Astronomy&Astrophysicsmanuscriptno.asymp (cid:13)cESO2016 January11,2016 Scaling of the asymptotic entropy jump in the superadiabatic layers of stellar atmospheres Z.Magic1,2 1 NielsBohrInstitute,UniversityofCopenhagen,JulianeMariesVej30,DK–2100Copenhagen,Denmark 2 CentreforStarandPlanetFormation,NaturalHistoryMuseumofDenmark,ØsterVoldgade5-7,DK–1350Copenhagen,Denmark e-mail:[email protected] Received...;Accepted... 6 1 0 ABSTRACT 2 Context.Stellarstructurecalculationsareabletopredictpreciselythepropertiesofstarsduringtheirevolution.However,convection n isstillmodelled by themixing length theory; therefore, theupper boundary conditions near theoptical surface donot agree with a asteroseismicobservations. J Aims.Wewanttoimprovehowtheouterboundaryconditionsaredeterminedinstellarstructurecalculations. 8 Methods.Westudyrealistic3Dstellaratmospheremodelstofindalternativeproperties. Results.Wefindthattheasymptoticentropyrunofthesuperadiabaticconvectivesurfacelayersexhibitadistinctuniversalstratifica- ] tionwhennormalizedbytheentropyminimumandjump. R Conclusions. Thenormalized entropy can berepresented bya 5thorder polynomial very accurately, and a3rdorder polynomial S alsoyieldsaccuratecoefficients. Thisgenericentropystratificationorthesolarstratification,whenscaledbytheentropyjumpand . minimum,canbeusedtoimprovethemodellingofsuperadiabaticsurfacelayersinstellarstructurecalculations. Furthermore,this h findingindicatesthatsurfaceconvectionoperatesinthesamewayforallcoolstars,butrequiresfurtherscrutinyinordertoimprove p ourunderstandingofstellaratmospheres. - o Key words. convection – hydrodynamics – radiative transfer – stars: abundances – stars: atmospheres – stars: fundamental r t parameters–stars:general–stars:late-type–stars:solar-type s a [ 1. Introduction tive hydrodynamic(RHD) simulationsto improvestellar struc- 1 turecalculations,whichis expectedto enhancethe accuracyof v Instellarevolutioncalculations,convectioninthesuperadiabatic effective temperature, T , and radius predictions (Magicetal. 5 eff 5region(SAR)iscommonlytreatedwiththemixinglengththeory 2015; Trampedachetal. 2014a,b; Salaris&Cassisi 2015). To 8(MLT;seeBöhm-Vitense1958).However,asaresultofthenon- improve MLT models, can be specified the entropy minimum 1local and non-linearnature of surface convection, MLT cannot and the entropy jump, which can be done by considering cali- 0correctly model the complex SAR. The bulk of the convection brations of T(τ) relations and a variable mixing length, α , MLT .zoneisnearlyadiabatic;i.e. comparedtotheadiabaticentropy from 3D simulations. Nonetheless, even with this approach, 1 0value, sad, entropy fluctuations, δs, are small. At the optical MLTwouldstillnotproperlyaccountforthetruestructureofthe 6surface (τRoss =1) the optical mean free path for a photon be- SAR.Rosenthaletal.(1999)hasalreadyshownthat,byappend- 1comesverylarge,leadingtoradiativelossesandconsequentlyto ingdepthdependenth3Distratificationofasolarmodeldirectly :large-amplitudefluctuations,essentiallydrivingconvection(see onto a 1D structure, p-mode oscillation frequency calculations v Stein&Nordlund 1998; Nordlundetal. 2009). The radiative canbeimprovedconsiderably. Therefore,itwouldbedesirable i Xcooling at the surface leads to an entropy minimum, smin, and to do the same for the computation of stellar structures, even rdeterminestheupperboundaryofthephotospherictransitionre- if implementing and interpolating h3Di stratifications onto 1D agion. Theresultingentropy-deficientplasmaisbuoyantlyaccel- modelsishighlynon-trivial. erateddownwardsandsubsequentmixingofthedowndraftwith thestablebackgroundwillrapidlydiminishtheentropyfluctua- tionswithinafewpressurescaleheights.Ultimately,thiscreates anasymptoticentropystratificationintheSAR. Precisestellarevolutionarycalculationsareimportantforde- In