Tree Physiology26, 689–701 © 2006 Heron Publishing—Victoria, Canada Scaling of angiosperm xylem structure with safety and efficiency 1,3 1 1 2 UWE G.HACKE, JOHN S. SPERRY, JAMES K. WHEELER and LAURA CASTRO 1 Department of Biology, University of Utah, Salt Lake City, UT 84112, USA 2 UnidaddeAnatomía,FisiologíayGenéticaForestal,EscuelaTécnicaSuperior deIngenierosde Montes,UniversidadPolitécnicade Madrid, CiudadUniversitarias/n, 28040 Madrid, Spain 3 Corresponding author ([email protected]) Received June 9, 2005; accepted September 28, 2005; published online March 1, 2006 Summary We tested the hypothesis that greater cavitation thatisundersignificantnegativepressure.Theconduitsmust resistancecorrelateswithlesstotalinter-vesselpitareaperves- protectthisstreamagainstrupturebycavitation—theabrupt sel(thepitareahypothesis)andevaluatedatrade-offbetween transitionfrommetastableliquidtogasphase(Zimmermann cavitation safety and transport efficiency. Fourteen species 1983).Atthesametimethatthexylemmustbesafefromcavi- of diverse growth form (vine, ring- and diffuse-porous tree, tation,itmusthaveasufficientlylowresistancetowaterflow shrub)andfamilyaffinitywereaddedtopublisheddatapre- to minimize the transpiration-induced drop in negative pres- dominatelyfromtheRosaceae(29speciestotal).Twotypesof sure. Most plants regulate their canopy xylem pressures vulnerability-to-cavitation curves were found. Ring-porous through adjustments in stomatal conductance and leaf area treesandvinesshowedanabruptdropinhydraulicconductiv- (MeinzerandGrantz1990,Hackeetal.2000,Hubbardetal. itywithincreasingnegativepressure,whereashydrauliccon- 2001). Consequently, the lower the transport resistance, the ductivityindiffuse-porousspeciesgenerallydecreasedgradu- more water can flow to the canopy under a given pressure ally. The ring-porous type curve was not an artifact of the gradient,andthegreaterthecapacityforcarbonuptake.The centrifugemethodbecauseitwasobtainedalsowiththeair-in- lowerthexylemresistivityisonacross-sectionalareabasis, jectiontechnique.Asafetyversusefficiencytrade-offwasevi- dentwhencurveswerecomparedacrossspecies:foragiven the greater thephotosyntheticprofit per xylem investment. pressure, there was a limited range of optimal vulnerability Thispaperfocusesonisolatingthestructuralrequirements curves.Thepitareahypothesiswassupportedbyastrongrela- for safety on the one hand, and transport efficiency on the tionship(r2=0.77)betweenincreasingcavitationresistance other.Thisallowsustoidentifymechanismsthatmaylimitthe anddiminishingpitmembraneareapervessel(A ).SmallA simultaneousoptimizationofsafetyandtransportefficiency. P P wasassociatedwithsmallvesselsurfaceareaandhencenarrow Thispotentialtrade-offisdifferentfromthexylemsafetyver- vessel diameter (D) and short vessel length (L)—consistent susxyleminvestmentconflictanalyzedpreviously(Hackeet withanincreaseinvesselflowresistancewithcavitationresis- al.2001a,2004).Inthosestudies,increasingsafetyfromcavi- tance.Thistrade-offwasamplifiedatthetissuelevelbyanin- tationcorrespondedwithincreasedinvestmentinconduitwall crease in xylem/vessel area ratio with cavitation resistance. volumeperconduitvolumeaspredictedtowithstandimplo- Ring-porousspeciesweremoreefficientthandiffuse-porous sion by greater negative pressure. This translated to a mini- species on a vessel basis but not on a xylem basis owing mum wood density required to reinforce conduit walls—a to higher xylem/vessel area ratios in ring-porous anatomy. constructioncostthatincreasedwiththecapacitytowithstand Across four orders of magnitude, lumen and end-wall resis- negativepressure.Therelatedconflict,whichisthefocusof tivities maintained a relatively tight proportionality with a thispaper,iswhetherincreasedcavitationsafetyrequiresde- near-optimalmeanof56%ofthetotalvesselresistivityresid- creased hydraulic efficiency. ing in the end-wall. This was consistent with an underlying Asafetyversusefficiencytrade-offhaslongbeenproposed scalingofLtoD3/2acrossspecies.Pitflowresistancedidnot (ZimmermannandBrown1977,Carlquist1988),buttheevi- increasewithcavitationsafety,suggestingthatcavitationpres- denceisambiguous(Tyreeetal.1994,Choatetal.2005).If sure was not related to mean pit membrane porosity. thereisatrade-off,plantswithmorenegativecavitationpres- sure might show an increase in the resistivity of their func- Keywords: hydraulic conductivity, trade-offs, vulnerability tionalxylemandadecreaseinvesselsize.Thisisseeninsome curves, water transport, wood structure, xylem anatomy, xy- datasets(Martinez-Vilaltaetal.2002),buttherelationshipcan lem cavitation. bestatisticallyweak(Tyreeetal.1994,PockmanandSperry 2000).Otherdatasetsshownorelationshipatall(Hackeand Sperry 2001,Jacobsenet al. 2005). Introduction Addingtotheambiguityisthatthemechanismofcavitation The xylem conduit network supplies a transpiration stream bywaterstressisnotlinkedinanyself-evidentwaytovessel 690 HACKE, SPERRY, WHEELER AND CASTRO size(diameterandlength),whichhasastronginfluenceonxy- encesthelargestporepervessel(Hargraveetal.1994,Choatet lemflowresistance.Thereisconsiderableevidencethatcavi- al.2005).Ourprevioussurveyshowedastronginverserela- tation is caused by air being drawn into water-filled xylem tionshipbetweenincreasingtotalpitmembraneareapervessel conduitsbynegativepressureandthatthemostimportantsites anddecreasingsafetyfromcavitation.Thegreaterthepitarea of this air-seeding are the inter-conduit pits (Crombie et al. inthevessel,thelargerthemaximumporesizeforthevessel 1985, Sperry and Tyree 1988, 1990, Jarbeau et al. 1995). (Wheeleretal.2005).Thisconclusionsuggeststhereisanele- Thesepitsconnectadjacentconduitstoallowwaterflowand