector derivatives of the scalar radiation potentials. For 1084-7529/08/122980-11/$15.00 ©2008OpticalSocietyofAmerica JamesA.Lock Vol.25,No.12/December2008/J.Opt.Soc.Am.A 2981 the TE polarization, a partial wave scalar radiation po- B.BoundaryConditionMatching tentialinsidethesphereisoftheform Consider a plane wave with electric field strength E , 0 traveling in the positive z direction in the external me- (cid:4) (cid:1)kr,(cid:2),(cid:5)(cid:2)=(cid:3)F (cid:1)kr(cid:2)/kr(cid:4)P m(cid:3)cos(cid:1)(cid:2)(cid:2)(cid:4)exp(cid:1)im(cid:5)(cid:2), (cid:1)1(cid:2) n,m n n dium and polarized in the x direction. It is incident on a radially inhomogeneous sphere of radius a and arbitrary where(cid:6)isthewavelengthoftheincidentelectromagnetic refractive index profile N(cid:1)r(cid:2) whose center is at the origin waveinvacuum,thewavenumberisk=2(cid:7)/(cid:6),thepartial ofcoordinates.Thecompletescalarradiationpotential(cid:12) wavenumberisn,theazimuthalmodenumberism,and oftheTEandTMcomponentsoftheplanewavecontains P m are associated Legendre polynomials. Equation (1) n onlythem=±1 azimuthalmodesandis satisfiesthewaveequation (cid:13) (cid:1)2(cid:4)n,m+N2(cid:1)r(cid:2)k2(cid:4)n,m(cid:1)kr(cid:2)=0, (cid:1)2(cid:2) (cid:12) (cid:1)kr,(cid:2),(cid:5)(cid:2)=(cid:6)(cid:5)in(cid:1)2n+1(cid:2)/(cid:3)n(cid:1)n inc n=1 whichreducesto[8–11] +1(cid:2)(cid:4)(cid:7)(cid:4)(cid:1)kr(cid:2)P 1(cid:1)cos(cid:2)(cid:2)(cid:14)(cid:1)(cid:5)(cid:2), (cid:1)9(cid:2) d2F /d(cid:1)kr(cid:2)2+(cid:5)N2(cid:1)r(cid:2)−n(cid:1)n+1(cid:2)/(cid:1)kr(cid:2)2(cid:4)F (cid:1)kr(cid:2)=0 (cid:1)3(cid:2) n n n n where for the partial wave radial function F (cid:1)kr(cid:2). If the refrac- tiveindexNisconstant,F (cid:1)kr(cid:2)isalinnearcombinationof (cid:14)(cid:1)(cid:5)(cid:2)=cos(cid:1)(cid:5)(cid:2) forTM, n Riccati–Bessel functions (cid:4)(cid:1)Nkr(cid:2)=Nkrj (cid:1)Nkr(cid:2) and n n Riccati–Neumannfunctions(cid:8)(cid:1)Nkr(cid:2)=Nkrn (cid:1)Nkr(cid:2),where =sin(cid:1)(cid:5)(cid:2) forTE. (cid:1)10(cid:2) n n j and n are spherical Bessel functions and spherical n n Similarly, the complete scalar radiation potential of the Neumann functions, respectively. The partial wave TE scatteredwaveintheexteriormediumis electricandmagneticfieldsassociatedwiththisradiation potentialare (cid:13) (cid:6) (cid:12) (cid:1)kr,(cid:2),(cid:5)(cid:2)=− (cid:5)in(cid:1)2n+1(cid:2)/(cid:3)n(cid:1)n+1(cid:2)(cid:4)(cid:7) E TE(cid:1)r,(cid:2),(cid:5)(cid:2)=−r(cid:9)(cid:1)(cid:4) , (cid:1)4a(cid:2) scat n,m n,m n=1 (cid:9)(cid:15)(cid:1)1(cid:2)(cid:1)kr(cid:2)P 1(cid:1)cos(cid:2)(cid:2)(cid:16)(cid:1)(cid:5)(cid:2), (cid:1)11(cid:2) B TE(cid:1)r,(cid:2),(cid:5)(cid:2)=(cid:1)i/(cid:10)(cid:2)(cid:1) (cid:9)(cid:1)r(cid:9)(cid:1)(cid:4) (cid:2), (cid:1)4b(cid:2) n n n n,m n,m where (cid:15)(cid:1)1(cid:2)(cid:1)kr(cid:2)=krh (cid:1)1(cid:2)(cid:1)kr(cid:2) are radially outgoing Riccati– wherethespeedoflightinvacuumisc and(cid:10)=ck. n n Hankelfunctions, For the TM polarization, a partial wave scalar radia- tionpotentialisoftheform (cid:16)(cid:1)(cid:5)(cid:2)=a cos(cid:1)(cid:5)(cid:2) forTM, n n (cid:11) (cid:1)kr,(cid:2),(cid:5)(cid:2)=N(cid:1)r(cid:2)(cid:4) (cid:1)kr,(cid:2),(cid:5)(cid:2) n,m n,m =b sin(cid:1)(cid:5)(cid:2) forTE, (cid:1)12(cid:2) n =(cid:3)G (cid:1)kr(cid:2)/kr(cid:4)P m(cid:1)cos(cid:2)(cid:2)exp(cid:1)im(cid:5)(cid:2) (cid:1)5(cid:2) n n anda andb arethepartialwavescatteringamplitudes. n n andsatisfiesthewaveequation Thecompleteinteriorscalarradiationpotentialis (cid:1)2(cid:11)n,m−(cid:3)2(cid:1)dN/dr(cid:2)/N(cid:4)(cid:2)(cid:11)n,m/(cid:2)r (cid:12) (cid:1)kr,(cid:2),(cid:5)(cid:2)=(cid:6)(cid:13) (cid:5)in(cid:1)2n+1(cid:2)/(cid:3)n(cid:1)n+1(cid:2)(cid:4)(cid:7)(cid:17)(cid:1)kr,(cid:5)(cid:2)P 1(cid:1)cos(cid:2)(cid:2), int n n −(cid:3)2(cid:1)dN/dr(cid:2)/(cid:1)Nr(cid:2)(cid:4)(cid:11)n,m+N2(cid:1)r(cid:2)k2(cid:11)n,m=0. (cid:1)6(cid:2) n=1 (cid:1)13(cid:2) Itreducesto[8–11] where d2G /d(cid:1)kr(cid:2)2−2(cid:1)dN/dr(cid:2)(cid:3)dG /d(cid:1)kr(cid:2)(cid:4)/Nk n n (cid:17)(cid:1)kr,(cid:5)(cid:2)=G (cid:1)kr(cid:2)c cos(cid:1)(cid:5)(cid:2) forTM, +(cid:3)N2(cid:1)r(cid:2)−n(cid:1)n+1(cid:2)/(cid:1)kr(cid:2)2(cid:4)G (cid:1)kr(cid:2)=0 (cid:1)7(cid:2) n n n n for the partial wave radial function Gn(cid:1)kr(cid:2). If the refrac- =Fn(cid:1)kr(cid:2)dnsin(cid:1)(cid:5)(cid:2) forTE, (cid:1)14(cid:2) tive index N is constant, G (cid:1)kr(cid:2) is again a linear combi- nationof(cid:4)(cid:1)Nkr(cid:2)and(cid:8)(cid:1)Nknr(cid:2).ThepartialwaveTMelec- whereGn(cid:1)kr(cid:2) andFn(cid:1)kr(cid:2) arethesolutionsofEqs.(3)and n n (7), respectively, that vanish at the origin and c and d tric and magnetic fields associated with this radiation n n arethepartialwaveinterioramplitudes.Thencontinuity potentialare ofD ,E ,andB atr=a gives[8–11] rad tan tan En,mTM(cid:1)r,(cid:2),(cid:5)(cid:2)=(cid:1)ic/N2(cid:10)(cid:2)(cid:1) (cid:9)(cid:1)r(cid:9)(cid:1)(cid:11)n,m(cid:2), (cid:1)8a(cid:2) a =(cid:3)G (cid:1)(cid:1)ka(cid:2)(cid:4)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2)G (cid:1)ka(cid:2)(cid:4)(cid:1)(cid:1)ka(cid:2)(cid:4)/(cid:3)G (cid:1)(cid:1)ka(cid:2) n n n n n n Bn,mTM(cid:1)r,(cid:2),(cid:5)(cid:2)=(cid:1)1/c(cid:2)r(cid:9)(cid:1)(cid:11)n,m. (cid:1)8b(cid:2) (cid:9)(cid:15)n(cid:1)1(cid:2)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2)Gn(cid:1)ka(cid:2)(cid:15)n(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4), (cid:1)15a(cid:2) The structure of the differential equation for the TE ra- b =(cid:3)F (cid:1)(cid:1)ka(cid:2)(cid:4)(cid:1)ka(cid:2)−F (cid:1)ka(cid:2)(cid:4)(cid:1)(cid:1)ka(cid:2)(cid:4)/(cid:3)F (cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2) dialfunctionF ofEq.