Lecture Notes in Physics Volume 883 FoundingEditors W.Beiglböck J.Ehlers K.Hepp H.Weidenmüller EditorialBoard B.-G.Englert,Singapore,Singapore P.Hänggi,Augsburg,Germany W.Hillebrandt,Garching,Germany M.Hjorth-Jensen,Oslo,Norway R.A.L.Jones,Sheffield,UK M.Lewenstein,Barcelona,Spain H.vonLöhneysen,Karlsruhe,Germany M.S.Longair,Cambridge,UK J.-F.Pinton,Lyon,France J.-M.Raimond,Paris,France A.Rubio,Donostia,SanSebastian,Spain M.Salmhofer,Heidelberg,Germany S.Theisen,Potsdam,Germany D.Vollhardt,Augsburg,Germany J.D.Wells,Geneva,Switzerland Forfurthervolumes: www.springer.com/series/5304 The Lecture Notes in Physics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelop- ments in physics research and teaching—quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging mate- rialbetweenadvancedgraduatetextbooksandtheforefrontofresearchandtoserve threepurposes: • to be a compact and modern up-to-date source of reference on a well-defined topic • to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas • to be a source of advanced teaching material for specialized seminars, courses andschools Both monographs and multi-author volumes will be considered for publication. Editedvolumesshould,however,consistofaverylimitednumberofcontributions only.ProceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic for- mats,theelectronicarchivebeingavailableatspringerlink.com.Theseriescontent isindexed,abstractedandreferencedbymanyabstractingandinformationservices, bibliographicnetworks,subscriptionagencies,librarynetworks,andconsortia. Proposals should be sent to a member of the Editorial Board, or directly to the managingeditoratSpringer: ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] Johannes M. Henn (cid:2) Jan C. Plefka Scattering Amplitudes in Gauge Theories Dr.JohannesM.Henn Prof.Dr.JanC.Plefka SchoolofNaturalSciences InstitutfürPhysik InstituteforAdvancedStudy Math.-Naturw.Fakultät Princeton,NJ,USA HumboldtUniversitätzuBerlin Berlin,Germany ISSN0075-8450 ISSN1616-6361(electronic) LectureNotesinPhysics ISBN978-3-642-54021-9 ISBN978-3-642-54022-6(eBook) DOI10.1007/978-3-642-54022-6 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014932295 ©Springer-VerlagBerlinHeidelberg2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) ToMieke JP Preface In our current understanding of subatomic particle physics, recently successfully tested with the discovery of the Higgs boson, processes involving elementary par- ticles are described by quantum field theory. Scattering amplitudes are the central objectsinperturbativequantumfieldtheoryastheylinkthetheoreticaldescriptionto experimentalpredictions.Toalargedegreethehistoricaldevelopmentofquantum field theory was driven by the need to compute scattering amplitudes. They con- stitute the integral building block for the construction of scattering cross sections determiningtheprobabilitiesforscatteringprocessestooccuratparticlecolliders. Non-abeliangaugefieldorYang-Millstheoriesrepresentthebackboneofhighen- ergyphysics,astheyprovidethetheoreticalframeworktodescribetheinteractions of elementary particles in the standard model. The principles for computing scat- teringamplitudesingaugetheorieshavebeensettledsincethemid1970s:oncethe Lagrangiananditsgaugefixingtermhasbeenconstructed,onereadsofftheFeyn- manrulesforthescalar,fermionandgaugefields.Thescatteringamplitudeisthen givenbythesumofallcontributingdiagramsbuiltfromtheFeynmanruleswiththe subsequent integration over the internal loop momenta. Divergences in these inte- grals require regularization, and the