mentofprobabilityinthesafetyofavesselfromcavitation. theyalsoactassafetyvalvestoblockthespreadofgasfrom Addingmorepitstoavesselcompromisesitssafetyfromcavi- embolized conduits. In inter-vessel membranes, the pit is tationbecausethemorepitsthereare,bychancethegreater sealedagainstairentrybycapillaryforcesatthenarrowpores willbethesinglelargestporediameterinthevessel.Theaver- ofthepitmembrane.Excessivelynegativepressureduringwa- ageporosityofthepitmembranesandtheirresistanceonan terstress,however,canpullairacrossthepitvalvesandcause area basis, however, would not necessarily change. This pit cavitation in adjacent water-filled conduits. It is unclear areahypothesisprovidesabasisforasafetyversusefficiency whether the pit properties that dictate safety from cavitation trade-offbecausealimitationonvesselpitareacanalsolimit alsoconstrainvessellengthanddiameter,andthustheoverall vessel size and flow resistance (Wheeler et al. 2005). resistivity of the conduit network. TheresultsofWheeleretal.(2005)werefrom16species, Inanattempttounravelthelinkbetweenpitfunctionand 11ofwhichweremembersoftheRosaceae(Table2).Theem- xylem flow resistance, we have previously modeled the air- phasisontheRosaceaewasintendedtominimizequalitative seeding and hydraulic properties of pits (Hacke et al. 2004, differencesinpitmembranestructureacrosslineages,andso SperryandHacke2004).Amajorassumptionofthemodelas tomaximizetheprobabilityofdetectingsafety-relatedvaria- appliedtohomogeneouspitmembranesofangiospermvessels tion in pit properties. However, this sampling prevented the (todistinguishfromthetorus-margoorganizationingymno- widestpossiblevariationinvesselsizesandcavitationresis- sperms),wasthatmeanporosityofthecellulosicmeshofthe tance.Furthermore,nofamilybiaswasdetectedintheresults, pit membrane covaried with the maximum pore size of the suggesting the observed trends may cut across phylogenetic membraneandthatallpitmembranesinavesselwereidenti- groups. cal.Themaximummembraneporesizeinavesseliscritical Thepresentpaperadds14speciestothedatasetofWheeler becausetherelativelyweakcapillaryforcesatthisporesetthe etal.(2005),thenewspecieswerechosenforextremesofves- air-seedingpressurefortheentirevessel.Thebiggerthismax- selsizeandcavitationpressuretomoreeffectivelydetermine imumpore,themorevulnerableisthevesseltocavitationby scaling relationships between the structure and function of capillaryfailure(assumingthemembranedoesnotair-seedby vessels(Table1).Familyaffinitieswerediverse,butwiththe rupture or extensive plastic yielding). According to our as- exceptionoftwospecies,theywerefamilieswithoutvestured sumptions,avesselcouldachievegreatersafetyfromair-seed- pitting.Vesturescouldmodifysomestructure–functionrela- ingonlybyhavingadenserpitmembranemeshwithreduced tionships(Choatetal.2004)andasystematiccomparisonwas meanporosity.Thiswouldresultinastrongtrade-offbetween outsidethescopeofthisproject.Thespecieswerechosento increasingsafetyfromair-seeding(setbyadeclineinmaxi- representlargevesselsof ring-porous trees(sixspecies)and mum membrane pore size) and increasing flow resistance vines (one species) at one extreme, and narrower vessels of throughapit(determinedbydecliningmeanporosityofthepit diffuse-porous treesandshrubs(sevenspecies)on theother. membrane).Werefertothisasthepitresistancehypothesisfor The goalswere (1) to determine if the inclusionof more di- a safety versus efficiency conflict at the pit level. versevesselsizesandsafetiesconfirmedthepitareahypothe- Recentestimatesofpitmembraneresistancedonotsupport sis over the pit resistance hypothesis; (2) to evaluate the this hypothesis.Instead of a strong increasein pit resistance implications of the hypothesis for a safety versus efficiency (onamembraneareabasis)withincreasingsafetyfromcavita- trade-off;and(3)toexploretheramificationsofthering-po- tion,therewasnorelationship(Wheeleretal.2005).Further- rousversusdiffuse-porousvesselorganizationswithrespectto more, measured resistances were considerably greater than the safety versus efficiency conflict. modelpredictions,indicatinganaveragemembraneporosity farsmallerthanmodeled.Theseresultsagreewithsomeex- Materials and methods perimentalresultssuggestinganaveragemembraneporesize muchsmallerthanthesizepredictedtoair-seedatthecavita- Our methods were nearly identical to those described by tionpressure(Choatetal.2003,butseeJarbeauetal.1995). Wheeler et al. (2005) and only a brief summary is provided The data of Wheeler et al. (2005) suggest that average pore hereexceptfordescriptionsuniquetothe14speciesaddedto size,thoughvariable,doesnotcorrelatewellwiththelargest the existing data set. membraneporepervesselthatlimitssafetyfromair-seeding. Plant material Thisresultleavesopenthequestionofwhatfeaturesofpitand vessel structure influence the largest membrane pore per Studied plants (Table 1) represented different xylem types vessel. (diffuse-porousandring-porous),growthforms(trees,shrubs Apossibleanswertothisquestionisthatitisthetotalnum- andvines),ecosystems(fromtheabundantmoistureinNorth ber,orcollectivemembranearea,ofpitsinavesselthatinflu- Carolina to the aridity of the American Southwest) and leaf TREE PHYSIOLOGY VOLUME 26, 2006 SCALING OF XYLEM WITH SAFETY AND EFFICIENCY 691 Table1.Studyspecies,theirfiguresymbolsandmeasurementsnotshowninfigures.Thefirstfivespeciesarering-porousandaredesignatedby asteriskeddoublecapitalsymbols.Measurementsrepresentthemeanvesselsize.Contactfractionisthefractionofvesselsurfaceareacontacting anothervessel.Pit-fieldfractionisthefractionofinter-vesselcontactoccupiedbypitmembranes.Theproductofthesetwofractionsgivesthepit fraction(F ),thetotalpitareapervesselsurfacearea.Lengthfractionistheportionofvessellengthoverlappingothervessels.TheratioL′/L=F P L is the length between end walls (L′) per vessel length (L). Grand means from a minimum of six stems per species ±SE. Species Figure symbol Contact fraction Pit-field fraction Length fraction L′/L=F L Carya glabra(P. Mill.) Sweet (Juglandaceae) CG* 0.07 ±0.010 0.55 ±0.044 0.17 ±0.020 0.91 ±0.010 Fraxinus pennsylvanicaMarsh. (Oleaceae) FP* 0.11 ±0.009 0.55 ±0.019 0.26 ±0.022 0.87 ±0.011 Morus albaL. (Moraceae) MA* 0.08 ±0.013 0.61 ±0.014 0.19 ±0.022 0.91 ±0.011 QuercusgambeliiNutt.