(3)isexactlyasitwasforahomo- n n n n n n n n geneoussphere,exceptthatnowtherefractiveindexisa −F (cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4), (cid:1)15b(cid:2) n n function of r. The differential equation for the TM radial functionGnofEq.(7)containsafirstderivativetermpro- c =−iN2(cid:1)a(cid:2)/(cid:3)G (cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2)G (cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4), portionaltodN/dr,whichgreatlycomplicatesitsanalyti- n n n n n calsolution. (cid:1)15c(cid:2) 2982 J.Opt.Soc.Am.A/Vol.25,No.12/December2008 JamesA.Lock d =−i/(cid:3)F (cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−F (cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4). (cid:1)15d(cid:2) tentialapproachisdiscussedforTEscattering.Thefinely n n n n n stratified sphere model is implemented and discussed in In Eqs. (15a)–(15d) the prime symbol indicates a deriva- [7]. tive with respect to kr, and N(cid:1)a(cid:2) is evaluated inside the The differential equation of Eq. (17) for F (cid:1)kr(cid:2) for the n sphere as r→a. These partial wave scattering and inte- modifiedLuneburglenscanberewrittenas rior amplitudes are then substituted into Eqs. (11) and −d2F /d(cid:1)kr(cid:2)2+U (cid:1)kr(cid:2)F (cid:1)kr(cid:2)=F (cid:1)kr(cid:2), (cid:1)20(cid:2) (13), from which the scattered and interior fields can be n eff n n determined. This constitutes the formal solution to the wheretheeffectivepotentialis electromagneticboundaryvalueproblemofaplanewave scattered by a radially inhomogeneous sphere. The solu- Ueff(cid:1)kr(cid:2)=n(cid:1)n+1(cid:2)/(cid:1)kr(cid:2)2+(cid:3)−1+(cid:1)kr(cid:2)2/(cid:1)ka(cid:2)2(cid:4)/f2 forr(cid:19)a, tion is formal in the sense that the radial functions F n and G still need to be determined for a given refractive =n(cid:1)n+1(cid:2)/(cid:1)kr(cid:2)2 forr(cid:3)a. (cid:1)21(cid:2) n index profile, and the infinite series of partial waves Equations (20) and (21) are analogous to a one- needs to be summed in order to identify and understand dimensional quantum mechanical Schrodinger equation variousfeaturesofthescatteredintensity. [4]withwavefunctionF (cid:1)kr(cid:2),withunitenergy,andwith n the potential well U (cid:1)kr(cid:2). The effective potential for C.WaveScatteringbyaModifiedLuneburgLens eff r(cid:19)a is the sum of the centrifugal potential proportional AmodifiedLuneburglenshastherefractiveindexprofile to1/r2andaharmonicoscillatorpotentialproportionalto [1] r2. Only the centrifugal potential occurs outside the N(cid:1)r(cid:2)=(cid:3)1+f2−(cid:1)r/a(cid:2)2(cid:4)1/2/f. (cid:1)16(cid:2) sphere,andU iscontinuousatr=a.Asthepartialwave eff number n increases for constant ka, the effective energy Equation (3) for the TE scalar radiation potential Fn(cid:1)kr(cid:2) remains constant and the centrifugal barrier becomes thenbecomes higher. The radial interval for which U (cid:1)1 corresponds eff toaclassicallyallowedregionwhereF (cid:1)kr(cid:2) isoscillatory, d2F /d(cid:1)kr(cid:2)2+(cid:3)−n(cid:1)n+1(cid:2)/(cid:1)kr(cid:2)2+(cid:1)f2+1(cid:2)/f2−(cid:1)kr(cid:2)2/(cid:1)fka(cid:2)2(cid:4)F n n n andtheradialintervalforwhichU (cid:3)1correspondstoa eff =0, (cid:1)17(cid:2) classically forbidden region where F (cid:1)kr(cid:2) is damped. The n second derivative of F (cid:1)kr(cid:2) vanishes at the boundary be- n whose solution, after a change of variables, is the Whit- tween these two regions and is called a classical turning takerfunction[2,3] point.Fortheremainderofthissection,thepartialwave F (cid:1)kr(cid:2)=(cid:3)(cid:1)kr(cid:2)2/fka(cid:4)(cid:1)n+1(cid:2)/2exp(cid:3)−(cid:1)kr(cid:2)2/2fka(cid:4)(cid:9)M(cid:3)(cid:1)2n+3(cid:2)/4 numbern isparameterizedbyX,where n X(cid:8)n(cid:1)n+1(cid:2)/(cid:1)ka(cid:2)2. (cid:1)22(cid:2) −(cid:1)f2+1(cid:2)ka/4f, (cid:1)2n+3(cid:2)/2; (cid:1)kr(cid:2)2/fka(cid:4), (cid:1)18(cid:2) Theeffectivepotentialapproachcannotbeappliedtothe where M(cid:1)a,c;w(cid:2) is a confluent hypergeometric function. TM partial wave radial function because of the presence In the context of quantum mechanics, Eqs. (17) and (18) ofthefirstderivativeterminEq.(19). are identical to the radial Schrodinger equation for the three-dimensionalharmonicoscillatorpotentialinspheri- B.ModifiedLuneburgLenswithf(cid:3)1 cal coordinates and its solution, with the replacement TheshapeofU (cid:1)kr(cid:2) fortheTEpolarizationisshownfor (cid:1)f2+1(cid:2)(cid:1)ka(cid:2)/4f→(cid:1)E/2(cid:18)(cid:2)(cid:1)m/k(cid:2)1/2. For the TM polarization, a number of vaeluffes of the partial wave X for f(cid:3)1 in Fig. Eq.(7)forthescalarradiationpotentialGn(cid:1)kr(cid:2) becomes 1(a), for f=1 in Fig. 1(b), and for f(cid:1)1 in Fig. 1(c). For d2G /d(cid:1)kr(cid:2)2+(cid:3)2kr/(cid:1)fka(cid:2)2(cid:4)(cid:3)(cid:1)f2+1(cid:2)/f2 f(cid:3)1 and low partial waves corresponding to X(cid:1)1, the n classically allowed region inside the modified Luneburg −(cid:1)kr/fka(cid:2)2(cid:4)−1dGn/d(cid:1)kr(cid:2)+(cid:3)−n(cid:1)n+1(cid:2)/(cid:1)kr(cid:2)2+(cid:1)f2+1(cid:2)/f2 lensis −(cid:1)kr(cid:2)2/(cid:1)fka(cid:2)2(cid:4)G =0. (cid:1)19(cid:2) (cid:5)(cid:1)f2+1(cid:2)−(cid:3)(cid:1)f2+1(cid:2)2−4f2X(cid:4)1/2(cid:7)/2(cid:19)(cid:1)kr/ka(cid:2)2(cid:19)1. (cid:1)23(cid:2) n The analytical solution of this equation [12] is consider- Apartialwavewithn(cid:1)ka isincidentonthelenssurface ablymorecomplicatedthanthatofEq.