ebook img

Scanning Probe Lithography PDF

211 Pages·2001·8.237 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Scanning Probe Lithography

SCANNING PROBE LITHOGRAPHY MICROSYSTEMS Series Editor Stephen D. Senturia Massachusetts Institute of Technology Editorial Board Roger T. Howe, University o/California, Berkeley D. Jed Harrison, University ofA lberta Hiroyuki Fujita, University of Tokyo Jan-Ake Schweitz, Uppsala University OTHER BOOKS IN THE SERIES: • Methodology for the Modeling and Simulation of Microsystems Bartlomiej F. Romanowicz Hardbound, ISBN 0-7923-8306-0, October 1998 • Microcantilevers for Atomic Force Microscope Data Storage Benjamin W. Chui Hardbound, ISBN 0-7923-8358-3, October 1998 • Bringing Scanning Probe Microscopy Up to Speed Stephen C. Mione, Scott R. Manalis, Calvin F. Quate Hardbound, ISBN 0-7923-8466-0, February 1999 • Micromachined Ultrasound-Based Proximity Sensors Mark R. Hornung, Oliver Brand Hardbound, ISBN 0-7923-8508-X, April 1999 • Microfabrication in Tissue Engineering and Bioartificial Organs Sangeeta Bhatia Hardbound, ISBN 0-7923-8566-7, August 1999 • Microscale Heat Conduction in Integrated Circuits and Their Constituent Films Y. Sungtaek Ju, Kenneth E. Goodson Hardbound, ISBN 0-7923-8591-8, August 1999 SCANNING PROBE LITHOGRAPHY by Hyongsok T. Soh Kathryn Wilder Guarini Calvin F. Quate Stanford University, Stanford, California SPRINGER SCIENCE+BUSINESS MEDIA, LLC Library of Congress Cataloging-in-Publication Data Soh, Hyongsok T. Scanning Probe Lithography 1 by Hyongsok T. Soh, Kathryn Wilder Guarini, Calvin F. Quate p. cm. (Microsystems series) Includes bibliographical references and index. ISBN 978-1-4419-4894-6 ISBN 978-1-4757-3331-0 (eBook) DOI 10.1007/978-1-4757-3331-0 1. Integrated circuits-Design and Construction. 2. Microlithography. 3. Scanning probe microscopy TK7874 .S648 2001 621.3815/3121 01-029782 Copyright © 2001 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 2001 Softcover reprint of the hardcover 1st edition 2001 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC Printed on acid-free paper. Table of Contents Table of Contents List of Figures ..................................................................................................... ix List of Tables ...................................................................................................... xv Glossary ............................................................................................................ xvii Foreword ............................................................................................................ xix Preface ............................................................................................................... xxi Acknowledgments .......................................................................................... xxiii Chapter 1: Introduction to Scanning Probe Lithography 1 1.1 The Scanning Probe Microscope .............................. 1 1.1.1 The Scanning Tunneling Microscope ........................ 2 1.1.2 The Atomic Force Microscope ............................. 3 1.1.3 Innovations Through Integration ........................... .4 1.2 High-Resolution Patterning Using Scanning Probes ............... 6 1.2.2 Mechanical & Thermomechanical Patterning .................. 7 1.2.3 Local Oxidation ......................................... 8 1.2.4 Electron Exposure of Resist ............................... 9 1.3 Semiconductor Lithography .................................. 9 1.4 Book Overview ........................................... 15 1.5 References ............................................... 16 Chapter 2: SPL by Electric-Field-Enhanced Oxidation 23 2.1 Field-Enhanced Oxidation of Silicon .......................... 23 2.2 Amorphous Silicon as a Resist Material. ....................... 24 2.3 Fabrication ofa 100 nm nMOSFET ........................... 26 2.4 Results and Discussion ..................................... 32 2.5 References ............................................... 34 Chapter 3: Resist Exposure Using Field-Emitted Electrons 37 3.1 Field-Emitted Electron Exposure ............................. 37 3.2 Current-Controlled Exposures in Contact Mode ................ .48 3.3 Current-Controlled Exposures in Noncontact Mode .............. 60 3.3.2 Patterning in the Noncontact Mode ......................... 62 3.3.3 Line Width Control ............................ ; ........ 65 3.3.4 Comparison of Contact and Noncontact Mode Results ......... 66 3.3.5 Summary of Noncontact Mode SPL ........................ 67 v Scanning Probe Lithography 3.4 Simulations of Electron Field Emission and Electron Trajectories ... 67 3.4.1 Initial Beam Size in the Contact Configuration ............... 68 3.4.2 Comparison of Contact and Noncontact Configurations ........ 71 3.4.3 Beam Spreading ....................................... 75 3.4.4 Summary of Simulation Results ........................... 75 3.5 References ............................................... 77 Chapter 4: SPL Linewidth Control 81 4.1 Exposure Tools and Samples ................................ 