(Fagaceae) QG* 0.05 ±0.019 0.30 ±0.018 0.13 ±0.019 0.94 ±0.010 Quercus prinusL.(Fagaceae) QP* 0.05 ±0.014 0.39 ±0.020 0.17 ±0.019 0.91 ±0.009 Rhus trilobataNutt. (Anacardiaceae) RT* 0.17 ±0.015 0.52 ±0.031 0.53 ±0.026 0.74 ±0.013 AcergrandidentatumNutt. (Aceraceae) Acg 0.30 ±0.015 0.69 ±0.016 0.50 ±0.021 0.75 ±0.011 Arctostaphylos patulaE.L. Greene (Ericaceae) Arp 0.10 ±0.004 0.37 ±0.020 0.21 ±0.023 0.90 ±0.011 CeanothuscrassifoliusTorrey (Rhamnaceae) Cec 0.10 ±0.008 0.43 ±0.025 0.18 ±0.011 0.91 ±0.005 CeanothusvelutinusDougl. ex Hook. (Rhamnaceae) Cev 0.19 ±0.005 0.58 ±0.033 0.33 ±0.011 0.83 ±0.005 Larrea tridentata(Sessé&Moc. ex DC.) Coville Lat 0.01 ±0.001 0.40 ±0.019 0.03 ±0.003 0.99 ±0.002 (Zygophyllaceae) Oxydendronarboreum(L.) D.C. (Ericaceae) Oxa 0.08 ±0.006 0.30 ±0.016 0.17 ±0.013 0.91 ±0.007 Paxistimamyrsinites(Pursh)Raf. (Celastraceae) Pam 0.13 ±0.005 0.41 ±0.023 0.21 ±0.006 0.89 ±0.003 Pueraria montana(Lour.)Merr. (Fabaceae) Pum 0.16 ±0.025 0.71 ±0.010 0.38 ±0.043 0.81 ±0.021 phenologies(evergreensincluded:Paxistimamyrsinites,Cer- duringtransport.AdditionalspeciesfromthestudyofWheeler cocarpus ledifolius, Ceanothus velutinus, Larrea tridentata et al. (2005) are listed in Table 2. andArctostaphylospatula).StemsofCaryaglabra,Quercus prinus, Oxydendron arboreum and the introduced vine Cavitation pressure Puerariamontana(Kudzu),werecollectednearTryon,North Vulnerability curves documenting the decrease in hydraulic Carolina in the Appalachian mountain foothills. Ceanothus conductivitywithnegativepressureweremeasuredonatleast crassifolius was collected from chaparral near Pepperdine six stems per species by the centrifuge method (Alder et al. UniversityinMalibu,California.Fromthesedistantsites,the 1997) as in the previous study (Wheeler et al. 2005). Stems materialwaswrappedinplasticbagsandshippedbyovernight were flushed with measuring solution (20 mM KCl) under expresstoourlaboratoryinSaltLakeCity,Utah.Stemsofthe 100 kPa entry pressure to reverse native embolism before remainingspecieswerecollectedwithinafewhoursdriveof curve determination. The hydraulic head used to measure thelaboratoryandweresimilarlyprotectedfromdesiccation theconductivitywastypicallyabout4kPaindiffuse-porous stemsand1–2kPainstemswithlargevessels.Alowpressure headinlargeandlong-vesseledspecieswasessentialtoavoid instant refilling of embolized vessels cut open at both ends. Table2.SpeciesfromWheeleretal.(2005)andfiguresymbols.The Betweenconductivitymeasurements,stemswerecentrifuged first 11 species are members of the Rosaceae. toprogressivelymorenegativepressureinacustom-designed centrifugerotor.Vulnerabilitycurvesshowingthedropincon- Species Figure symbol ductivitywithnegativepressurewereplottedforallsixstems of a species and the collective species curve was fit with a Amelanchier alnifoliaM.Roemer Aa Weibullfunction: A.utahensisKoehne Au CercocarpusledifoliusTorr. & Gray Cl C. montanusRaf. Cm K/K =e−(P/b)^c (1) max Holodiscusdumosus(Hook.) Heller Hd Physocarpusmalvaceus(Greene)Kuntze Pm whereK/K isconductivityrelativetothemaximuminthe Purshiatridentata(Pursh) D.C. Pt max absenceofanyreversibleembolism,Pistheabsolutevalueof RosanutkanaC.Presl. Rn thenegativepressure,bisacurvefittingparameterthatcorre- RubusleucodermisTorr. & Gray Rl R. parviflorusNutt. Rp spondstoPatK/Kmax=0.63andcisacurve-fittingparameter SorbusscopulinaGreene Ss influencing the slope of the vulnerability curve. Table 3 de- Acer negundoL. (Aceraceae) An fines major variables. Salix exiguaNutt. (Salicaceae) Se Somespeciesforwhichstemsolderthanoneyearhadtobe SambucusceruleaRaf. (Adoxaceae) Sc used(becauseoflengthlimitationsofcurrent-yeargrowth)ex- Vitis viniferaL. (Vitaceae) Vv hibited the cavitation fatigue phenomenon (Hacke et al. TREE PHYSIOLOGY ONLINE at http://heronpublishing.com 692 HACKE, SPERRY, WHEELER AND CASTRO Table 3. Major variables with definition and units. Variables represent values for mean vessel size. Symbol Definition Units A Total inter-vessel pit membrane surface area of vessel mm2 P A Total internal surface area of vessel mm2 V D Diameter corresponding to mean vesselR µm L F R /R ratio – L W F L′/Lratio – L F Pit fraction =A /A – P P V K,K Xylem conductivity, maximum conductivity mm4MPa–1s–1 max K Xylem cross-sectional area conductivity m2MPa–1s–1 Xa K MaximumK fornon-embolizedxylem m2MPa–1s–1 Xa-max Xa L Vessel length cm L′ Length between vessel end-walls m R Vessel resistivity MPas mm–4 C R Vessel lumen resistivity MPas mm–4 L R Vessel end-wall resistivity MPas mm–4 W R Vessel cross-sectional area resistivity MPasm–2 Ca R Xylem cross-sectional area resistivity = 1/K MPasm–2 Xa Xa r Resistance of one vessel end-wall MPas mm–3 W r Pit membrane area resistance MPasm–1 P 2001b). These species had high native embolism values and measured in between exposing the stem in the chamber to included ring-porous trees and some diffuse-porous species stepwiseincreasesinairpressures(10minperpressure).Vul- fromdrought-pronehabitats.Thefatiguephenomenonisthe