(17). and penetrates into it until the centrifugal barrier’s in- creasing strength converts the wave from oscillatory to evanescent, after which it tunnels to the origin. As the 3. EFFECTIVE POTENTIAL APPROACH FOR partial wave penetrates into the lens for some distance, TE SCATTERING its oscillatory shape is distorted and its phase is shifted by the refractive index variation, and it thus contributes A.GeneralConsiderations Since the radial functions F (cid:1)kr(cid:2) and G (cid:1)kr(cid:2) of Eqs. (17) tothescatteredintensity.Thelocalizationprincipleofvan n n and (19) for a modified Luneburg lens are both compli- de Hulst associates a partial wave with the impact pa- cated and relatively unfamiliar, two procedures may be rameterofanincidentray,sin(cid:1)(cid:16)(cid:2),andiswrittenas used to gain intuition concerning the behavior of these X(cid:9)sin2(cid:1)(cid:16)(cid:2) (cid:1)24(cid:2) functions: (i) analyzing the sphere’s effective potential well and (ii) approximating the radially inhomogeneous in the notation of Eq. (22) and [1]. Substituting Eq. (24) refractive index profile by a finely stratified multilayer intotheleftsideofEq.(23),theclassicalturningpointof sphere and then numerically solving the multilayer thepartialwaveradialfunctioninsidethelensisfoundto spherescatteringproblem.Inthissectiontheeffectivepo- beidenticaltothedistanceofclosestapproachofthecor- JamesA.Lock Vol.25,No.12/December2008/J.Opt.Soc.Am.A 2983 sidethesphereisnegativeasr→a,andthepartialwave radial function is evanescent for the entire lens interior. This is shown in Fig. 1(a). This higher partial wave can- not effectively probe the details of the lens interior, and thus its contribution to the scattered intensity is small. When the partial wave number further increases to X (cid:3)1, the contribution to the scattered field rapidly de- creases as the centrifugal barrier becomes increasingly highandthedampingrateoftheevanescentwaveinside thespherebecomesprogressivelyfaster. C.ClassicalOrbitinginaLuneburgLenswithf=1 Whenf=1,theeffectivepotentialis U (cid:1)kr(cid:2)=X(cid:1)ka/kr(cid:2)2+(cid:1)kr/ka(cid:2)2−1 forr(cid:19)a, eff =X(cid:1)ka/kr(cid:2)2 forr(cid:3)a. (cid:1)25(cid:2) For low partial waves with X(cid:1)1, the classically allowed region of the lens interior is again given by Eq. (23), and for high partial waves with X(cid:3)1 the interior is a classi- cally forbidden region that produces minimal scattering. For the partial wave corresponding to X=1, the classical turning point is at r=a, and the first derivative of U eff vanishesinsidethesphereasr→a.ThisisshowninFig. 1(b).However,thederivativedoesnotvanishoutsidethe sphere as r→a, since only the monotonically decreasing centrifugal potential contributes to U there. As is de- eff scribed in Appendix A, the phenomenon of orbiting [5,6] inclassicalscatteringoccursforaparticleinanattractive potentialwhenthefirstderivativeofU vanishesatthe eff classicalturningpoint,e.g.,whenU islocallyquadratic eff and the turning point occurs at the relative maximum of U . When this condition is met, a classical particle ap- eff proaching the force center will not be scattered by it but willbecapturedbytheforcecenterandorbititforever.It shouldbenotedthattheparticulargeometryofaLuneb- urg lens permits the orbiting condition to be met at the relative minimum of the parabolic potential, as in Fig. 1(b), instead of the relative maximum. Although the Luneburg lens effective potential for X=1 does not pre- cisely correspond to the condition for classical orbiting, since the first derivative of U at the classical turning eff pointvanishesonlyasrincreasestowarda,itisaboutas close to it as a relatively simple optical scattering geom- etry can come. If a classical particle is incident on the force center with slightly different initial conditions, it will be temporarily captured by the force center, orbit it for a number of cycles, and then eventually escape. The Fig.1. EffectiveradialpotentialofEq.(21)asafunctionofr/a optical analog of temporary capture is closely approxi- for ka=50.5, partial waves n=45, 50, and 55, and (a) f=1.2, (b) f=1.0, and (c) f=0.8. The effective energy of the size parameter matedbyanMDR[13]. ka=50.5isthehorizontallineU =2550.Forf=0.8,aninternal Aswasseenin[1],thegeometricalraycorrespondingto eff well potential is formed by partial waves with n slightly larger the X=1 partial wave strikes the lens surface with graz- than50.Forf=1,thepartialwaven=50isattheconditionfor ing incidence and travels in a circular arc on the surface orbiting. for a quarter cycle before breaking free and scattering at respondingraytotheoriginobtainedinEq.24ofRef.[1], 90°. But intuitively, once the initially grazing ray is tra- furtherreinforcingthecorrespondencebetweentheradial versing the lens surface, there appears to be no special propagation of partial waves and the curved trajectories physical constraint that would limit the ray to orbit for ofrays. only a quarter cycle. It could equally well traverse the When the partial wave number increases to X=1, the lens surface for any number of orbits, thus being the op- classicallyallowedregionendsatr=a,theslopeofU in- tical analog of an orbiting particle in classical scattering eff 2984 J.Opt.Soc.Am.A/Vol.25,No.12/December2008 JamesA.Lock [14]. In Section 4 this phenomenon is analyzed more X1/2=(cid:3)(cid:1)f2+1(cid:2)/2f(cid:4)−(cid:3)(cid:1)2S+1(cid:2)/ka(cid:4), (cid:1)31(cid:2) quantitativelyusingthephysicalopticsmodel. whereS=0,1,2,3...,analogoustotheenergyeigenvalues D.Morphology-DependentResonancesofaModified oftheSchrodingerequation,thedifferentialequationhas LuneburgLenswithf(cid:1)1 aboundstatesolution.Usingtheapproximation Forf(cid:1)1 andlowpartialwaveswithX(cid:1)1,theclassically n(cid:1)n+1(cid:2)(cid:9)(cid:1)n+1/2(cid:2)2 (cid:1)32(cid:2) allowedregioninsidethemodifiedLuneburglensisagain given by Eq. (23). For X=1, the slope of Ueff inside the forlargepartialwaves,Eq.