the present work, we report on our findings regarding a termining the age of stellar clusters, extragalactic population universal asymptotic stratification of the entropy jump in nor- synthesis, and the characterization of exoplanet hosts. How- malized h3Di entropy stratifications from the Stagger-grid, a ever,theSARisamajorsourceofuncertaintyinstellarstructure grid of 3D RHD stellar atmosphere models (see Magicetal. theory. This is reflected in asteroseismology, where so-called 2013a). These generic depth dependent entropy stratifications near-surfaceeffectshavetobecorrectedfor,whenstellarstruc- areeasilyscaled,andcanthereforepotentiallyimprove1Dstel- turemodelsarecomparedwithobservedp-modeoscillationsfre- larstructurecalculations. Inaddition,suchscalingrelationsare quencies(seeKjeldsenetal.2008;Ball&Gizon2014). Efforts alsoparamountforthetheoreticalunderstandingofsurfacecon- are currently being made to implement results from 3D radia- vection. Articlenumber,page1of6 (a) (b) Fig.1: Entropyvs. densityshownfordifferentstellarparameterswithoutandwithnormalization(figure(a)and(b),respectively). Each panel shows models with the same surface gravity, logg, and metallicity, [Fe/H], but different effective temperature, T eff (orange/brownlines). Furthermore,thelocationoftheopticalsurface,τ =1,andmaximumintheentropygradient,ds| ,are Ross max indicated(circleandtriangle, respectively). Inthe leftfigure,the adiabaticentropy, s , valuesarealso shown(horizontaldotted ad lines). Wenotethedifferencesintheaxesbetweenthetopandbottompanelsinfigure(a). 2. Asymptoticentropystratification Next,normalizingthedensitybyitsvalueatthepeakoftheen- tropygradient,ds| ,andthentakingthesquareroot: Theaverage(specific)entropy1plottedagainstthedensityshows max a very steep drop towards the optical surface from the interior ρ with decreasing density (Fig. 1a). Each entropy stratification ρ∗ = . (2) is characterizedby the entropy minimum, s , and an asymp- rρ(ds|max) min totic increase towards the adiabatic entropy of the deeper con- TheresultsofthenormalizationareshowninFig. 1b. Theen- vection zone s with increasing density. For higher effective ad tropy stratifications are now almost indistinguishable from one temperature,T ;lowersurfacegravity,logg;andlowermetal- eff another and can basically be scaled from one to another. The licity, [Fe/H], the h3Di stratifications2 tend towards lower en- simplicityoftheoutcomeisremarkable,particularlywhencon- tropy and density. Concomitantly, the entropyjump decreases, sideringthecomplexityofthe3DRHDsimulationsfromwhere but the asymptotic structure looks similar despite the different the normalized entropy jump was derived. At the optical sur- depth scales. In the metal-poor case ([Fe/H]=−2), it can be face, i.e. where hτ i=1, the opacity and density decreases Ross seen in Fig. 1a that, at high T , the entropy jump and mini- eff significantly,whichleadstoradiativecoolinginthethinphoto- mumaresimilartothesolarmetallicitycase,whileatlowerTeff, sphere3,andgeneratestheentropyfluctuations.Thefluctuations both ∆s and s , are much smaller relative to the solar metal- min arepartlyadvectedbythehorizontaldeflectionofvelocityfield, licitycase. Thisisduetoalackofelectronsatlow[Fe/H]and but primarilyaccelerated downwardsby buoyancy. The down- T that are required for the dominant H−-opacity. At higher eff flowsshearandmix(Kelvin-Helmholtzinstability)withthelay- T , ionization of hydrogen results in more free electrons (see eff ersbelow,whichrapidlyreducestheentropyfluctuations. This Magicetal.2013a). causestheasymptoticconvergenceoftheentropystratification. We consider the followingnormalizations: Shifting the en- Furthermore, the process furthermore appears to be universal. tropy by its minimum and normalizing it by the entropy jump, The surface gravity sets