nerabilitycurvesdevelopedbythismethodshowthedropin reductionincavitationpressureinolderxylemasaresultof conductivityasafunctionoftheairpressureandgivethepres- previouscavitationbydrought(Hackeetal.2001b),freezing surerangerequiredtopushtheairintothexylem(Cochardet (J.S.SperryandL.Castrounpublisheddata;S.D.Davis,Pep- al.1992,SperryandSaliendra1994).Theair-injectioncurves perdine University, Malibu, USA, personal communication) should be equal and opposite to the centrifuge curves if air- and perhaps age itself (Sperry et al. 1991). The symptom of seedingisthemaincavitationmechanism.Thistestwasdone cavitationfatigueishighlyvulnerablexylemlocalizedtoolder for P. montana, R. trilobata, Q. gambelii and Quercus tur- growth rings. Dye perfusions show that this older xylem is binella(the latter species was not part of the extended study). embolizedinthenativeconditionandwhenrefilledbyflush- Allcomparisonsofcavitationpressureandxylemstructure ingbecomesre-embolizedatverymodestnegativepressures weremadebetweenthespecies’meanvalueforeachparame- (e.g.,–0.5MPa)inthelaboratory.Toavoidbiasingestimates ter.Forthisreason,itwasnecessarytorepresentthespecies’ ofthecavitationpressureofthefunctionallymostimportant vulnerability curve with a single cavitation pressure. In the current-yearxylembyincludingtheolderfatiguedxylem,the past, we have used either the pressure required to reduce K ofthesespecieswasscaledtoKat–0.5MParatherthan K/K to0.5(P ),orthemeancavitationpressure(e.g.,Lin- max max 50 the K after flushing (A. patula, C. glabra, Fraxinus penn- tonetal.1998).Thelattertreatsthevulnerabilitycurveasacu- sylvanica, Paxistima myrsinites, Physocarpus malvaceaus, mulativedistributionofKwithpressureandisthemeanofthat Purshia tridentata and Rosa nutkana). In Larrea tridentata, distribution.Forspecieswithnearlysymmetricalsigmoidalor theK wasscaledtoKat–1.5MPabecauseeventhefatigued linearvulnerabilitycurves,P andmeancavitationpressure max 50 xylemwasrelativelyresistanttocavitationinthisextremely areverysimilar.However,inthisstudy,large-vesseledspecies drought-adapted species. typicallyhadasymmetricalvulnerabilitycurvescharacterized Vulnerability curves of vines and ring-porous trees where by an initial abrupt drop in conductivity with pressure fol- we could avoid the fatigue artifact by using current-year lowed by a tail where conductivity dropped more gradually growth(Quercusgambelii,Q.prinus,P.montana,Morusalba (Figures1and2).Tobetterrepresentthecavitationpressure andRhustrilobata)alsotendedtohaveasignificantamountof acrosscurvesofallshapes,weusedthemeancavitationpres- nativeembolismandhighlyvulnerablevessels(e.g.,Figures1 sureforallspecies,includingthosepreviouslyrepresentedby and2)—thoughlesssothanwasthecasewitholderstems.We theirP50(Wheeler et al. 2005). did not scale these curves as described above because they Xylem-area hydraulic resistivity were based solely on current-year xylem. Inasubsetoflarge-vesseledandfatigue-pronespecies,we The hydraulic resistivity (pressure gradient per flow rate) of compared the centrifuge method with the air-injection tech- thesapwoodofallspecieswasmeasuredandexpressedrela- niqueasacheckonthecentrifugemethodforlarge-vesseled tivetothesapwoodarea(R ).TheR correspondsto1/K , Xa Xa max species. Stems about 25 cm in length were sealed in a dou- butisexpressedonafunctionalxylemareabasis.Weswitch ble-ended pressure chamber and the hydraulic conductivity betweenconductivitiesandresistivitiesbecausethelatterare TREE PHYSIOLOGY VOLUME 26, 2006 SCALING OF XYLEM WITH SAFETY AND EFFICIENCY 693 additive in series and this facilitates the separation of vessel havebeendescribedindetail(Sperryetal.2005,Wheeleretal. functionintoitscomponents(e.g.,Equation2).TheR hadto 2005). Vessel length distributions are strongly short-skewed Xa bedeterminedforsegmentslongerthanthelongestvesselsto andthemeanLusedtorepresentasegmentcorrespondedto include the influence of end-wall resistance. In most dif- the mean of the log-transformed vessel length distribution. fuse-porousstems,R couldbedirectlymeasuredinstemseg- Xa Partitioning xylem resistivity into lumen and end-wall mentsthatwerelongerthanthelongestvessels(Wheeleretal. components 2005). In these cases, six stems per species were measured. After the hydraulic measurements were completed, 0.05% Ourpurposewastoisolatethecontributionofend-wallandlu- safranindyewassiphonedthroughthesegments(instems> men structure to the resistivity of intact vessels.To estimate 1 year old) to mark the functional xylem. The area of func- thesecontributions,weassumedasinpreviouswork(Wheeler tionalxylematthemiddleofthestemsegmentwasmeasured etal.2005)that,onaverage,lumenandend-wallcomponents withalightmicroscopeandimageanalysissoftware.Resistiv- werearrangedinseriesinthexylemnetwork.Ifallthevessels itywasmultipliedbythisstainedareatoobtainR foreach ofastemarerepresentedbyanequalnumberofaverage-sized Xa stem. and average-resistance vessels,mean intact vessel resistivity In long-vesseled species (P. montana, F. pennsylvanica, (R ) is the sum of the mean lumen (R ) and end-wall (R ) C L W C.glabra,M.alba,R.trilobataandthetwoQuercusspecies), resistivities: vesselsweretoolongfordirectmeasurementsofR .Instead, Xa weusedtheshorteningtechniquetodetermineR (Sperryet R = R +R (2) Xa C L W al.2005).Tensegmentsperspecieswereselected,andthere- sistivity measured at segment lengths of 15, 5.1, 1.8 and WeestimatedR bymultiplyingR bymeanvesseldensity, C Xa 0.6 cm. In all species, R decreased significantly with de- andR wasestimatedfrom vesseldiametersandthe Hagen- Xa L creasingsegmentlengthandasthepercentageofopenvessels Poiseuilleequation. TheR was determined by subtraction. W withoutendwallsincreased(Sperryetal.2005).Theportion PartitioningR into end-wall resistance and pit area ofopenvesselswasknownfromvessellengthmeasurements W resistance (seebelow).Theinterceptoftheresistivityversuspercentage ofopenvesselsrelationship(at0cmsegmentlengthand100% BasedonthesameanalysispresentedinWheeleretal.