ebook img

Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics PDF

476 Pages·2009·6.241 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics

Theoretical and Mathematical Physics The series founded in 1975 and formerly (until 2005) entitled Texts and Monographs in Physics (TMP) publishes high-level monographs in theoretical and mathematical physics. The change of title to Theoretical and Mathematical Physics (TMP) signals thattheseriesisasuitablepublicationplatformforboththemathematicalandthethe- oretical physicist. The wider scope of the series is reflected by the composition of the editorialboard,comprisingbothphysicistsandmathematicians. Thebooks,writteninadidacticstyleandcontainingacertainamountofelementary background material, bridge the gap between advanced textbooks and research mono- graphs. They can thus serve as basis for advanced studies, not only for lectures and seminarsatgraduatelevel,butalsoforscientistsenteringafieldofresearch. EditorialBoard W.Beiglböck,InstituteofAppliedMathematics,UniversityofHeidelberg,Germany J.-P.Eckmann,DepartmentofTheoreticalPhysics,UniversityofGeneva,Switzerland H.Grosse,InstituteofTheoreticalPhysics,UniversityofVienna,Austria M.Loss,SchoolofMathematics,GeorgiaInstituteofTechnology,Atlanta,GA,USA S.Smirnov,MathematicsSection,UniversityofGeneva,Switzerland L.Takhtajan,DepartmentofMathematics,StonyBrookUniversity,NY,USA J.Yngvason,InstituteofTheoreticalPhysics,UniversityofVienna,Austria Errico Presutti Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics With23Figures ProfessorErricoPresutti DipartimentodiMatematica UniversitàdiRomaTorVergata ViadellaRicercaScientifica1 00133Roma Italy [email protected] ISBN978-3-540-73304-1 e-ISBN978-3-540-73305-8 DOI10.1007/978-3-540-73305-8 TheoreticalandMathematicalPhysicsISSN1864-5879 LibraryofCongressControlNumber:2008933708 MathematicsSubjectClassification(2000):82B26,49Q20,74A15 ©2009SpringerBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Preface IbeganthisbookabouteightyearsagoafterAntonioDeSimone,StephanLuckhaus and Stefan Müller asked me to give a series of lectures on statisticalmechanicsat theMaxPlanckInstituteinLeipzig.Iwrotesomenotesandaftermanyattemptsto makethemmorereadableabookfinallycameout. Thewayacontinuumdescriptionemergesfromatomisticmodelsisanintriguing andfascinatingsubject,whichisbehindmostofmyscientificlife,inparticularthe analysis of large scale phenomena in statistical mechanics and their mathematical formulation in terms of thermodynamic and hydrodynamic limits. The theory has remarkably progressed in the last decades with contributions from many different areasofmathematicsandphysics,andwhenaskedtogiveinLeipziganoverview ofthestateoftheartIacceptedwithgreatpleasure. Thereisthereversedirectionaswell,wherestartingfromacontinuumdescrip- tion after successive blow-ups we find microstructures and the prodromes of an underlying microscopic world. Even though the two directions from microscopics tomacroscopicsandviceversaareinprinciplesymmetric,mathematicaltechniques andideashaveproceededquiteseparately.Idiscoveredduringmylecturesthatthere wasagreatinterestintheaudience,whosebackgroundwasmostlyinanalysisand continuummechanics,tolearnmethodsandproceduresofstatisticalmechanics.At the same time it became clear to me that notions and theories developed in con- tinuum mechanics and PDEs had direct implications on my research in statistical mechanics and, to state it succinctly, I felt excited by the idea of building