the geometrical depth scale in the hy- ∆s=sad−smin,i.e. drostatic equilibrium, while the effective temperature, which is s = s−smin. (1) givenbytheradiativeflux,setstheheightoftheentropyjump. ∗ ∆s Wehavealsomarkedthelocationsoftheopticalsurfaceand 1 We computed the specific (thermodynamic) entropy by integrating the peak in entropy gradient in Fig. 1. One can see that the entropyminimum,whichmarkstheupperboundaryofthecon- the first law of thermodynamics ds=(dε−p /ρdlnρ)/T. Then we th determined the spatial and temporal averages at constant geometrical vectionzone,lieswellabovetheopticalsurfacetowardshigher height,whicharetheonlyaveragesthatpreservethehydrostaticequi- effectivetemperature. Thisisduetothevigorousvelocitiesand librium(seeMagicetal.2013b,formoredetails). 2 Inthefollowing,welabelspatiallyandtemporallyaveraged3Dmod- 3 IntheSunthephotospheremeasures500km,whiletheconvection elsoverlayersofconstantgeometricaldepthwithh3Di. zoneis200Mmdeep. Articlenumber,page2of6 Z.Magic:Scalingoftheasymptoticentropyjumpinthesuperadiabaticlayersofstellaratmospheres Fig. 2: Normalized radiative flux F∗ vs. normalized density Fig.3:Fillingfactoroftheup-anddownflows(solidanddashed rad ρ for different stellar parameters. The location of the entropy lines)vs. normalizeddensityρ fordifferentstellarparameters. ∗ ∗ minimumisindicated(square). temperature,while the LHS of Eq. 4 containsthe velocity, the overshooting,whichrenderstheuseofT(τ)relations,oftenfixed entropyandgeometricaldepthscale. Thisillustratesthesystem- toτ=2/3instellarstructurecomputations,questionable. Also, aticvariationsofthesevalueswithstellarparameterswithinthe the T(τ) relations are valid only for specific conditions. The Stagger-grid,whichwereportedinMagicetal.(2013a). metal-poor cool dwarf (right bottom panel in Fig. 1b), shows In Fig. 3, we show the filling factorsof the up- and down- larger deviations from the universal entropy stratification most flows.Thesearealsoverysimilarbetweenthedifferent3Dmod- likelybecausethismodelexhibitsamoreadiabaticstratification, els. Theupflowshaveafillingfactorof2/3andthedownflows whichshouldbe consideredas a limitingcase forthe universal 1/3, which was already reported by Stein&Nordlund (1998) entropyscaling. for the solar case. This means that on average the downflows are compressedby a universalratio of 2:1. This and the above findingsarealsoconnectedtothescalingofthegranulationpat- 3. Radiativecoolingandconvection tern, which we foundto scale with the pressurescale heightin Sincetheradiativecoolingterm,q ,isresponsibleforcreating allStagger-gridmodels(seeMagic&Asplund2014),andsug- rad theentropyjump,itisworthwhiletostudytheradiativefluxfor gests that surface convection operates in the same way for all anyadditionalscalingproperties.Whencomparingtheradiative cool stars. Furthermore, we note that the asymptotic character fluxnormalizedtothetotalflux, F∗ =F /F , withρ , then oftheentropyjumpisalsoimprintedinthetemperatureanden- rad rad tot ∗ differentstellarparametersexhibitthesamebehaviour(Fig. 2). thalpy,andbecomesapparentwhendecomposingthemintothe Wefindthepeakoftheentropygradientcoincideswiththepeak non-adiabaticandadiabaticparts. oftheradiativecoolinggradient. Inordertomaketherelationbetweentheentropyandthera- 4. Fittingthenormalizedentropyjump diativefluxclearer,weconsidertheentropyconservationequa- tion Wefindthatthenormalizedentropyjumpcanbereasonablyfit 1 withanasymptoticfunction,ζn,ofthefunctionalform ∂ s+u·∇s = − ∇·F +q , (3) t rad visc T s = ζ (x)∆s+s , (5) n min which states thatthe radiativelosses are a resultofthe entropy with x=logρ . Aformulationfortheζ thatmatches s wellis advection. The time derivative of the entropy becomes zero, ∗ n ∗ agenericpolynomial: while the viscous dissipations are negligible. Then, the spatial andtemporalaverage,denotedbyh...i,gives