ultraviolet divergences lead to a renormaliza- tionofthetheory.Sofromaconceptualviewpointonemightconsiderthischapter ofquantumfieldtheoryascomplete. However, it turns out that beyond the simplest examples the complexity of the Feynmandiagrammaticcomputationquicklygetsoutofhand.Alreadyattree-level suchacomputationcanbecomeenormousifoneisdealingwithgaugeinteractions. For example, the number of Feynman diagrams contributing to a gluon tree-level amplitude g+g→n·g growsfactoriallywith n [1].Ontheotherhand,thefinal answercanbeobtainedinclosedanalyticform,and,whenexpressedinconvenient variables,isremarkablysimple.Therearetwocomplementarywaysofunderstand- ingthesimplicityofthefinalanswer.AreasonforthecomplexityoftheFeynman diagramcalculationisthatindividualFeynmandiagramsaregaugevariantandin- volve off-shell intermediate states in internal propagators. The amplitude, on the other hand, is gauge invariant and only knows about on-shell degrees of freedom. Hence,ingoingfromFeynmandiagramstoanamplitudetheunphysicaldegreesof vii viii Preface freedomcancel.On-shellapproachesthatfocusontheanalyticstructureofthefinal resultallowtocircumventtheseunnecessarycomplications.Anotherreasonforthe simplicityofthefinalanswerhastodowithsymmetrypropertiesandismoresur- prising: it turns out that besides the obvious symmetries of the Lagrangian, gluon amplitudeshaveadditional,hiddensymmetries,thatconstraintheirform.Choosing appropriatevariablesmakestheactionofthesesymmetriestransparentandthereby also simplifies the expressions. For these reasons, both analyticity and symmetry propertiesaretwotopicsthatwillplayanimportantroleintheselecturenotes. Inthepastdecadetremendousprogresswasmadebothinourunderstandingof the structure of scattering amplitudes and in the ability of computing the latter in gaugetheoriesathighmultiplicities(numberofexternallegs)andbeyondtheone- looporder.Theseadvancesprovidedthefieldwithanewsetoftoolsthatgobeyond the textbook approaches. These methods build on using a color decomposition of thegaugetheoryamplitudesandonexpressingtheminaspinorhelicitybasispar- ticularlysuitedformasslessparticles.Thinkingabouttheanalyticstructureoftree- levelamplitudesleadstonovelon-shellrecursionrelations.Theyallowtheanalytic constructionoftree-levelamplitudesfromatomisticthree-pointones.Atlooplevel unitarity-based techniques, combined with the knowledge of an integral basis for one-loop Feynman integrals, may be used to construct loop amplitudes from tree- level amplitudes. In summary, all amplitudes follow from the on-shell three-point vertices,andnoreferencetothecomplicatedformoftheLagrangian,gaugefixing termsandghostsisnecessary. Our main focus is on methods based on general principles such as analyticity and symmetries. The progress for generic gauge theories was often led by studies in the maximally supersymmetric gauge theory in four dimensions, N =4 super Yang-Mills. It may be thought of as an idealized version of QCD and provides an ideallaboratoryforthedevelopmentandtestingofnewapproaches.Infact,gluon tree-levelamplitudesinbothmodelsareidentical,buttheycanbeeasilysolvedfor withintheN =4superYang-Millsframework,inpartthankstofascinatinghidden symmetries. Discussing this theory in these lecture notes also allows us to have manyexampleswherescatteringamplitudescanbecomputedanalytically,andwe hopethatthiswillhelptoillustratethegeneralproperties. These modern helicity amplitude or on-shell methods are so far not treated in depthinstandardtextbooksonquantumfieldtheory.Yettheyareofincreasingim- portance in phenomenological