(31)becomes sphere is positive as r→a, signaling the presence of a relativeminimumofU forr(cid:1)a.ThisisapparentinFig. n+1/2=(cid:3)(cid:1)f2+1(cid:2)ka/2f(cid:4)−(cid:1)2S+1(cid:2) (cid:1)33(cid:2) eff 1(c).ForpartialwavesX(cid:20)1 with or 1(cid:19)X(cid:19)(cid:3)(cid:1)f2+1(cid:2)/2f(cid:4)2 (cid:1)26(cid:2) ka=(cid:1)n+2S+3/2(cid:2)(cid:3)2f/(cid:1)f2+1(cid:2)(cid:4). (cid:1)34(cid:2) corresponding to geometrical rays that just miss striking Interestingly, Eq. (34) is also the condition for which the the lens surface, a classically allowed well region is exactconfluenthypergeometricradialfunction[15]inEq. formedinsidethelensthatextendsfrom (18) becomes a polynomial of degree S, again giving a (cid:5)(cid:1)f2+1(cid:2)−(cid:3)(cid:1)f2+1(cid:2)2−4f2X(cid:4)1/2(cid:7)/2 bound state solution to Eq. (17) that damps to zero as r →(cid:13).Apparently,thetwoapproximationsofEqs.(30)and (cid:19)(cid:1)kr/ka(cid:2)2(cid:19)(cid:5)(cid:1)f2+1(cid:2)+(cid:3)(cid:1)f2+1(cid:2)2−4f2X(cid:4)1/2(cid:7)/2. (32) cancel each other. Considering only the condition for (cid:1)27(cid:2) theexistenceofaboundstateinthelocallyparabolicwell andneglectingsmallcorrectionstokaduetotheneedfor In order to get to this interior well region, the partial matching boundary conditions at both ends of the cen- wave must tunnel through the centrifugal barrier, which trifugal barrier, Eq. (34) is the approximate size param- extendsfrom eter for the formation of a TE-polarized MDR in the par- tial wave n of radial order S. In [7] this prediction is (cid:5)(cid:1)f2+1(cid:2)+(cid:3)(cid:1)f2+1(cid:2)2−4f2X(cid:4)1/2(cid:7)/2(cid:19)(cid:1)kr/ka(cid:2)2(cid:19)X. (cid:1)28(cid:2) numericallytested,andtheTMresonantsizeparameters areobtained. Equation(26)definestheso-callededgeregionforscatter- ing by a modified Luneburg lens with f(cid:1)1, and MDRs Bywayofcomparison,forscatteringbyahomogeneous spherewithn slightlylargerthanka,theradialeffective shouldoccurwhenpartialwavesinthisintervalarereso- potentialconsistsofacentrifugalbarrieroutsidethepar- nantlycapturedbytheinteriorwell.UsingEq.(15b),this ticle and an approximately linearly decreasing well, i.e., occurswhen anAirywell,justinsidetheparticlesurfacethatalsosup- F (cid:1)(cid:1)ka(cid:2)/F (cid:1)ka(cid:2)=(cid:8)(cid:1)(cid:1)ka(cid:2)/(cid:8)(cid:1)ka(cid:2). (cid:1)29(cid:2) ports TE and TM resonances. The size parameter of the n n n n homogeneoussphereresonancesisgiventofirstorderby Asimple approximation for the values of the resonant [16–18] sizeparameterforagivenpartialwaveintheedgeregion can be derived as follows. When Ueff is Taylor series ex- ka(cid:9)(cid:1)n+1/2(cid:2)/N+(cid:1)n+1/2(cid:2)1/3wS/(cid:1)21/3N(cid:2)−P/(cid:1)N2−1(cid:2)1/2 pandedaboutitsrelativeminimum,theresultingwell + ... , (cid:1)35(cid:2) U (cid:1)kr(cid:2)(cid:9)(cid:3)(cid:1)2X1/2/f(cid:2)−(cid:1)1/f2(cid:2)(cid:4)+4(cid:3)kr−(cid:1)ka(cid:2)f1/2X1/4(cid:4)2/(cid:1)kaf(cid:2)2 eff where (cid:1)30(cid:2) P=1 forTE, islocallyparabolic.ThefirstterminEq.(30)isaconstant baseline,andthesecondtermisaharmonicoscillatorpo- =1/N2 forTM, (cid:1)36(cid:2) tential centered on the position r=af1/2X1/4. When the partial wave is at the high end of the edge region, X is where Ai(cid:1)−w (cid:2)=0 and S=1,2,3.... The modified Luneb- S slightlylessthan(cid:3)(cid:1)f2+1(cid:2)/2f(cid:4)2inEq.(26),thewellisvery urglensMDRsareexpectedtohavesomewhatofadiffer- shallow,anditscenterisapproximatelyhalfwaybetween entbehaviorthanthehomogeneoussphereMDRs.Thelo- thetwoclassicalturningpointsofEq.(27).Whenthepar- cally parabolic effective potential of Eqs. (21) and (30) is tialwaveisatthelowendoftheedgeregion,Xisslightly relatively wide and shallow and thus supports a bound greaterthan1inEq.(26),andthewellbecomessubstan- statequiteclosetothebottomofthewell,whereastheen- tiallywiderandsomewhatdeeper.Ifthisinteriorwellbe- ergy of the first bound state in an Airy well lies higher comesdeepenough,itcansupportoneormoreharmonic above the bottom of the well. As a result, the modified oscillator bound states that damp to zero as r→(cid:13) if Eq. Luneburg lens MDRs for a given partial wavenumber (30) were valid all the way out to infinity. Instead, these shouldoccuratalowervalueofXthandotheMDRsofa states slowly decay as they leak through the centrifugal homogeneous sphere. Also, since the deepest part of the barrierofEq.(28)totheclassicallyallowedregionoutside well for a modified Luneburg lens lies further inside the the lens. These metastable states are the MDRs. Substi- sphere than does the deepest part of the Airy well, the tuting Eq. (30) into Eq. (20), the resulting differential Luneburg lens MDRs should also lie deeper inside the equation is identical to a one-dimensional Schrodinger sphere, whereas the homogeneous sphere MDRs lie just equation with a harmonic oscillator potential. If X takes beneath the sphere surface. These issues are treated onthespecialvalues morequantitativelyandfullyin[7]. JamesA.Lock Vol.25,No.12/December2008/J.Opt.Soc.Am.A 2985 4. PHYSICAL OPTICS MODEL OF agreeswiththeraytheoryscatteredfieldofEq.18of[1]. SCATTERING OF THE ORBITING RAY BY A Finally,Eq.(38d)wasderivedin[1]. LUNEBURG LENS WITH f=1 This analysis encounters difficulties at the nongeneric angle (cid:2)=(cid:7)/2 for two reasons. First, the density of outgo- InraytheorytheamplitudeforscatteringbyaLuneburg ingraysinthehorizontaldirectiongoestozerothere.Sec- lens with f=1 is proportional to (cid:1)cos(cid:2)(cid:2)1/2 for 0(cid:19)(cid:2)(cid:19)(cid:7)/2 ond, ray theory predicts that no rays are scattered for (cid:2) and vanishes for larger angles. The slope of this ampli- (cid:3)(cid:7)/2, so there are no transmitted rays to integrate over tudehasaninfinitediscontinuityat(cid:2)=(cid:7)/2andisknown forthe−(cid:13)(cid:1)x(cid:1)(cid:1)0 portionoftheexitplanecorresponding as a weak caustic [19]. This divergence is softened in to wave theory, as is shown here using the physical optics model. Consider a plane wave incident on a spherical (cid:2)=(cid:1)(cid:7)/2(cid:2)+(cid:22), (cid:1)39(cid:2) scatterer.Thespatialdensityoftraysassociatedwiththe plane wave is E 2, and the wavefront at the entrance with(cid:22)(cid:3)0.Rayscatteringoccursonlyfor(cid:2)(cid:1)(cid:7)/2,i.e.,for 0 (cid:22)(cid:1)0,andthesetransmittedrayscrosstheexitplanefor planetangenttothespheresurfaceisflat.Forscattering at what is called a generic angle (cid:2), the scattered wave- 0(cid:1)x(cid:1)(cid:1)(cid:13).Bothdifficultiesareremediedbythesamepre- scription. The ray density factor A is slowly varying at front in the exit plane tangent to the sphere surface cen- h tered on the ray exiting in the (cid:2)direction is approxi- angles far from (cid:7)/2 and rapidly decreases only as (cid:2) →(cid:7)/2 due to its infinite slope at (cid:2)=(cid:7)/2.As a result, one mately parabolic in both the horizontal and vertical canapproximateA bysomeconstantaveragevalueA ave directions, having the radii of curvature R and R , re- h h h v for 0(cid:19)(cid:2)(cid:19)(cid:7)/2 corresponding to rays that cross the exit spectively. As one follows the incident flux tube through plane for 0(cid:19)x(cid:1)(cid:1)(cid:13), and by zero for (cid:7)/2(cid:19)(cid:2)(cid:19)(cid:7) corre- thesphere,thedensityofoutgoingraysinthehorizontal sponding to the absence of transmitted rays crossing the and vertical directions in the exit plane is taken to be exitplanefor−(cid:13)(cid:1)x(cid:1)(cid:1)0.Onethenobtains A E andA E ,respectively.Lettheexitplane’shorizon- h 0 v 0 taldirectionbex(cid:1)anditsverticaldirectionbey(cid:1).Letb(cid:2)be E(cid:3)(cid:1)(cid:7)/2(cid:2)+(cid:22)(cid:4)=(cid:3)−ikE exp(cid:1)ikr(cid:2)/2(cid:7)r(cid:4)A aveA exp(cid:3)i(cid:21)(cid:1)(cid:7)/2(cid:2)(cid:4) 0 h v theimpactparameteroftheincidentraythatistransmit- (cid:10) ted through the Luneburg lens and exits at the angle (cid:2). (cid:13) (cid:9) dx(cid:1)exp(cid:1)ikx(cid:1)2/2R (cid:2)exp(cid:1)ikx(cid:1)(cid:22)(cid:2) Then for f=1, rays with incident impact parameters b h (cid:1)b(cid:2)are scattered through smaller angles and cross the (cid:10)−(cid:13) exitplaneatx(cid:1)(cid:3)0.Incidentrayswithimpactparameters (cid:13) b(cid:3)b(cid:2)are scattered through larger angles and cross the (cid:9) dy(cid:1)exp(cid:1)iky(cid:1)2/2Rv(cid:2) exitplaneatx(cid:1)(cid:1)0. −(cid:13) Inthephysicalopticsmodel[20],thefar-zonescattered =(cid:1)1/21/2r(cid:2)(cid:3)E aA aveexp(cid:1)ikr+i(cid:21)(cid:1)(cid:7)/2(cid:2)−i(cid:7)/4(cid:2)(cid:4) electric field at the scattering angle (cid:2)is obtained by 0 h Fraunhofer diffracting the electric field in the scatterer’s (cid:9)exp(cid:1)−ika(cid:22)2/2(cid:2)(cid:5)F(cid:1)(cid:13)(cid:2)−F(cid:3)(cid:22)(cid:1)ka/(cid:7)(cid:2)1/2(cid:4)(cid:7), exitplane (cid:1)40(cid:2) E(cid:1)(cid:2)(cid:2)=(cid:3)−ikE0exp(cid:1)ikr(cid:2)/2(cid:7)r(cid:4)AhAvexp(cid:3)i(cid:21)(cid:1)(cid:2)(cid:2)(cid:4) whereF(cid:1)w(cid:2) istheFresnelintegral (cid:10) (cid:10) (cid:10) (cid:13) (cid:13) W (cid:9) dx(cid:1)exp(cid:1)ikx(cid:1)2/2Rh(cid:2) dy(cid:1)exp(cid:1)iky(cid:1)2/2Rv(cid:2) F(cid:1)w(cid:2)= dvexp(cid:1)i(cid:7)v2/2(cid:2). (cid:1)41(cid:2) −(cid:13) −(cid:13) 0 =(cid:3)E0exp(cid:1)ikr(cid:2)/r(cid:4)AhAv(cid:1)RhRv(cid:2)1/2exp(cid:3)i(cid:21)(cid:1)(cid:2)(cid:2)(cid:4), (cid:1)37(cid:2) In the ray theory illuminated region, (cid:22) is negative and the Fresnel straight-edge pattern F(cid:1)(cid:13)(cid:2)−F(cid:3)(cid:22)(cid:1)ka/(cid:7)(cid:2)1/2(cid:4) is where (cid:21)(cid:1)(cid:2)(cid:2) is the phase of the wavefront at the center of oscillatory. In the ray theory shadowed region, (cid:22) is posi- theexitplane.ForraytransmissionthroughaLuneburg tive and F(cid:1)(cid:13)(cid:2)−F(cid:3)(cid:22)(cid:1)ka/(cid:7)(cid:2)1/2(cid:4) monotonically decreases. lens with f=1 and assuming 100% transmission through Thissmoothingofthetransitionfromtheilluminatedre- thelensforboththeTEandTMpolarizations,araytrac- gion to the shadowed region in the vicinity of (cid:2)=(cid:7)/2 is inganalysisgives,aftermuchalgebra, showninFig.5of[11]forka=60.0,andinFig.2herefor R =R =a(cid:3)1−cos(cid:1)(cid:2)(cid:2)(cid:4), (cid:1)38a(cid:2) ka=350.0. v h These results have a pleasing physical interpretation. Inraytheorytheorbitingraytravelsinacirculararcon Ah=(cid:5)cos(cid:2)/(cid:3)1−cos(cid:1)(cid:2)(cid:2)(cid:4)(cid:7)1/2, (cid:1)38b(cid:2) the surface of the lens and exits only at (cid:2)=(cid:7)/2. In the physical optics model the orbiting ray travels along the A =(cid:5)1/(cid:3)1−cos(cid:1)(cid:2)(cid:2)(cid:4)(cid:7)1/2, (cid:1)38c(cid:2) surfaceofthelensforever,continuallysheddingradiation v tangentially. The radiation it sheds for (cid:2)(cid:1)(cid:7)/2 interferes (cid:21)(cid:1)(cid:2)(cid:2)=ka(cid:3)(cid:1)(cid:7)/2(cid:2)−cos(cid:1)(cid:2)(cid:2)(cid:4)−(cid:7). (cid:1)38d(cid:2) withthelighttransmittedthroughthespherebyincident rayswithsmallerimpactparameters,producinganinter- As a check of Eqs. (38a)–(38d), the radii of curvature of ferencepattern.For(cid:2)(cid:3)(cid:7)/2,theshedradiationistheonly the phase fronts at the exit plane are equal to the dis- contribution to the scattered light. As the amplitude of tance along the ray exiting in the (cid:2)direction from the the orbiting ray decreases, the amount of radiation it pointfocusonthebackoftheLuneburglens,sincethefo- sheds farther on in its trajectory decreases as well. This calpointisthesourceofthephasefronts.Further,when behavior is qualitatively similar to that of the radiation Eqs. (38a)–(38c) are substituted into Eq. (37), the result shedbyelectromagneticsurfacewavesintotheshadowed 2986 J.Opt.Soc.Am.A/Vol.25,No.12/December2008 JamesA.Lock terpropagating orbiting radiation shed by the ray with grazing incidence at the bottom of the sphere.All the ef- fects qualitatively described here are treated quantita- tively in [7] using a finely stratified multilayer sphere to modelthemodifiedLuneburglens. APPENDIX A: ORBITING IN CLASSICAL SCATTERING In the context of classical mechanics, consider a spheri- cally symmetric attractive potential V(cid:1)r(cid:2) surrounding a forcecenterlocatedattheoriginofcoordinates.Aparticle ofmassmisincidentonthepotentialfrominfinity.Ithas the impact parameter b with respect to the force center, energyE=mv2(cid:1)(cid:13)(cid:2)/2,andangularmomentumL=mv(cid:1)(cid:13)(cid:2)b, where v(cid:1)(cid:13)(cid:2) is the magnitude of the particle’s velocity at infinity. The particle is deflected through an angle (cid:2)by the potential. The particle moves in the effective radial Fig. 2. TE scattered intensity as a function of the scattering angle(cid:2)forf=1.0,a=28.40(cid:23)m,(cid:6)=0.51(cid:23)m,andka=350.0com- potential putedbythemethoddescribedin[7].For30°(cid:1)(cid:2)(cid:1)100°,thein- U (cid:1)r(cid:2)=(cid:1)L2/2mr2(cid:2)+V(cid:1)r(cid:2), (cid:1)A1(cid:2) tensity resembles that of a Fresnel straight-edge pattern corre- eff spondingtoEq.