n ζ = 1+ a 1−xk/2 . (6) n k 2hux∂xsi+huz∂zsi = hqradi/hTi, (4) Xk=1 (cid:16) (cid:17) whichrelatestheradiativecoolinginthephotospheretothetotal Initially, we applied an asymptotic function; however, the re- entropyadvection.Thehorizontalentropyadvectionissymmet- sulting fits were insufficient, so that we found the polynomial ric,i.e.u ∂ s=u ∂ s;therefore,thetwofoldofx-directiongives to give a better fit. In Fig. 4 we show the results of the fitting x x y y thehorizontalentropyadvection.TheRHSofEq.4isthederiva- forfourdifferentstellarmodelswithtwodifferentmetallicitiesin tiveoftheverticalradiativeflux,whichdeterminestheeffective comparisonwiththeh3Dientropystratification.Thedifferences, Articlenumber,page3of6 Fig.4:Fittingsofthenormalizedh3Dientropyjump(dashedline)withthefunctionsζ andζ (redandbluelines,respectively)for 3 5 differentmodels:Sun(T /logg=5777/4.44),turnoffstar(6500/4.0),redgiant(4000/2.0),anddwarf(4500/5.0)forsolarmetallicity eff ([Fe/H]=0) and metal-poor ([Fe/H]=−2.0) models (upperand lower panels). We also depict the difference between the h3Di modelandthefittedfunctionsζ andζ . 3 5 ζ∗ = 1−2 1−x1/2 +2 1−x2/2 −3/4 1−x3/2 (7) 3 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) fitsthenormalizedentropyjumponaverage. Wefindthesmall- estresidualsforn=5,asshowninFig. 4. However,wecannot findanycorrelationsbetweenthefittingcoefficientsandthestel- larparameters. Abettersuitedfunctionalbasiscouldbefound; inparticular,at the bottomthe functionζ doesnotexactlyex- n hibitanasymptoticbehaviourbydefinition.Sinceanasymptotic functional basis resulted in worse fits, we preferred to use the presentedgenericpolynomial. 5. Depthdependentboundaryforstellarstructures Instellarstructurecalculations,theentropycanbeconveniently obtainedbyintegrating ds c = − P (∇−∇ ), (8) ad dz H P wherec is the specific heatat constantpressure, H the pres- P P sure scale height, and ∇ =∇−∇ the superadiabatic gradi- sad ad ent.Sincetheasymptoticentropyjumpisuniversal,wecancon- Fig.5:Thedifferentcoefficientsforζ fromfitstodifferentmod- 3 structthethermalstratificationinthesuperadiabaticlayersusing els. Thedifferentmetallicitiesareindicated. thegenericentropystratificationscaledbytheentropyjumpand minimum. In Fig. 6, we show a constructedentropystratifica- tion for the Sun using the generic function ζ∗ given in Eq. 7. δ=s∗−ζn,areverysmallasshown.Infact,therootmeansquare Comparedwiththeh3Dimodel,thedifference3sbetweenthetwo and the maximum of the differences averaged over all models areremarkablysmall. are 7.32×10−3 and 9.45×10−3 for the 3rd order function and To construct such a stratification, we first consider the 2.33×10−3and3.61×10−3forthe5thorderpolynomial. generic relation between s and ρ from Eq. 7. Then, for a ∗ ∗ Forthelowerorder,n=3,wefindthatthecoefficientsvary givenchoiceofstellarparametersT ,logg,and[Fe/H],wede- eff arounda =−2,+2,−0.75,ascanclearlybeseenin Fig. 5, i.e. termine∆sands ,whichareprovidedinMagicetal.(2013a) k min thefunction intheformoffunctionalfits. Wenotethattheentropyminimum Articlenumber,page4of6 Z.Magic:Scalingoftheasymptoticentropyjumpinthesuperadiabaticlayersofstellaratmospheres Fig.6:Reconstructed(redline)stratificationsoftheentropy,temperatureandpressure(top,middleandbottompanels,respectively) fromthegenericfunctionζ∗ (Eq. 7)forthesolar,redgiantandturnoffmodels(fromlefttoright). Weshowalsotheh3Dimodel 3 (dashedline)incomparison. sets theouterboundary,while theentropyjumpdeterminesthe the mixing length is encoded in ∆s and the outer boundary in temperaturegradient(∇=∇ +∇ ). WithEq. 5,wecannow s . Such a simplified prescription of the superadiabatic lay- sad ad min scale the entropystratification. The density can be determined erscouldpossiblyimprovethe p-modefrequencydisagreement from Eq. 2 and the entropy peak, which is approximately lo- (Christensen-Dalsgaardetal. 