(2005), openvessels)gaveanestimateoftheresistivityofthevessel webrokedownthemeanend-wallresistivityR intothemean W lumens.Sperryetal.(2005)observedthatthisinterceptdidnot resistanceof asingleend-wall(r ) basedontheassumption w differstatisticallyfromlumenresistivity(R )calculatedfrom thatR (aresistivity)istheaverageend-wallresistanceperav- L W measurements of vessel diameter and the Hagen-Poiseuille erage length between successive end-walls in series (L′): equation,andthiswasalsofoundinourstudyspecies.Forcon- sistencyacrossspecies,weusedtheHagen-PoiseuilleR esti- R =r /L′ (3) L W W mate for all species (see next section). The other end of the regressionline,theresistivityat0%openvessels,gaveoures- whereL′wascalculatedasmeanvessellength(L)minusthe timate ofR for the xylem with fully intact vessels. meanlengthofoneofitstwoend-walls(Figure1inWheeleret Xa al.2005).WeestimatedL′accordingtoWheeleretal.(2005), Vessel diameter,Hagen-Poiseuillelumen resistivity and using the same stems measured forRXa. vessel density End-wallresistanceisafunctionofthenumberofpitsinthe end-wallandtheirindividualresistancestoflow.Toestimate After completion of the R measurements, a subset of the Xa theresistanceofapitonitsmembraneareabasis(r ),weas- same stems was used to measure vessel diameters, Hagen- P sumed that all pits of an end-wall were in parallel, so that: Poiseuille lumen resistivity (R ) and vessel densities. These L parametersweremeasuredontransversesectionsasdescribed r =r /(A /2) (4) byWheeleretal.(2005).Forthediffuse-porousspecies,allsix W P P R stemsweremeasuredandforspeciesrequiringthestem- Xa whereA istotalareaofinter-vesselpits,whichisdividedby2 shorteningmethod,fourofthe10stemswererandomlycho- p toobtainthepitareainoneofthetwovesselend-walls.This sen. Hagen-Poiseuille lumen resistivity was calculated for continuestheassumptionthatallinter-vesselpitsarebetween each vessel at the same temperature (and sap viscosity) at endwalls.Totheextentthattheremaybetruelateralpitting whichR wasmeasuredexperimentally.Becauseourpurpose Xa between vessels (that is, two vessels meeting only at mid- wastorelatevesselstructuretoresistivity,werepresentedthe lengthandseparating),theend-wallpitareaisoverestimated, meandiameter(D)asthediametercorrespondingtothemean and hence ourr values will be overestimates. R for each stem. P L TheA wasestimatedasthesurfaceareaoftheaverageves- P sel(A =πDL)multipliedbythemeanfractionofthevessel V Vessel length surfaceareaoccupiedbyinter-vesselpits(thepitfraction,F ). P Vessellengths(L)weremeasuredonaseparatesetofamini- TheF wastheproductoftheaveragevesselcontactfraction P mumoffivestemsperspecies,butfromthesamebatchand andpit-fieldfraction,wherethecontactfractionisthefraction ageasthatusedforthehydraulicmeasurements.Themethods ofthevesselsurfaceareaincontactwithadjacentvesselsand TREE PHYSIOLOGY ONLINE at http://heronpublishing.com 694 HACKE, SPERRY, WHEELER AND CASTRO thepit-fieldfractionisthefractionoftheinter-vesselcontact areaoccupiedbypits.Thesefractionsweremeasuredaccord- ing to Wheeler et al. (2005) on the same stems measured forR . Xa Summary equation forR and LversusD scaling Ca Tosummarizehowvesselstructureinfluencesvesselresistiv- ity,wecombinedtheessentialparametersdescribedaboveinto asinglesummaryequationforaspecies’meanvessel-areare- sistivity(R =R ×meanlumencross-sectionalarea).This Ca C equation is derived in the appendix of Wheeler et al. (2005, Equation A8) and modified slightly here: R =6.06(π/A )4/5η3/5(F r /F )2/5(F2/5+F–3/5) (5) Ca P P P L Figure1.Vulnerabilitycurvesforselectedspeciesshowingthede- clineinxylemconductivitypersapwoodarea(K )withnegativexy- whereF=R /R ,andisusedforsimplicityinsteadoftheF = Xa L W W lempressure.Opensymbols((cid:1)and(cid:2))arering-porousspeciesand RW/RC fraction used in Wheeler et al. (2005, Equation A8). solidsymbols((cid:3),(cid:4)and(cid:5))arediffuse-porousspecies.Valuesare TheFLterm=L′/L.AsummaryequationforLandDscaling means ±SE,n= 6 stems per species. was similarly obtained: Fr 1/2 obtainedbytheair-injectionmethod(Figure2).Thetwometh- L =0.125 P (D)3/2 (6) ηF F ods were statistically identical at all pressures in the two P L QuercusspeciesandatthreeoffivepressuresinR.trilobata. Inthelatterspecies,thecentrifugemethodtendedtoproduce Equation6wasderivedfromEquationsA7andA9inWheeler greater loss of conductivity for the same pressure than the etal.(2005;noteerrorintheF termoftheirEquationA9:it W air-injection method,but the shapeof the curve wassimilar, should beF /(1 – F )). W W withanabruptconductivitylossatmodestpressure.Although Error propagation the stems for the centrifuge method were shorter (14.2 cm) thanfortheair-injectionmethod(22cmminimum)andhada Weusedstandardprocedures(BernardandEpp1995)toprop- greaterportionofopenvesselsrunningthroughthestem(e.g., agatestandarderrorsfromparameterswhosevariationwasdi- 15versus5.4%inQ.gambeliiand3versus0.4%inR.trilo- rectly determined from individual stem measurements (e.g., batabasedonvessellengthdistributions),thisdidnotappear R , vessel density, R , R , R , L, D, F, length fraction, pit- Xa C L W toinfluencethecurves.ThedataforspeciesinFigure2were field fraction and contact fraction) to parameters calculated