bridges betweenthetwoareas,andthisbookiscertainlypartofsuchefforts.Sincethebook is meant for both communities, it is written with the presumption that the readers may not be expert on all topics; thus the analysis starts from the beginning with parts which are rather elementary and open to younger researchers entering in the field. Statistical mechanics is exemplified in Part I of the book in the context of theIsingmodel,toavoidtechnicalproblemsaboutunboundednessofthevariables. PartIIisdevotedtothemesoscopictheory,whichispresentedbystudyinganon- local version of the classical scalar Ginzburg–Landau functional, namely the L–P freeenergyfunctionalintroducedbyLebowitzandPenroseintheiranalysisofKac potentials.PartIIIismorespecialistic;itshowshowvariationalmethodscharacter- istic of the mesoscopictheory can be used to implementthe Pirogov–Sinaitheory ofphasetransitionsinlatticeandcontinuummodelswithKacpotentials. Thechoiceofworkingonparticularmodels(Ising,theL–Pfunctional)reflects the didactic purposes of the presentation as well as the taste of the author. I have usedpartsofthebookforlecturesinschoolsandfortheses.Thevarioustopicscan be easily singled out to be used for courses or lectures as I have tried to make the partsnottoostronglycorrelated.Chapter1isanintroductionessentiallybasedon some survey lectures I gave in the last years, and it hopefully gives a first idea of flavorandcontentofthebook,withoutenteringintotoomanydetails. ErricoPresutti, ScalingLimitsinStatisticalMechanicsandMicrostructuresinContinuum v Mechanics,©Springer2009 vi Preface PartIisaboutthestatisticalmechanicsoftheIsingmodel.Besidesthebasicel- ementsofthetheoryIhavealsoincludedamoreadvancedpartonthestructureof theDLR(Dobrushin,LanfordandRuelle)measuresasacorollaryoftheRohlinthe- oryofconditionalprobabilitiesforLebesguemeasures,whichisexplainedinsome detail.Thisisaverybeautifulandinstructivepieceofmathematics;ithasbeenfun- damentalinmyeducation,andforthisreasonIamfondofitandfeltthatIhadto insertitinthebook.UsingthetheoryofDLRmeasuresasatechnicaltool,Ihave thenshownhowtheBoltzmannhypothesisthattheentropyisproportionaltothelog ofthenumberofstatesallowsonetoderivethethermodynamicpotentials.Withthe help of DLR theory, it is possible to implement Cramer’s large deviation methods to prove the existence of the thermodynamic potentials. This is not the traditional wayfollowedinstatisticalmechanics,butithastheadvantagetounderlineconnec- tionswithotherfieldslikeprobabilityandinformationtheory.AllthisisinChap.2. With Chap. 3 begins the analysis of phase transitions. Still, in the context of the IsingmodelIdiscussherethebasictheoremsaboutexistenceandnon-existenceof phasetransitions,inparticularthe“Peierlsargument”andthe“Dobrushinunique- ness theorem,” which have fundamental importance in the whole book. Chapter 4 isaboutmeanfieldandKacpotentials;herescalings,coarsegrainingandfreeen- ergyfunctionalsappearforthefirsttime:thisisthebeginningofthebridgetowards mesoscopic and continuum theories. Chapter 5 is about stochastic dynamics; it is in a sense a detourfrom themain line,but dynamicsenters toomuch intothe mi- croscopic and macroscopic theories that I could not leave it completely out of the book. To give a flavor of the research in this field I have presented a derivation of the macroscopic limit evolution for Glauber dynamics with Kac potentials, but Ihavealsoinsertedastillelementarypartwherestochasticitypersistsinthelimit, discussingspinodaldecompositionandtunnelingforthemeanfieldinteraction. Part