1988; Rosenthaletal. 1999). We cated at the optical surface, i.e. ds| ≈τ =2/3. There- notethatouraiminthepresentedstudyistoillustratethepoten- max Ross fore, the adiabatic stratification with s , where the entropyis tialapplicationofourfindingsforstellarstructures.Themethod min constant, can be helpful for an initial estimate of the value of summarized above clearly needs further development for im- thedensity,atwhichρ(ds| ). Fromtheresultingρand s, we provedresults. max compute the thermal pressure, p , from the equation of state. th Then, the geometrical depth can be retrieved from the hydro- 6. Conclusions staticequilibrium,dp /dz=ρg. Wenotethatthesurfacegrav- th ity is responsiblefor the scaling of the geometricaldepth. The Thepresentedscalingrelationfortheentropyjumpindicatesthat turbulentpressure(andvelocity)hastobeincludedinthehydro- radiativelossesincoolstarstakesplaceinafairlysimilarfash- static equilibrium because it will elevate atmospheric structure ion. Wefoundthatthenormalizedentropy,asafunctionofthe (i.e. ptot = pth+ρu2z). However, for simplicity we neglect the normalized density, can be fitted very well with a polynomial latter. Thelocationoftheopticalsurfacecanberetrievedfrom function. A robust and generic, yet simple description of the theopticaldepth, dτ/dz=ρκ. Finally, withtheconstructeden- normalized entropy stratification can be achieved with a three- tropy and density stratification one can compute other thermo- parameter function. This could be helpful for stellar structure dynamicquantities,suchastemperatureorinternalenergy,from computationsbyprovidingasimpledescriptionoftheotherwise the equation of state. We note that in the differentconstructed non-trivialsuperadiabaticregion in cool stars. In particular, as modelsshowninFig. 6,weappendedanisothermalatmosphere correctionsforthenear-surfaceeffectsinasteroseismologythis abovethesurface. would constitute a large step forward in stellar structure mod- This procedure can be used to construct depth dependent elling. We have shown that from the generic normalized en- thermal stratifications to be used as outer boundary conditions tropy,wecanconstructstratificationsbyscalingthenormalized for stellar structure computations. The physical complexity of entropywiththeentropyjumpandminimum,asoutlinedabove. theradiativetransferequationisthenhiddeninthedependence However, the method can benefit from some refinement in the of ∆s and s on stellar parameters. This approach would future,forexamplebyincludingtheturbulentpressureinthehy- min reduce the deficiencies of MLT and the T(τ) relations since drostaticequilibriumequation.Superadiabaticconvectionseems Articlenumber,page5of6 totakeplaceinasimilarmanner,despitelargedifferencesinthe physical conditions. The reason behind this has yet to be ex- plored. Acknowledgements. Thisworkwassupportedbyaresearchgrant(VKR023406) fromVILLUMFONDEN. References Ball,W.H.&Gizon,L.2014,A&A,568,A123 Böhm-Vitense,E.1958,ZAp,46,108 Christensen-Dalsgaard,J.,Dappen,W.,&Lebreton,Y.1988,Nature,336,634 Kjeldsen,H.,Bedding,T.R.,&Christensen-Dalsgaard,J.2008,ApJ,683,L175 Magic,Z.&Asplund,M.2014,ArXive-prints Magic,Z.,Collet,R.,Asplund,M.,etal.2013a,A&A,557,A26 Magic,Z.,Collet,R.,Hayek,W.,&Asplund,M.2013b,A&A,560,A8 Magic,Z.,Weiss,A.,&Asplund,M.2015,A&A,573,A89 Nordlund, Å., Stein, R. F., & Asplund, M. 2009, Living Reviews in Solar Physics,6,2 Rosenthal, C. S., Christensen-Dalsgaard, J., Nordlund, Å., Stein, R. F., & Trampedach,R.1999,A&A,351,689 Salaris,M.&Cassisi,S.2015,A&A,577,A60 Stein,R.F.&Nordlund,Å.1998,ApJ,499,914 Trampedach, R.,Stein, R.F.,Christensen-Dalsgaard, J.,Nordlund, Å.,&As- plund,M.2014a,MNRAS,442,805 Trampedach, R.,Stein, R.F.,Christensen-Dalsgaard, J.,Nordlund, Å.,&As- plund,M.2014b,MNRAS,445,4366 Articlenumber,page6of6