81 4.2 Sensitivity and Exposure Latitude ............................ 84 4.3 Energy Density Distribution in the Resist ...................... 85 4.4 Patterning Linearity Using a Pixel Writing Scheme ............... 88 4.5 Proximity Effects ......................................... 91 4.6 Exposure Mechanisms of High-and Low-Energy Electrons ........ 97 4.7 Summary ................................................ 99 4.8 References ............................................... 99 Chapter 5: Critical Dimension Patterning Using SPL 103 5.1 100 nm pMOSFET Device Fabrication ....................... 103 5.2 Gate Level Lithography Using SPL .......................... 105 5.2.1 Overlay Registration ................................... 106 5.2.2 Patterning Over Topography ............................. 106 5.3 PMOSFET Device Characteristics ........................... 110 5.4 Summary of "Mix and Match" Lithography .................... 112 5.5 References .............................................. 112 Chapter 6: High Speed Resist Exposure With a Single Tip 115 6.1 High Speed Patterning of Siloxane SOG ...................... 115 6.1.1 Mechanism of Exposure ................................ 115 6.1.2 Experimental Procedure ................................ 117 6.1.3 Results of SOG Patterning .............................. 118 6.1.4 Discussion ........................................... 119 6.2 Current-Controlled SPL at High Speeds ....................... 119 6.2.1 Control of the Tip-Sample Force or Spacing at High Speeds .... 120 6.2.2 Control of the Emission Current at High Speeds ............. 121 6.2.3 High Speed Lithography ................................ 125 6.2.4 Summary of High Speed SPL Using a Single Tip ............ 126 6.3 References .............................................. 129 vi Table of Contents Chapter 7: On-Chip Lithography Control 131 7.1 Background and Motivation ................................ 131 7.2 MOSFET Design Considerations ............................ 132 7.2.1 Saturation Current. .................................... 134 7.2.2 Threshold Voltage ..................................... 134 7.2.3 Junction Breakdown ................................... 135 7.2.4 Off Current .......................................... 136 7.2.5 Switching Speed ...................................... 137 7.3 Cantilever and Tip Design Parameters ........................ 138 7.4 Fabrication Process ....................................... 140 7.4.1 Tip Formation and Cantilever Definition ................... 142 7.4.2 Front-End Transistor Fabrication ......................... 143 7.4.3 Back-End Transistor Fabrication ......................... 144 7.4.4 Cantilever Release ..................................... 144 7.5 Device Characteristics .................................... 146 7.6 Lithography with Integrated Transistor for Exposure Dose Control .148 7.7 Summary ............................................... 150 7.8 References .............................................. 151 Chapter 8: Scanning Probe Tips for SPL 153 8.1 Silicon and Metal-Coated Tips .............................. 153 8.2 Post-Processed Silicon Tips ................................ 155 8.3 Carbon Nanotubes as Scanning Probe Tips .................... 156 8.3.1 Direct Synthesis on Silicon Pyramidal Tips ................. 157 8.4 References .............................................. 160 Chapter 9: Scanning Probe Arrays for Lithography 163 9.1 Current-Controlled Lithography With Two Tips ................ 163 9 .1.1 High-Voltage Current Preamplifier. ....................... 164 9.1.2 Independent Parallel Lithography ......................... 166 9.1.3 Summary of Progress on Parallel Lithography ............... 167 9.2 Massively Parallel Arrays for Lithography .................... 167 9.2.1 Exposure Time for Different Size Arrays ................... 168 9.2.2 SPL Throughput Using Cantilever Arrays .................. 170 9.3 Integrated Current Control for Arrays ........................ 172 9.4 Two Dimensional Arrays: Process Development ................ 173 9.4.1 Enabling Technologies ................................. 173 9.4.2 Anisotropic Through Wafer Etching ....................... 174 9.4.3 Through-Wafer Via Process ............................. 175 9.5 Two Dimensional Arrays: Integration ........................ 178 vii Scanning Probe Lithography 9.5.1 Introduction to the Piezoresistive Cantilever ................ 178 9.5.2 Design and Modeling .................................. 178 9.5.3 Processing ........................................... 181 9.6 Imaging With the 2D Array ................................ 187 9.7 References .............................................. 188 Epilog 191 List of Publications 193 Index 197 viii List of Figures List of Figures Figure 1.1: Schematic diagram of the most common configurations of the scanning probe microscope (SPM) .......................................................... 2 Figure 1.2: Schematic diagrams of surface modification using a scanning probe ..... 