II is devoted to the mesoscopic theory. For readers whose main interest is in continuum mechanics this could be where to start the book with a “smooth in- troductiontowardsstatisticalmechanics.”Thepresentationisinfactself-contained; motivationsforthechoiceofthefreeenergyfunctionalscomefromstatisticalme- chanics,butifthereaderacceptsthefunctionalsasprimitivenotions,thenreferences toPartIarenotnecessary.Chapter6startswithaderivationofthethermodynamic potentials,which,inthecontextofthemesoscopictheory,amountstothestudyof somevariationalproblemswithconstraints.TheanalysisparallelstheoneinChap.2 fortheIsingmodelanditiscertainlyinstructivetoseethetwoinperspective.Ithen considerdynamicsstudyinganon-localversionoftheAllen–Cahnequationrelated totheL–Pfreeenergyfunctional.Asinreaction–diffusionequations,propertieslike the“BarrierLemma”andtheComparisonTheoremareproved.Theyarethenused to study “large deviations” which, in the mesoscopic theory, refer to estimates of thefreeenergycostofexcursionsawayfromequilibrium.Herecontoursareintro- ducedandPeierlsestimatesareproved,inanalogywiththecorrespondingnotions andresultsintheIsingmodel.Asmentionedbefore,thischaptercouldbeseenas anintroductiontostatisticalmechanicsandPartIcouldbereadrightafterthis.In Chap. 7 a first application of large deviation estimates are presented by studying surfacetensionandWulffproblemsfortheL–Pfunctional.Thebasicnotionshere Preface vii areGammaconvergenceandgeometricmeasuretheory,whichinfactplayafunda- mentalrole;yetsomeoftheirbasictheoremsarehererecalledwithoutproofs.Inthe originalplanofthebookIhadinmindtoinsertinPartIIIthestatisticalmechanics analogueinthecontextoftheLMPparticlemodelintroducedbyLebowitz,Mazel andPresuttitostudyphasetransitionsinthecontinuum,butthebookwasalready toolongandIgaveup.Chapter8concludestheanalysisofthesurfacetensionfor theL–Pfreeenergyfunctionalwiththestudyoftheshapeoftheinterface(instan- ton)intheonedimensionalcase.Theinstantonistheminimizerofthefreeenergy overprofilesconstrainedtoapproachtheplusandminusequilibriumvaluesatplus andminusinfinity,itisthereforeablowupoftheinterfacebetweenthetwoequi- librium phases. Existence and properties of the instanton including the dynamical ∞ onesareprovedinthischapter;inparticular,spectralgapestimatesinaL setting usinganextensionoftheDobrushinuniquenesstheoryofChap.3,whichinvolves Vaserstein distance and couplings. I had also planned a chapter about motion by curvaturebutdroppeditforreasonsofspace(maybenexttime...). PartIIIismorespecialistic,andithasbeenwrittenwithseveralaims.Onewasto showhowideasandmethodsofthemesoscopictheorycanfindapplicationsinsta- tisticalmechanics.Chapter9showsthatthelargedeviationestimatesofChap.6for theL–PfunctionalcanbeusedtoprovethePeierlsestimatesintheIsingmodelwith ferromagneticKacpotentialsandhencetheoccurrenceofphasetransitionsind≥2 dimensions.Iliketheresult,becauseitgivesanexampleofthepowerofKacideasin implementingthevanderWaalstheoryofliquid–vaporphasetransitions.Thecare- fulanalysisoftheL–PfunctionalinPartIIallowsonetocarryouttheKacprogram withoutactuallytakingthescalinglimitasγ →0(rangeoftheinteractiontoinfin- ity)anditshowsthatthemeanfieldphasediagramisagoodapproximationofthe truephasediagramifγ issmall.Coarsegraining,blockspins,effectivehamiltonian, andrenormalizationgroupideasappearnaturallyatthisstage.ForbrevityIdonot discuss the specific structure of DLR measures also because they are examined in Chaps.11and12inthemorecomplexcontextoftheLMPmodel.Theanalysisof