(40). where the first term is the centrifugal potential and the second term is the attractive potential surrounding the region at a Fock transition [21]. This analogy is only force center. During the deflection of the particle, its dis- qualitative,however,sincetheangulardependenceofthe tanceofclosestapproachtotheoriginr occurswhenthe 0 electromagnetic surface wave radiation damps exponen- radialkineticenergyvanishesand tially in (cid:22), whereas deep in the classically shadowed re- gion here the falloff of Eq. (40) is proportional to 1/(cid:22). In E=Ueff(cid:1)r0(cid:2). (cid:1)A2(cid:2) Fig. 2, the falloff of the intensity in the shadowed region Thedeflectionangleoftheparticleis[22] wasfoundtobebetterfitbyastraightlineusingalog–log (cid:10) graph rather than a semilog graph, indicating a power (cid:13) law behavior. In addition, if one considers f=1 scattering (cid:2)=(cid:7)−2 (cid:1)Ldr/r2(cid:2)/(cid:5)2m(cid:3)E−U (cid:1)r(cid:2)(cid:4)(cid:7)1/2. (cid:1)A3(cid:2) eff asthelimitoff(cid:3)1scattering,thef(cid:3)1rainbowangleap- r0 proaches(cid:2)=(cid:7)/2andtherainbowelectricfieldshiftsfrom For the generic situation where the particle arrives at r anAiry integral to the derivative of anAiry integral [1], 0 andapositiveradialforceactsonitattemptingtopushit thus suppressing the main rainbow peak. The supernu- backout,onehas merary interference pattern of the f(cid:3)1 rainbow, which occurs at smaller scattering angles than the main rain- (cid:11)(cid:1)dU /dr(cid:2)(cid:11) (cid:3)0. (cid:1)A4(cid:2) eff r0 bow peak, evolves into the ripple pattern of the Fresnel straight-edge field of Eq. (40). The complex ray of the The integral in Eq. (A3) is convergent, the deflection f(cid:3)1rainbow,whichoccursatangleslargerthanthemain angleisfinite,andtheparticlespendsafiniteamountof rainbowpeak,evolvesintothesmoothfalloffoftheradia- timeinthevicinityoftheforcecenter.Forthenongeneric tion shed by the orbiting ray in the classically shadowed situationwheretheparticlegetstor andthereisnora- 0 region.AllthesefeaturesarequalitativelyevidentinFig. dialforceactingonittopushitbackout,onehas 2.ThephysicalopticsmodelofEq.(40),however,provides (cid:11)(cid:1)dU /dr(cid:2)(cid:11) =0. (cid:1)A5(cid:2) only an approximation to the scattered field in the tran- eff r0 sition region. For ka=350, the main peak of the Fresnel The deflection angle of Eq. (A3) diverges logarithmically straight-edge pattern should occur at (cid:2)=86.6° according atthelowerlimitofintegration[5,6].Theparticleiscap- to Eq. (40). But in Fig. 2 it actually occurs at (cid:2)=68.8°. turedbytheforcecenterinanorbitthatslowlydecaysto- Similarly, the periodicity of the first number of oscilla- wardr=r ,anditspendsaninfiniteamountoftimeinthe tions observed in Fig. 2 for (cid:2)(cid:1)68.8° is a factor of 1.48 0 vicinity of the force center. Equation (A5) is the orbiting greater than the periodicity predicted from Eq. (40). As condition,anditcorrespondstoaparticlewhoseenergyis the sphere size parameter further increases toward the suchthatU islocallyquadraticinthevicinityofr and geometrical optics limit, these differences should slowly eff 0 hasarelativemaximumthere.Finally,ifthepotentialis decrease. moreslowlyvaryinginthevicinityofr sothat Finally,inFig.2thediffractionstructureisevidentfor 0 (cid:2)(cid:1)10°, and the radiation shed by waves orbiting in all (cid:11)(cid:1)dU /dr(cid:2)(cid:11) =(cid:11)(cid:1)d2U /dr2(cid:2)(cid:11) =0, (cid:1)A6(cid:2) planes of incidence constructively interferes to form a eff r0 eff r0 broad glory enhancement in the transmitted intensity at thedivergenceofthedeflectionangleatthelowerlimitof (cid:2)(cid:9)(cid:7). The fine oscillatory structure for (cid:2)(cid:3)100° is due to integrationinEq.(A3)isstrongerandthedecayoftheor- interference of orbiting radiation shed by the ray with bittowardr=r isslower.Equation(A6)correspondstoa 0 grazing incidence at the top of the sphere and the coun- particle whose energy is such that the effective potential JamesA.Lock Vol.25,No.12/December2008/J.Opt.Soc.Am.A 2987 is locally cubic in the vicinity of r0 and has its inflection lim Un(cid:1)kr(cid:2)(cid:12)sin(cid:3)N(cid:1)(cid:13)(cid:2)kr−(cid:5)n(cid:4). (cid:1)B2(cid:2) pointthere. kr→(cid:13) Thesefunctionsareradialstandingwaves.Let APPENDIX B. DEBYE SERIES FOR A Xn(cid:1)1/2(cid:2)(cid:1)kr(cid:2)=Fn(cid:1)kr(cid:2)±iUn(cid:1)kr(cid:2) (cid:1)B3(cid:2) SCATTERING BY A RADIALLY be the radially outgoing (1) and incoming (2) waves INHOMOGENEOUS SPHERE formed from these standing waves. Similarly, let the lin- In this appendix the Debye series for scattering by a ra- early independent solutions of the second-order differen- dially inhomogeneous sphere of radius a with the arbi- tial equation of Eq. (7) for the TM polarization that are traryrefractiveindexprofileN(cid:1)r(cid:2) inanexternalmedium well behaved and singular at the origin be G (cid:1)kr(cid:2) and n with refractive index N=1 is derived and compared with V (cid:1)kr(cid:2),where n two