applications, which face the demand of high preci- sionpredictionsforhighmultiplicityscatteringeventsattheLargeHadronCollider, aswellasinfoundationalstudiesinquantumgaugefieldtheorytowardsthestruc- ture,possiblesymmetriesandconstructionoftheperturbativeS-matrix.Infactthese developments have led to a cross-fertilization of high-energy phenomenology and formal theory in recent years. This has made the field of scattering amplitudes a very active and fascinating area of research attracting many new researchers and students.Thegoaloftheselecturenotesinphysicsistoservethesecommunitiesin bridgingthegapfromatextbookknowledgeofquantumfieldtheorytoaworking expertisefordoingresearchinthedomainofscatteringamplitudes.Ouraimwasto keepthesenotescompactsothattheyaresuitableforanadvancedgraduatelecture Preface ix course.Inordertomakethemmoreaccessibleforstudents,wehaveincludedase- riesofexercises,togetherwiththeirsolutions.Duetoourwishtokeepthevolume of these notes amenable to a lecture course, a certain selection of topics, certainly biasedbypersonaltastes,hadtobemade.Attheendofeachchapterwetherefore give an account of related developments in the field not discussed in the lecture notesandgivereferencestoallrelevantworks. The level of the text aims at advanced graduate students who have already fol- lowed an introductory course on quantum field theory, typically leading to QED scattering processes and a few simple one-loop computations therein. The basics of non-abelian quantum field theories are briefly reviewed in chapter one of this book.Herealsothebasictoolsofthemodernhelicityamplitudeapproacharepro- videdand somesimple tree-leveldiagrams are computedin the conventionalway, using color-ordered Feynman rules. Chapter two introduces the on-shell recursion anddiscussesuniversalfactorizationpropertiesforcolororderedamplitudes.Aftera discussionofPoincaréandconformalsymmetry,theN =4superYang-Millsthe- oryisintroduced,alongwithitssuper-amplitudeformalismandasupersymmetric on-shellrecursionrelationallowingforanexactsolution.Inchapterthreetheloop- levelstructureofamplitudesisreviewed.Herethereductionofone-loopFeynman integrals to a basis of scalar integrals is discussed. The idea of (generalized) uni- tarity in constructing one-loop amplitudes from tree-level data by putting various internallegson-shellisreviewedandanumberofconcreteexamplesarecomputed indetail.Inthesecondpartofchapterthreewegiveanintroductiontotheevaluation ofFeynmanintegralsatoneandhigherlooporder.Afterreviewingtheirdefinition andusefulparameterrepresentations,suchastheFeynmanandMellinrepresenta- tions,wegiveanintroductiontotheintegrationbypartstechniquesinconjunction withdifferentialequations.Thefinalchapterisdevotedtoadvancedtopicsmostly within maximally supersymmetric gauge theory: recursion relations for loop inte- grands,thedualityofscatteringamplitudestoWilsonloopswithlight-likecontours andcorrelationfunctionsoflocaloperators.Finally,thehiddendualconformaland YangiansymmetriesofN =4superYang-Millsamplitudesarediscussedpointing towardsafascinatinghiddenintegrabilityofthisfour-dimensionalgaugetheory. Someelementsofmodernon-shellmethodsarealsodiscussedintherecentquan- tumfieldtheorytextbooksofSrednicki[2]andZee[3].Introductoryandin-depth reviews exist on the various topics presented in these lecture notes. These are [1, 4–6] on the topics of chapters one and two. The integral reduction and unitarity methodsarepedagogicallyreviewedin[7,8]fromaphenomenologicalviewpoint. ThecomprehensivetextbookofSmirnov[9,10]discussestechniquesforthecom- putation