the Ising model is made simple by the spin flip symmetry, which maps the minus and plus phases one into the other. The Pirogov–Sinai theory is an important step in statistical mechanics which provides methods for deriving Peierls estimates on contours when the symmetry is absent. The original theory was designed to study perturbationsofthegroundstatesatsmallpositivetemperaturesandmypurposein the bookis to discuss howthe theory can be adaptedto study perturbationsof the minimizersofthefreeenergyfunctionalatsmallγ.Insteadofaddingtermstothe IsinghamiltoniantobreakthespinflipsymmetryIhavethoughtitmoreinformative toconsidertheLMPparticlemodel.ThisisasystemofpointparticlesinRd which interact via Kac potentials and which in its mean field approximation has a phase transitionintoaplusanda minusstatewithdistinctparticledensities.Thereis no symmetrybetweenthetwophasesandtheanalysisofthesmallγ perturbationsof theminimizersrequirestheuseofthePirogov–Sinaitheory,whichispresentedin alldetailinChaps.10and11.InChapter12Ihaveaddedacharacterizationofthe DLRmeasuresfortheLMPmodelwhichisnotintheexistingliterature.Forreasons of space I have dropped the derivation of the Gibbs phase rule in LMP, for which viii Preface Irefertotheliterature.AttheendofPartsI,IIandIIIthereareshortsectionswith referencesandnotes.Inthesubjectindexthereaderwillfindalistofthemostused symbols. EventhoughIappearastheauthorofthebookIamcertainlynottheonlyone. Allthisistheoutcomeofmanydiscussionswithfriendsandcolleagues,andparts are taken from lectures and then modified with the help and the comments of the audience.Ihavejusttriedtoreorganizeallthat,andtheresultthereforeisnotonly mine. In particular, the program to study Kac potentials keeping the scaling para- meterγ fixedwasoriginallyconceivedandthencarriedoutwithMarzioCassandro towhomIamespeciallyindebted.Dynamicsanditsmacroscopiclimitsareinstead mostlyrelatedtomyworks withAnnaDeMasi whoalsohelpedmealotinwrit- ingthisbook.GiovanniBellettiniexplainedtomesomeofthefascinatingideasof DeGiorgiandhelpedmetoapproachthesubjectfromthesideofthemacroscopic theory. The influence of the Moscow school is evident in the book and more generally in the way mathematical physics looks today, which is, I believe, largely due to thecontributionsoftheSovietschoolandthisobviouslyreflectsinthebookwhere thenamesofDobrushinandSinaiarerecurrent.Ilearnedalotfromthemandnot only mathematics. There are topics which are not yet ready, in particular a whole big chapter about elastic bodies where there are some intriguing ideas of Stephan Luckhauswhichwearetryingtodevelop.ButthisisforthefutureandIwouldlike toconcludethisprefacebymentioningJoelLebowitzwhohasbeenformeateacher andafriendandifthereissomethinggoodinthisbookthecreditiscertainlyhis. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Themacroscopictheory . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Themesoscopictheory . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Themicroscopictheory . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Kacpotentialsandthemesoscopiclimit. . . . . . . . . . . . . . . 10 1.5 Notesforthereader . . . . . . . . . . . . . . . . . . . . . . . . . 12 PartI StatisticalMechanicsofIsingsystems 2 ThermodynamiclimitintheIsingmodel . . . . . . . . . . . . . . . . 17 2.1 FinitevolumeGibbsmeasures . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Spinconfigurations,phasespace . . . . . . . . . . . . . . 18 2.1.