7 Figure 2.1: Schematic diagram of SPL by electric-field-enhanced oxidation of silicon ................................................................................................ 23 Figure 2.2: Schematic of SPL by electric field enhanced oxidation using amorphous silicon as a resist material. .................................................. 25 Figure 2.3: SEM image ofa:Si patterned by SPL with the electric-field- enhanced oxidation ................................................................................ 25 Figure 2.4: Schematic of the process flow for the 100 nm nMOSFET .................... 27 Figure 2.5: Schematic ofnMOSFET gate patterning step by SPL. ......................... 29 Figure 2.6: SEM micrographs of the patterned amorphous silicon gate .................. 30 Figure 2.7: Optical micrograph of the completed nMOSFET .................................. 30 Figure 2.8: Electrical characteristics of the nMOSFET ........................................... 31 Figure 3.1: (a) Schematic diagram of a cantilever with integrated tip used for electron emission and resist exposure. (b) Electric field distribution near a biased probe tip ........................................................ 39 Figure 3.2: Potential energy diagram for electrons at a metal surface in the presence of an applied field. . ............................................................... .40 Figure 3.3: Depiction of two different scanning strategies for direct write lithography. (a) Raster scanning. (b) Vector scanning. ........................ .44 Figure 3.4: Schematic diagrams of SPL resist exposure, development, and pattern transfer. ..................................................................................... 45 Figure 3.5: Transfer ofPMMA patterns through chrome evaporation and lift-off. .................................................................................................... 46 Figure 3.6: Schematic diagrams of resist exposure using electrons field emitted from a scanning probe in the (a) STM configuration and (b) AFM configuration ........................................................................... 48 Figure 3.7: Schematic diagram of the hybrid AFMlSTM lithography system ...... .49 ix Scanning Probe Lithography Figure 3.8: Diagram of the integral feedback circuit used for emission current control. ....................................................................................... 50 Figure 3.9: Emission current as a function of the tip-sample voltage bias for SAL60 I resist thicknesses of 35 nm and 65 nm ................................... 51 Figure 3.11: AFM micrographs of latent images in resist immediately after SPL exposure ........................................................................................ 54 Figure 3.12: SEM micrographs of 500-nm-pitch line gratings patterned by SPL. .... 55 Figure 3.13: SPL patterned line width dependence on exposure line dose for hybrid AFM/STM patterning of 65-nm-thick SAL60 I resist and 50-nm-thick PMMA resist on doped silicon substrates .................. 56 Figure 3.14: Optical micrographs oflithographed lines before and after pattern transfer. ...................................................................................... 57 Figure 3.15: Cross-sectional SEM images of etched silicon features patterned by SPL. ................................................................................................... 58 Figure 3.16: The words "MASKLESS LITHOGRAPHY" were written by SPL in PMMA positive resist using the vector scanning strategy ........ 59 Figure 3.17: Schematic diagram of the system used for noncontact SPL. ................. 61 Figure 3.18: Relative tip height as a function of sample bias necessary to maintain an emission current of 50 pA while the tip was scanned over the resist surface at 10 11m/so ......................................................... 62 Figure 3.19: AFM image of developed SAL60 I resist lines patterned by noncontact SPL. .................................................................................... 63 Figure 3.20: SEM micrographs oflines written using the noncontact SPL mode and etched into the underlying silicon substrate .................................... 64 Figure 3.21: Linewidth control using the noncontact SPL mode to expose SAL60 I resist. ....................................................................................... 65 Figure 3.22: Comparison of non contact mode and contact mode SPL data .............. 66 Figure 3.23: Potential contours and electric field vectors between the tip and sample ............................................................................................. 69 Figure 3.24: Simulation results for a tip I nm above the surface of a 65-nm-thick resist film ........................................................................... 70 Figure 3.25: Normalized electric field distribution at the tip surface for different resist thicknesses (R) and spacings (D) between the tip apex and resist surface ...................................................................... 72 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.