fromspeciesmeanswhereerrorshadtobecombined(A ,A , obtained from different populations, stem ages and season P V F ,F ,r andr ).Forthesevenspecieswherethestemshort- than for the main survey. P L P W ening method was used, the standard error of R was esti- InthevineP.montana,thecurvesobtainedbythecentrifuge Xa mated from the regression of R versus percentage of open methodwerequitevariableandgenerallyshowedgreatervul- Xa vessels for pooled data of all stems per species. nerabilitythanthoseobtainedbytheair-injectionmethod,al- though the basic curve shape was similar (data not shown). Thevariabilitywasattributedtotheextremelylongandwide Results vessels in this vine, 35% of which were estimated to run through the 14.2 cm segments required for the centrifuge Vulnerability curves and the safetyversusefficiency method. Open vessels may not have been the problem, but relationship rather the problem may have been that the vessels were so Two types of vulnerability curves were observed (Figure 1). wide(meanD=150µm)thattheyemptiedbygravityifthe Thesixring-porousspeciesandthevine,P.montana,tended stemsegmentwastiltedtothevertical.Toavoidthedifficulty tohaverelativelyhighmaximumK fornon-embolizedxy- ofhandlingthismaterial(thecentrifugemethodrequiresmov- Xa lem(K ),butanabruptdeclineinK withpressure(Fig- ing and manipulating the stem multiple times), we used the Xa-max Xa ure1,Q.prinusandM.albacurves).Thesevendiffuse-porous air-injection curve for this species. For all other species the species(anddiffuse-porousspeciesfromWheeleretal.2005) centrifuge method was used. tendedtohavealowerK butgenerallyretainedK more ForthespeciesinFigure1,thehighertheK (theyinter- Xa-max Xa Xa-max effectively with pressure (Figure 1, Acer grandidentatum, cept),thesteeperthelossofconductivityatmodestpressure Acer negundo and C. crassifolius curves; A. negundo data (theslope)and,ingeneral,thelowerthepressurerequiredto fromSperryetal.2005).TheabruptdropinK observedin eliminateconductivity(thexintercept).Thisisconsistentwith Xa thering-poroustypeofcurvewasnotanartifactofthecentri- a trade-off between safety and conducting efficiency: for a fugemethod,becausethesamepatternwasseeninthecurves givenpressure,thereisalimitedrangeofvulnerabilitycurves TREE PHYSIOLOGY VOLUME 26, 2006 SCALING OF XYLEM WITH SAFETY AND EFFICIENCY 695 thebestcurveisforA.grandidentatumdespiteitsbeingabout 35% embolized at this pressure. Ceanothus crassifolius at –3MPais hardlyembolizedat all, yet has the lowerK . Xa Scaling of safetyversusefficiency parameters across species Representingtheslopeofthevulnerabilitycurvebythemean cavitationpressure,asafetyversusefficiencyrelationshipwas evidentacrossall29species(includingthe15fromWheeleret al.2005,Table2)withmorenegativemeancavitationpressure correspondingtohigherxylemarearesistivity(R =1/K ; Xa Xa-max Figure3A).Thus,thetrendseeninFigure1extendsacrossall speciesinthedataset.Thetwovinespecieswithsomeofthe widestandlongestvessels(Pum,Vv;Figure4)hadthelowest R and among the least negative cavitation pressure (Fig- Xa ure 3A). The ring-porous specieshad similar or even higher R forthesamecavitationpressureasthediffuse-porousspe- Xa cies(Figure3A,asteriskedsymbols,dashedline),despitetheir tendencytohavewiderandlongervessels(Figure4,dashed lines).Thering-porousspeciesalsotendedtoclustertowards the vulnerable end of the cavitation pressure range (Fig- ure 3A). TheR isafunctionoftheR andthetotalcross-sectional Xa Ca areaofthexylemoccupiedbyvessels:R =R ×xylem/ves- Xa Ca selarearatio.TheR alsoincreasedwithcavitationpressure Ca (Figure3B,r2=0.60forallspecies),butmoreweaklythanthe R scaling(Figure3A,r2forallspecies=0.86).Thiswasbe- Xa causering-porousspecieshadlowerR forthesamepressure Ca thantheotherspecies(Figure3B,dashedline),consistentwith theirtendencytohavelargervesselsatthesamepressure(Fig- ure4,dashedlines).DespitetheirlowerR ,thering-porous Ca speciesdidnothaveareducedR becausetheirxylem/vessel Xa arearatio wasmuchhigher for thesamepressurethanother species(Figure3C,dashedline).Thelowvesselareainring- porousspeciescancelledouttheeffectoftheirlowerR atthe Ca tissuelevel,yieldingcomparableorhigherR asdiffuse-po- Xa rous species. Allspeciesconsidered,theefficiencyversussafetytrade-off at the sapwood R level was much more severe than at the Xa conduitR level.TheR increased13-foldfromacavitation Ca Xa Figure2.Vulnerabilitycurvesofthreering-porousspeciesshowing pressureof–0.58to–8.1MPa,versusa4.5-foldincreasein percentagelossofconductivityversuspressure.Thecurvescompare R .ThesteeperincreaseinR wasowedtoastrongincrease thecentrifuge((cid:4))andair-injection((cid:2))methodsforeachspecies.As- Ca Xa in the xylem/vessel area ratio with cavitation pressure (Fig- terisksindicatesignificantlydifferentmeans.Valuesaremeans±SE forn=3(air-injection)andn=10(centrifuge)methods.Themethods ure3C).Thisinturnresultedfromadecreaseinvesseldiame- comparisonforQ.gambeliiwasfromadifferentpopulationandtime ter with more negative cavitation pressure (Figure 4, r2 = of year than the data for the anatomy–vulnerability survey. 0.71), which was more important than a weak tendency for vessel density to increase (r2= 0.25; data not shown). TheincreaseinR withsafetywasnearlyequallydivided Ca that provide optimal (maximum) K . Notably, this optimal between the R and R components (Figure 5). On average, Xa L W curvecanbeassociatedwithaveryhighnativeembolism.For 56%ofthevesselresistivitywasintheend-wallsand44%in example,atapressureof–0.8MPa,the“best”vulnerability thelumen.MeanF=R /R was0.85±0.078.Thisratiodid L W curvewiththehighestK at–0.8MPaisforM.alba,although not differ between ring-porous and diffuse-porous species Xa atthispressure,thisspecieswouldbeabout50%embolized.In measuredforthispaper,orbetweentheWheeleretal.