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3 Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.4 FinitevolumeGibbsmeasures. . . . . . . . . . . . . . . . 21 2.1.5 AconsistencypropertyofGibbsmeasures . . . . . . . . . 23 2.1.6 Randomboundaryconditions . . . . . . . . . . . . . . . . 25 2.1.7 StructureoffinitevolumeGibbsmeasures . . . . . . . . . 27 2.2 ThermodynamiclimitandDLRmeasures . . . . . . . . . . . . . . 28 2.2.1 DLRmeasures . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 ThermodynamiclimitsofGibbsmeasures . . . . . . . . . 31 2.2.3 PurestatesandextremalDLRmeasures . . . . . . . . . . 33 2.2.4 SimplicialstructureofDLRmeasures. . . . . . . . . . . . 35 2.2.5 Sigmaalgebraatinfinity . . . . . . . . . . . . . . . . . . . 36 2.2.6 Purephases,phasetransitions . . . . . . . . . . . . . . . . 38 2.2.7 Ergodicdecomposition . . . . . . . . . . . . . . . . . . . 39 2.3 Boltzmannhypothesis,entropyandpressure . . . . . . . . . . . . 42 2.3.1 Anexamplefrominformationtheory . . . . . . . . . . . . 42 2.3.2 Boltzmannhypothesis . . . . . . . . . . . . . . . . . . . . 43 2.3.3 Thermodynamiclimitofthepressure . . . . . . . . . . . . 48 ix x Contents 2.3.4 Thermodynamiclimitoftheentropy . . . . . . . . . . . . 50 2.3.5 Equivalenceofensembles . . . . . . . . . . . . . . . . . . 54 2.3.6 Propertiesofconvexfunctions. . . . . . . . . . . . . . . . 55 2.3.7 ConcavityoftheBoltzmannentropy . . . . . . . . . . . . 56 2.3.8 Variationalprinciplesandequivalenceofensembles . . . . 61 2.3.9 Avariationalprincipleformeasures. . . . . . . . . . . . . 64 2.4 ThermodynamicsandDLRmeasures . . . . . . . . . . . . . . . . 67 2.4.1 Canonicalensembleandfreeenergy . . . . . . . . . . . . 67 2.4.2 Tangentfunctionalstothepressure . . . . . . . . . . . . . 71 2.4.3 Largedeviations . . . . . . . . . . . . . . . . . . . . . . . 72 3 ThephasediagramofIsingsystems . . . . . . . . . . . . . . . . . . . 75 3.1 Generalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.1.1 Absenceofphasetransitionsinonedimensions . . . . . . 76 3.1.2 Phasetransitionsatlowtemperatures . . . . . . . . . . . . 78 3.1.3 Absenceofphasetransitionsathightemperatures . . . . . 83 3.2 Dobrushinuniquenesstheory.I.Vasersteindistance . . . . . . . . 88 3.2.1 CouplingsandVasersteindistance. . . . . . . . . . . . . . 88 3.2.2 TheDobrushinmethodforconstructingcouplings . . . . . 90 3.2.3 Totalvariationdistance . . . . . . . . . . . . . . . . . . . 93 3.2.4 Equationsforthefirstmoments . . . . . . . . . . . . . . . 95 3.2.5 DecaypropertiesoftheGreenfunction . . . . . . . . . . . 96 4 Meanfield,KacpotentialsandtheLebowitz–Penroselimit . . . . . . 99 4.1 Themeanfieldmodel . . . . . . . . . . . . . . . . . . . . . . . . 100 4.1.1 Thefinitevolume,meanfieldfreeenergy . . . . . . . . . . 100 4.1.2 Theinfinitevolumemeanfieldfreeenergy . . . . . . . . . 101 4.1.3 TheMaxwellequalarealaw . . . . . . . . . . . . . . . . . 103 4.1.4 Themeanfieldpressure . . . . . . . . . . . . . . . . . . . 105 4.1.5 Thermodynamicsofmeanfield . . . . . . . . . . . . . . . 105 4.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2 Kacpotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 TheLebowitz–Penroselimit . . . . . . . . . . . . . . . . . 107 4.2.2 Blockspins,coarsegraining . . . . . . . . . . . . . . . . . 109 4.2.3 VariationalproblemsandtheL–Pfunctional . . . . . . . . 112 4.2.4 TheL–Pfunctionalasalargedeviationratefunction . . . . 114 4.2.5 ProofofTheorem4.2.2.1 . . . . . . . . . . . . . . . . . . 