different Debye series decompositions for a multilayersphereapproximatingN(cid:1)r(cid:2).Theinteractionof lim Gn(cid:1)kr(cid:2)(cid:12)(cid:1)kr(cid:2)n+1, each incident partial wave with the radially inhomoge- kr→0 neoussphereisseenheretobedecomposedintoasumof lim G (cid:1)kr(cid:2)(cid:12)cos(cid:3)N(cid:1)(cid:13)(cid:2)kr−(cid:5)(cid:4), (cid:1)B4(cid:2) diffraction, external reflection from the sphere surface, n n kr→(cid:13) and transmission through the sphere surface following p −1 internalreflectionsfromthesurfacewithp=1,2,3.... lim V (cid:1)kr(cid:2)(cid:12)(cid:1)kr(cid:2)−n, This decomposition for a radially inhomogeneous sphere n kr→0 merits a number of comments. Whenever a wave is inci- dentonaninterfacebetweentwomediawithdifferentre- lim V (cid:1)kr(cid:2)(cid:12)sin(cid:3)N(cid:1)(cid:13)(cid:2)kr−(cid:5)(cid:4), (cid:1)B5(cid:2) n n fractive indices, part of the wave is transmitted through kr→(cid:13) the interface and part is reflected by it. Thus as an inci- and where we have additionally assumed that (cid:1)dN/dr(cid:2) dent wave penetrates into a radially inhomogeneous 0 =0.Againlet sphere,itcontinuallyshedsnewreflectedwavesatevery point along its trajectory. A portion of these reflected Z (cid:1)1,2(cid:2)(cid:1)kr(cid:2)=G (cid:1)kr(cid:2)±iV (cid:1)kr(cid:2) (cid:1)B6(cid:2) waves are in turn reflected over and over again as they n n n encounter further refractive index changes while propa- be the radially outgoing (1) and incoming (2) traveling gatingthroughthesphere.Theentiremultiple-scattering waves formed from these standing waves. For scattering infinite series of all the transmissions and reflections a byahomogeneoussphereofrefractiveindexN,thefunc- partial wave can make before finally exiting the sphere tionsF andG ,U andV ,andX (cid:1)1,2(cid:2)andZ (cid:1)1,2(cid:2)become results in the radial functions Fn(cid:1)kr(cid:2) and Gn(cid:1)kr(cid:2) of Eqs. Riccati–nBessel,n Rinccati–Nneumannn, and Ricncati–Hankel (3) and (7) for the TE and TM polarizations. For scatter- functionsofNkr,respectively. ing by a finely stratified multilayer sphere that approxi- In analogy to the treatment of [23], let the amplitudes mates the refractive index profile N(cid:1)r(cid:2), the individual N ,D ,P ,andQ fortheTEpolarizationbedefinedas n n n n terms of the multiple-scattering series described above wereenumeratedandstudiedin[23–25].IntheDebyese- N =F (cid:1)(cid:1)ka(cid:2)(cid:4)(cid:1)ka(cid:2)−F (cid:1)ka(cid:2)(cid:4)(cid:1)(cid:1)ka(cid:2), (cid:1)B7a(cid:2) n n n n n ries decomposition for an inhomogeneous sphere pre- sentedinthisappendix,allthemultiple-scatteringinter- D =F (cid:1)(cid:1)ka(cid:2)(cid:8)(cid:1)ka(cid:2)−F (cid:1)ka(cid:2)(cid:8)(cid:1)(cid:1)ka(cid:2), (cid:1)B7b(cid:2) n n n n n actions a partial wave makes within the sphere are summed implicitly, while only reflections and transmis- P =U (cid:1)(cid:1)ka(cid:2)(cid:4)(cid:1)ka(cid:2)−U (cid:1)ka(cid:2)(cid:4)(cid:1)(cid:1)ka(cid:2), (cid:1)B7c(cid:2) sionsatthesurfaceoftheradiallyinhomogeneoussphere n n n n n arecountedexplicitly.Thederivationproceedsasfollows. Consider the partial wave radial functions for the TE Q =U (cid:1)(cid:1)ka(cid:2)(cid:8)(cid:1)ka(cid:2)−U (cid:1)ka(cid:2)(cid:8)(cid:1)(cid:1)ka(cid:2). (cid:1)B7d(cid:2) n n n n n polarization. Since Eq. (3) is a second-order differential equation, it has two linearly independent solutions. If ThecorrespondingamplitudesfortheTMpolarizationare N(cid:1)r(cid:2) is finite both at the origin and at infinity, the well- obtained by replacing Fn(cid:1)ka(cid:2) and Un(cid:1)ka(cid:2) with abseyhmavpetdotsioclubetihoanvaiotrtheoriginiscalledFn(cid:1)kr(cid:2)andhasthe aNn2d(cid:1)a(cid:2)UGnn(cid:1)(cid:1)(cid:1)kkaa(cid:2)(cid:2) awnidthNG2(cid:1)na(cid:1)(cid:2)(cid:1)Vkan(cid:1)(cid:2)kaan(cid:2),daVndn(cid:1)(cid:1)bkya(cid:2)r,epwlhaecirnegNF2n(cid:1)(cid:1)a(cid:1)(cid:2)kais(cid:2) evaluated inside the sphere as r→a. The Wronskian of lim F (cid:1)kr(cid:2)(cid:12)(cid:1)kr(cid:2)n+1, X (cid:1)1(cid:2) andX (cid:1)2(cid:2) andofZ (cid:1)1(cid:2) andZ (cid:1)2(cid:2) isdefinedas n n n n n kr→0 W TE(cid:1)ka(cid:2)=i(cid:3)X (cid:1)1(cid:2)(cid:1)ka(cid:2)X (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)−X (cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)X (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:4)/2, n n n n n lim F (cid:1)kr(cid:2)(cid:12)cos(cid:3)N(cid:1)(cid:13)(cid:2)kr−(cid:5)(cid:4), (cid:1)B1(cid:2) (cid:1)B8a(cid:2) n n kr→(cid:13) where(cid:5) isasuitablychosenphasefactor.Theotherlin- WnTM(cid:1)ka(cid:2)=i(cid:3)Zn(cid:1)1(cid:2)(cid:1)ka(cid:2)Zn(cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)−Zn(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)Zn(cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:4)/2. n earlyindependentsolutionUn(cid:1)kr(cid:2)issingularattheorigin (cid:1)B8b(cid:2) andhastheasymptoticbehavior TheseWronskiansarefoundtosatisfy lim U (cid:1)kr(cid:2)(cid:12)(cid:1)kr(cid:2)−n, n W TE=N Q −D P , (cid:1)B9a(cid:2) kr→0 n n n n n 2988 J.Opt.Soc.Am.A/Vol.25,No.12/December2008 JamesA.Lock N2(cid:1)a(cid:2)W TM=N Q −D P . (cid:1)B9b(cid:2) R 11=−(cid:3)X (cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−X (cid:1)1(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4)/ n n n n n n n n n n Consider the interior of the radially inhomogeneous (cid:3)X (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−X (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4) (cid:1)B13b(cid:2) n n n n sphere to be medium 1 and the exterior to be medium 2. The partial wave transmission and reflection coefficients fortheTEpolarizationand at the surface of the radially inhomogeneous sphere for T 12=−2iW TM/(cid:3)Z (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2) bothpolarizationsarederivedasfollows.Whenaradially n n n n incomingpartialwaveinmedium2withtheradialfunc- (cid:9)Z (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4), (cid:1)B14a(cid:2) tion (cid:15)(cid:1)2(cid:2)(cid:1)kr(cid:2) is incident on the surface of the radially in- n n n homogeneoussphere,aportionT 21istransmittedatthe surfaceofthespherewiththeradnialfunctionX (cid:1)2(cid:2)(cid:1)kr(cid:2) or Rn11=−(cid:3)Zn(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)n(cid:1)1(cid:2)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2)Zn(cid:1)1(cid:2)(cid:1)ka(cid:2)(cid:15)n(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4)/ n Z (cid:1)2(cid:2)(cid:1)kr(cid:2), and a portion R 22 is reflected from the surface (cid:3)Z (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2)Z (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4) n n n n n n back into medium 2 with the radial function (cid:15)(cid:1)1(cid:2)(cid:1)kr(cid:2). n (cid:1)B14b(cid:2) Matching the boundary conditions of the various compo- nentsofE andB atthesurfaceofthespheregives fortheTMpolarization.Forbothpolarizations,thetrans- missionandreflectioncoefficientsareoftheform T 21=−2i/(cid:3)X (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−X (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4), n n n n n T 12=−2iW /(cid:3)(cid:1)N +Q (cid:2)+i(cid:1)D −P (cid:2)(cid:4), (cid:1)B15a(cid:2) (cid:1)B10a(cid:2) n n n n n n R 11=(cid:3)(cid:1)−N +Q (cid:2)−i(cid:1)D +P (cid:2)(cid:4)/(cid:3)(cid:1)N +Q (cid:2) n n n n n n n R 22=−(cid:3)X (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)2(cid:2)(cid:1)ka(cid:2)−X (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4)/ n n n n n +i(cid:1)D −P (cid:2)(cid:4). (cid:1)B15b(cid:2) n n (cid:3)X (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−X (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4) (cid:1)B10b(cid:2) n n n n The partial wave scattering amplitudes can then be shown,afterareasonableamountofalgebra,tobeofthe fortheTEpolarizationand form (cid:13) (cid:14) T 21=−2iN2(cid:1)a(cid:2)/(cid:3)Z (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2) a n n n n =N /(cid:1)N +iD (cid:2) (cid:9)Z (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4), (cid:1)B11a(cid:2) bn (cid:15)n(cid:16) n n n n 1 = (cid:3)1−R 22−T 21T 12/(cid:1)1−R 11(cid:2)(cid:4) Rn22=−(cid:3)Zn(cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)n(cid:1)2(cid:2)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2)Zn(cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)n(cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4)/ (cid:15)2(cid:16)(cid:17) n n n n (cid:18) (cid:3)Z (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−N2(cid:1)a(cid:2)Z (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4) 1 (cid:6)(cid:13) n n n n = 1−R 22− T 21(cid:1)R 11(cid:2)p−1T 12 . (cid:1)B11b(cid:2) 2 n p=1 n n n (cid:1)B16(cid:2) fortheTMpolarization.Forbothpolarizations,thetrans- missionandreflectioncoefficientsareoftheform ThisistheDebyeseriesexpansionforaradiallyinhomo- geneous sphere. The first term on the right-hand side of T 21=−2i(cid:24)/(cid:3)(cid:1)N +Q (cid:2)+i(cid:1)D −P (cid:2)(cid:4), (cid:1)B12a(cid:2) Eq. (B16) represents diffraction of the plane wave and is n n n n n independent of the composition of the sphere. Thus, this term is identical for both a homogeneous sphere and a R 22=(cid:3)(cid:1)−N +Q (cid:2)+i(cid:1)D +P (cid:2)(cid:4)/(cid:3)(cid:1)N +Q (cid:2) n n n n n n n modified Luneburg lens. The second term is external re- +i(cid:1)D −P (cid:2)(cid:4), (cid:1)B12b(cid:2) flection from the surface of the radially inhomogeneous n n sphere. Whenever a wave reflects from a surface, the re- flection amplitude depends on the details of the material (cid:24)=1 forTE, the wave is reflecting from, even though the reflected wave never enters the material. This dependence is de- scribedbytheinteriorfunctionsX (cid:1)2(cid:2)andZ (cid:1)2(cid:2)evaluated =N2(cid:1)a(cid:2) forTM. (cid:1)B12c(cid:2) n n at the surface of the sphere in Eqs. (B10b) and (B11b). Similarly,whenaradiallyoutgoingpartialwaveinme- The last term in Eq. (B16) represents transmission dium1withtheradialfunctionX (cid:1)1(cid:2)(cid:1)kr(cid:2)orZ (cid:1)1(cid:2)(cid:1)kr(cid:2)isin- through the sphere following p−1 internal reflections at cident on the surface of the rnadially inhnomogeneous the surface. For example, the term Tn21Tn12 corresponds sphere,aportionT 12istransmittedatthesurfacetothe to a partial wave crossing the sphere surface, making an n outside with the radial function (cid:15)(cid:1)1(cid:2)(cid:1)kr(cid:2), and a portion infiniteseriesoftransmissionsandreflectionsinside,and R 11isreflectedfromthesurfacebanckinsidewiththera- when encountering the sphere surface for the second dinal function X (cid:1)2(cid:2)(cid:1)kr(cid:2) or Z (cid:1)2(cid:2)(cid:1)kr(cid:2). Boundary condition time,istransmittedout.Similarly,thetermTn21Rn11Tn12 n n in Eq. (B16) corresponds to a partial wave crossing the matchingatthesurfaceofthespheregives sphere surface, making an infinite series of reflections T 12=−2iW TE/(cid:3)X (cid:1)2(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)ka(cid:2)−X (cid:1)2(cid:2)(cid:1)ka(cid:2)(cid:15)(cid:1)1(cid:2)(cid:1)(cid:1)ka(cid:2)(cid:4), and transmissions inside the sphere, eventually return- n n n n n n ing to the surface where it is reflected back inside, mak- (cid:1)B13a(cid:2) ing another infinite series of transmissions and reflec-

Description:
terms of the solutions of the second-order differential .. for a quarter cycle before breaking free and scattering at. 90°. wave must tunnel through the centrifugal barrier, which .. dent on an interface between two media with different re- .. G. Arfken, Mathematical Methods for Physicists, 3rd e
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.