(2005) contrast,thethreediffuse-porousspeciesat–0.8MPawould data and the species added in this study. belessthan10%embolized,yetstillhavealowerK because In contradiction to the pit resistance hypothesis modeled Xa theirK (intercept)valuesweresomuchlower.Thispat- previously (Figure 6, circles; Sperry and Hacke 2004), the Xa-max ternismaintainedatlowerpressures.Forexample,at–3MPa, pooleddatasetshowednoincreaseinr withmorenegative P TREE PHYSIOLOGY ONLINE at http://heronpublishing.com 696 HACKE, SPERRY, WHEELER AND CASTRO Figure4.Scalingofvesseldiameter(D)andlength(L)withmeancav- itation pressure (shown as absolute value for log scaling). Dashed linesandasteriskeddouble-capitalsymbolsidentifyring-porousspe- cies.Standarderroraveraged12%ofmeanLand6%ofmeanD.Spe- cies symbols are given in Tables 1 and 2. erroraveraged33%ofr .Thishighpercentagewasaresultof P the propagation of error through multiple calculations. In confirmation of the pit area hypothesis, the addition of datafor14speciesofdiversevesselsizeandsafetyreinforced thestronginverserelationshipbetweentotalA andmeancavi- P tationpressureacrossallspecieswithnocleardistinctionbe- tweenring-anddiffuse-poroustypes(Figure7A,r2=0.77). Totalvesselsurfacearea(A )alsoscaledwithincreasingmean V cavitation pressure, though much more weakly (Figure 7A, r2= 0.47)becauseofvariationinthefractionofvesselsurface thatwaspitted(thepitfraction,F =A /A ,Figure7B).Forex- P P V ample,thering-porousspeciestendedtohavehigherA forthe V same cavitation pressure than diffuse-porous species (Fig- ure7A,asteriskedsymbols,dashedline)becausethering-po- rousF tendedtobelowforthesamepressurecomparedwith P F of many diffuse-porous species (Figure 7B, dashed line). P Figure3.Safetyversusefficiencytrade-offacrossthe29-speciesdata set. Speciessymbolsare given in Tables1 and 2. Dashed lineand asterisked double-capitalsymbolsidentifyring-porousspecies. For clarity,errorbarsonspeciesmeansarenotshown.(A)Xylemareare- sistivity(R )versusmeancavitationpressure.Solidlineisregression Xa throughcompletedataset.Standarderroraveraged7%ofR .(B) Xa Vessel area resistivity (R ) versus mean cavitationpressure. Solid Ca lineisregressionforcompletedataset.Standarderroraveraged13% ofR .(C)Xylem/vesselcross-sectionalarearatio.Dashedlineisre- Ca gressionforring-porousspecies,solidlineisseparateregressionfor diffuse-porous species and vines. Standard error averaged 9% of means. cavitationpressure(Figure6,speciessymbols).Instead,there wasaweaklysignificant(r2=0.17)oppositetrend.Measured r wasalsosubstantiallygreaterthanmodeled(Figure6).The P Figure5.Scalingofvesselend-wallresistivity(R )withvessellumen 29-species data set showed large variation in r , but it was W P resisitivity(R ).Dashedlineis1:1.MeanR /R =Fratiowas0.85± L L W unrelated to safety from cavitation or to functional group 0.078.Standarderroraveraged13%ofmeanR and19%ofmean L (ring-porous versus diffuse-porous). The estimated standard R . Species symbols are given in Tables 1 and 2. W TREE PHYSIOLOGY VOLUME 26, 2006 SCALING OF XYLEM WITH SAFETY AND EFFICIENCY 697 Figure6.Pitarearesistance(r )versuscavitationpressure.Modeled P valuesfromSperryandHacke(2004)shownasopencircles.Standard erroraveraged33%ofthemeanformeasuredvalues.Speciessym- bols are given in Tables 1 and 2. TheF averaged6.3±0.9%(range:0.4–21%)acrossthe P full data set. Whereas the Rosaceae-dominated data set of Wheeler et al. (2005) showed a significant drop in F with P meancavitationpressure,additionofanother14specieselimi- nated this trend. In the full data set, F did not vary signifi- P cantlywithsafetyfromcavitation(Figure7B).Thevariation in F was primarily in the contact fraction rather than the P Figure7.(A)Pitmembrane(A )andvessel(A )surfaceareasversus P V pit-field fraction (Table 1). meancavitationpressure(shownasabsolutevalueforlog-scaling). TheAP,besidesbeinghypotheticallyresponsibleforsetting Dashedlinehighlightsring-porousspeciesinAVplot.Standarderror cavitation pressure, was also the dominant influence on the averaged19%ofA and14%ofA .(B)Pitfraction(F =A /A )ver- P V P P V variation in RCa compared with the other parameters in the susmeancavitationpressure.MeanFPwas6.3±0.9%.Dashedline highlightsring-porousspecies.Standarderroraveraged13%ofmean. summaryEquation5(Figure8).TheR changed165-foldfor Ca Species symbols are given in Tables 1 and 2. the observed 593-fold range in A (Figure 8, A curve). The P P nextmostimportantdeterminantsofR werer andF ,caus- Ca P P ingonlya5-foldchangeinR fortheir53-foldvariation(Fig- Ca sidesDinEquation6(F,r ,F andF )didnotvarysystemati- ure 8,r andF curves). P L P P P callywithD,LscaledwithDtothe3/2poweracrossthewide TheF=R /R fractionhadalimitedrange(0.85±0.078, L W rangeoflengthsanddiametersinthedataset(Figure9,r2= range 0.26–1.98; Figure 5) and a comparatively minor 0.63). 