115 4.2.6 Summaryandfinalcomments . . . . . . . . . . . . . . . . 117 5 StochasticDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1 TheGlaubersemigroup . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Spinflipdynamics . . . . . . . . . . . . . . . . . . . . . . 119 5.1.2 Invariantmeasures . . . . . . . . . . . . . . . . . . . . . . 121 5.1.3 Glauberspinfliprates . . . . . . . . . . . . . . . . . . . . 122 5.1.4 Meanfielddynamics . . . . . . . . . . . . . . . . . . . . . 124 5.1.5 Scalinglimitinmeanfielddynamics . . . . . . . . . . . . 126 Contents xi 5.1.6 LimitevolutionofdynamicswithKacpotentials . . . . . . 127 5.2 Markovprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.1 ThespinflipMarkovchains . . . . . . . . . . . . . . . . . 130 5.2.2 ThespinflipMarkovprocess . . . . . . . . . . . . . . . . 131 5.2.3 Poissonprocessesandexponentialtimes . . . . . . . . . . 133 5.2.4 Realizationsofthemeanfieldprocess. . . . . . . . . . . . 137 5.3 Persistenceofstochasticityinthemacroscopiclimit . . . . . . . . 137 5.3.1 Spinodaldecomposition . . . . . . . . . . . . . . . . . . . 137 5.3.2 Largedeviationsinthemeanfielddynamics . . . . . . . . 142 5.3.3 Ratefunctionoflargedeviations . . . . . . . . . . . . . . 143 5.3.4 Costfunctionalandoptimalcostproblems . . . . . . . . . 146 5.4 ComplementstoSect.5.3 . . . . . . . . . . . . . . . . . . . . . . 149 5.4.1 Selfsimilargrowth. . . . . . . . . . . . . . . . . . . . . . 149 5.4.2 Proofof(5.3.1.2) . . . . . . . . . . . . . . . . . . . . . . 152 5.5 NotesandreferencetoPartI. . . . . . . . . . . . . . . . . . . . . 153 PartII MesoscopicTheory,non-localfunctionals 6 Non-local,freeenergyfunctionals . . . . . . . . . . . . . . . . . . . . 157 6.1 Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.1.1 Thebasicaxioms . . . . . . . . . . . . . . . . . . . . . . 158 6.1.2 Example1.TheGinzburg–Landaufunctional. . . . . . . . 159 6.1.3 Example2.TheL–Pfunctional . . . . . . . . . . . . . . . 160 6.1.4 GeneralizationsoftheL–Pfunctional . . . . . . . . . . . . 163 6.1.5 Example3.TheLMPmodel. . . . . . . . . . . . . . . . . 165 6.1.6 Thermodynamicpotentials . . . . . . . . . . . . . . . . . 165 6.2 PropertiesoftheL–Pfreeenergyfunctional . . . . . . . . . . . . 168 6.2.1 Positivityandlowersemi-continuity . . . . . . . . . . . . 169 6.2.2 Gradientflows,thenon-localL–Pevolution . . . . . . . . 170 6.2.3 Partialdynamics . . . . . . . . . . . . . . . . . . . . . . . 171 6.2.4 Localmeanfieldequations . . . . . . . . . . . . . . . . . 172 6.2.5 Freeenergydissipationforpartialdynamics . . . . . . . . 173 6.2.6 Limitpointsoforbitsforpartialdynamics . . . . . . . . . 174 6.2.7 BarrierLemma . . . . . . . . . . . . . . . . . . . . . . . . 175 6.2.8 Freeenergydissipationininfinitevolumedynamics . . . . 176 6.2.9 Limitpointsoforbitsininfinitevolumedynamics . . . . . 177 6.2.10 ComparisonTheorem . . . . . . . . . . . . . . . . . . . . 178 6.3 Localequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6.3.1 Adefinitionoflocalequilibrium . . . . . . . . . . . . . . 182 6.3.2 Timeinvarianceoflocalequilibriumensembles . . . . . . 184 6.3.3 Minimizationoflocalequilibriumprofiles . . . . . . . . . 186 6.4 Largedeviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.4.1 Themulti-canonicalconstraint . . . . . . . . . . . . . . . 188 6.4.2 Extensivebounds . . . . . . . . . . . . . . . . . . . . . . 189 6.4.3 TopologicalpropertiesofD((cid:3))-sets . . . . . . . . . . . . . 191 6.4.4 Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.