of Feynman integrals in great detail. As for more formal aspects related to N =4 super Yang-Mills, symmetries and dualities, there exists a special issue ofJ.Phys.A[11–24],aswellastheveryrecentcomprehensivereview[25].These referenceshaveoverlapswithsomeofthematerialpresentedinthesenotes,butalso discusssupergravityamplitudes,dualitiesofgaugeandgravityamplitudes,ampli- tudesintwistorspace,andtheGrassmannianapproachtosuperamplitudes.Thisis certainlynotacompletelistbutreflectsthetextsfromwhichwehavelearnedalot ourselves. x Preface This manuscript grew out of lecture notes of a physics master’s level course taughtatHumboldtUniversityBerlininthesummertermsof2011and2013,aswell as a series of shorter lecture series delivered at research schools in Atrani (Italy), Dubna (Russia), Durham (UK), Copenhagen (Denmark), Parma (Italy), Waterloo (Canada)andWolfersdorf(Germany)intheyears2010to2013. We would like to thank the students and participants of these lectures and schools for questions and comments on the manuscript, in particular L. Bianchi, M.Heinze,D.MüllerandH.Münkler.WethankH.Stephanforhelpwithtypeset- ting the graphs and diagrams. We would like to thank our colleagues V. Smirnov, P.UwerandG.Yangforimportantcommentsonthemanuscript.Finally,wewould like to thank N. Arkani-Hamed, S. Badger, N. Beisert, Z. Bern, B. Biedermann, R. Boels, L. Ferro, S. Caron-Huot, L. Dixon, J. Drummond, H. Elvang, H. Jo- hanssen, G. Korchemsky, D. Kosower, T. Lukowski, T. McLoughlin, S. Moch, T. Schuster, E. Sokatchev, M. Staudacher, and P. Uwer for important discussions orpleasantcollaborationsontopicsrelatedtotheselecturenotes. References 1. M.L.Mangano,S.J.Parke,Multi-partonamplitudesingaugetheories.Phys.Rep.200,301– 367(1991).arXiv:hep-th/0509223 2. M.Srednicki,QuantumFieldTheory(CambridgeUniversityPress,Cambridge,2007) 3. A.Zee,QuantumFieldTheoryinaNutshell(PrincetonUniversityPress,Princeton,2003) 4. L.J.Dixon,Calculatingscatteringamplitudesefficiently(1996).arXiv:hep-ph/9601359 5. M.E.Peskin,Simplifyingmulti-JetQCDcomputation(2011).arXiv:1101.2414 6. L.J.Dixon,Abriefintroductiontomodernamplitudemethods(2013).arXiv:1310.5353 7. Z.Bern,L.J.Dixon,D.A.Kosower,On-shellmethodsinperturbativeQCD.Ann.Phys.322, 1587–1634(2007).arXiv:0704.2798 8. R.K.Ellis,Z.Kunszt,K.Melnikov,G.Zanderighi,One-loopcalculationsinquantumfield theory: from Feynman diagrams to unitarity cuts. Phys. Rep. 518, 141–250 (2012). arXiv: 1105.4319 9. V.A.Smirnov,EvaluatingFeynmanintegrals.TractsMod.Phys.211,1(2004) 10. V.A.Smirnov,AnalytictoolsforFeynmanintegrals.TractsMod.Phys.250,1(2012) 11. M.S.RaduRoiban,A.Volovich,Scatteringamplitudesingaugetheories:progressandout- look.J.Phys.A44,450301(2011) 12. L.J.Dixon,Scatteringamplitudes:themostperfectmicroscopicstructuresintheuniverse.J. Phys.A44,454001(2011).arXiv:1105.0771 13. A.Brandhuber,B.Spence,G.Travaglini,Tree-levelformalism.J.Phys.A44,454002(2011). arXiv:1103.3477 14. Z.Bern,Y.-t.Huang,Basicsofgeneralizedunitarity.J.Phys.A44,454003(2011).arXiv: 1103.1869 15. J.J.M.Carrasco,H.Johansson,GenericmultiloopmethodsandapplicationtoN=4super- Yang-Mills.J.Phys.A44,454004(2011).arXiv:1103.3298 16. H. Ita, Susy theories and QCD: numerical approaches. J. Phys. A 44, 454005 (2011). arXiv:1109.6527 17. R. Britto, Loop amplitudes in gauge theories: modern analytic approaches. J. Phys. A 44, 454006(2011).arXiv:1012.4493 18. R.M. Schabinger, One-loop N =4 super Yang-Mills scattering amplitudes in d dimen- sions, relation to open strings and polygonal Wilson loops. J. Phys. A 44, 454007 (2011). arXiv:1104.3873