1.4-foldeffectonR acrossitsrange(Figure8,solidFcurve). Ca AsEquation5indicates,thereisanoptimalFthatminimizes R whichisemphasizedgraphicallybytheshort-dashedex- Ca Discussion tensionoftheFcurveinFigure8.TheobservedFrangekept R nearthisoptimum.TheF =L′/Lfractionvariedlittlein Weobtainedevidenceforasignificantsafetyversusefficiency Ca L thedataset(Table1)andhadatrivial1.1-foldinfluenceonR trade-offinxylemhydraulicfunction(Figures1and3).This Ca (data not shown). trade-off,togetherwitharequirementforgreaterconstruction Overall,thevariationinA explained72%ofthevariationin cost in cavitation-resistant xylem (Hacke et al. 2001a), may P R (datanotshown).BecauseA isalsolinkedtocavitation explainwhyangiospermxylemisusuallynotmoreresistant Ca P pressure(Figure7A),itprovidesabasisforthesafetyversus thanrequiredbythenormalnegativepressurerangeaspecies efficiencytrade-off(Figures1and3):lowA mayberequired experiences.Thedatareinforcedthepitareahypothesiswhile P for more negative cavitation pressure, and it also results in contradicting the pit resistance hypothesis as an explana- greater xylem resistivity. The effect of A on resistivity was tion for this trade-off. Increasing safety from cavitation was P throughitslinktovesselsurfacearea,A (Figure7A),which strongly associated with decreasing pit area per vessel (Fig- V resultedfromthelimitedrangeofF (Figure7B).TheA in ure 7A, r2 = 0.77), but not with increasing pit area resis- P V turnwasrelatedtovesselDandLandtheirrespectivedeclines tance(Figure6).Meanpitmembraneporosityapparentlydoes with increasingly negative cavitation pressure (Figure 4). not correlate with cavitation pressure as previously modeled As Equation 6 indicates, L versus D scaling is a complex (SperryandHacke2004).Ifair-seedingoccursatthelargest functionofseveralvariables.However,becausethetermsbe- membrane pore per vessel, this limiting pore may be quite TREE PHYSIOLOGY ONLINE at http://heronpublishing.com 698 HACKE, SPERRY, WHEELER AND CASTRO pervesselandhenceitssusceptibilitytoair-seeding.Alimited pitareaalsolimitsthevesselsurfacearea(Figure7A)which translatesintoalimitonvesseldiameterandlength(Figure4) and hence its resistivity (Figure 3B). Intheory,itisnotnecessaryforpitareatolimitvesselsur- faceareaifthefractionofthevesselwallthatispitted(thepit fraction,F )canbecomeinfinitelysmall.Ifthatwerepossible, P asmallpitareaforsafetycouldresideinalargeandwideves- selforefficiency.Accordingly,acorollaryofthepitareahy- pothesis is that F should be small. This was generally the P case,withameanF of6.3±0.9%(Figure7B),withfourspe- P cies below 2% (Figure 7B). However, none were below the 0.4% extreme for L. tridentata. In the Rosaceae-dominated datasetof Wheeleretal.(2005), there wasasignificantde- creaseinF withsafetyfromcavitation,whichwouldhelpto P minimize the loss of conducting efficiency. However, this Figure 8. Sensitivity of vessel area resistivity (R ) to changes in Ca seeminglyadaptivetrendwasnotsupportedbytheinclusion Equation5variables(A ,F,r andF )relativetotheirmeanvalues. P P P ofmorediversespecies.Oneimportantdisadvantageofalow VariableF inEquation5isnotshownbecauseithasminimalimpor- L pitfractionisamorerigidlyaxialflowpathwithlessability tance. Each parameter curve shows the R calculated from Equa- Ca tion 5 for the full range of that parameter with the other variables forwatertoflowlaterallytocircumventwoundsortoprovide constantattheirmeanvalues.ThedottedcurveforFextendsbeyond flexibility in distribution of resources from root to crown theactualFrangeinthedataset(solidportionofcurve)toemphasize sections (Orianset al. 2004). thatthereisanoptimalFthatminimizesRCa.Abbreviations:AP=to- Variationinthesafetyversusefficiencytrade-offatthexy- tal inter-vessel pit membrane surface area of vessel; F = lumen to lemtissuelevel(Figure3A)resultedfromavarietyofsources, end-wallresistivityratio;r =pitmembranearearesistance;F =pit P P beginningwithvariationintheproposedcause-and-effectre- fraction;andF =lengthbetweenvesselend-walltovessellengthra- L tio. lationshipbetweenpitareapervesselandthecavitationpres- sure(Figure7A).Althoughthisrelationshipwasstrong(r2= 0.77),therewasstillconsiderablevariationthatmaybemore rare. Some support for this comes from observations of pit thanjustmeasurementerror.Amongspecies,thosewithmore membraneswheremostofthemembraneporesaretoosmall pitareapervesselforthesamemaximumporesize(e.g.,CG, toobserve,andporesofair-seedingsizearerelativelyfewand QGinFigure7A)havethepotentialtobemoreefficientwith far-between (Sperry andTyree1988,Sano2004). the same safety from cavitation. There was also variation in Thepitareahypothesisexplainstheobservedsafetyversus other aspects of vessel structure that may not be causally efficiencytrade-off(Figure3)asfollows.Toachieveagiven linkedtocavitationsafety,ofwhichr andF weremostcon- P P safetyfromcavitation,thepitareapervesselmustbelimited, sequentialforresistivityatthevessellevel(Figure8).Scaling becausethislimitsthemeansizeofthelargestmembranepore tothetissuelevel,thevariationinthexylem/vesselarearatio (Figure3C)createsfurtherflexibilityintheR versussafety Xa relationship. With all of these intermediate steps between safetyandefficiency,itfollowsthatthetrade-offwillbestatis- ticallynoisyandnonexistentinmorelimiteddatasets(Hacke and Sperry 2001,Jacobsenet al. 2005). Ourr estimatesshowedtremendousvariation,from39to P 2040MPasm–1(Figure6).Doubtless,someofthisvariation resultedfromtheimpreciseandindirectmethodusedtoesti- mate r , with standard errors averaging 33% of the mean P value.Pitresistancesofthismagnitudeshouldbeover99%de- termined by the pit membrane (versus aperture resistance), corresponding to a prevailing membrane pore diameter be- tween3and8nm(Wheeleretal.2005).Thisporesizeissimi- lartotheaveragesizerangeestimatedexperimentallyinsome plants (Shane et al. 2000, Choat et al. 2003, 2004) lending somecredencetoourestimates,althoughsimilarexperiments ontwochaparralspeciesfoundlargerporesizes(Jarbeauetal. 1995). Figure9.Scalingofvessellength(L)withdiameter(D).Slopeofthe log–logplotwas1.48asindicatedfromEquation6whentheother Scaling of vesselresistivitiesand dimensions equationparametersdonotvarywithD.Speciessymbolsaregivenin Tables 1 and 2. TherelativelytightscalingbetweenR andR componentsof L W TREE PHYSIOLOGY VOLUME 26, 2006
Description: