ebook img

Scale Invariance and Beyond: Les Houches Workshop, March 10–14, 1997 PDF

291 Pages·1997·11.469 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Scale Invariance and Beyond: Les Houches Workshop, March 10–14, 1997

SCALEINVARIANCE AND BEYOND Les Houches Workshop, March 10-14, 1997 Editors B. DUBRULLE, F. GRANER and D. SORNETIE EDP Sciences 7, avenue du Hoggar Pare d'Activites de Courtaba:uf, B.P. 112 91944 Les Ulis cedex A, France Springer-Verlag Berlin Heidelberg GmbH Suite 81 875 Massachusetts Avenue C~ridg~MA02139, USA Centre de Physique des Houches Books already published in this series 1 Porous Silicon Science and Technology Jean-Claude VIAL and Jacques DERRIEN, Eds. 1995 2 Nonlinear Excitations in Biomolecules Michel PEYRARD, Ed. 1995 3 Beyond Quasicrystals Fran~oise AXEL and Denis ORAT lAS, Eds. 1995 4 Quantum Mechanical Simulation Methods for Studying Biological Systems Dominique BICOUT and Martin FIELD, Eds. 1996 5 New Tools in Turbulence Modelling Olivier METAIS and Joel FERZIOER, Eds. 1997 6 Catalysis by Metals Albert Jean RENOUPREZ and Herve JOBIC, Eds. 1997 Book series coordinated by Michele LEDUC Editors of "Scale Invariance and Beyond" (N0 7) B. Dubrulle, Service d'Astrophysique, L'Orme des Merisiers, 709, 91191 Gif-sur-Yvette cedex, France F. Graner, Laboratoire de Spectrometrie Physique, B.P. 87, 38402 Saint-Martin-d'Heres cedex, France D. Somette, Laboratoire de Physique de la Matiere Condensle, CNRS et Universitl de Nice -Sophia Antipolis, 06108 Nice, France ISBN 978-3-540-64000-4 ISBN 978-3-662-09799-1 (eBook) DOI 10.1007/978-3-662-09799-1 This wolk is subject to copyright. All rights are reserved, whether the whole or put of the material is concemed, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad casting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the French and Gennan Copyright laws of March Il, 1957 and September 9, 1965, respectively. Violations fall under the prosecution act of the French and German Copyright Laws. @ Springer-Verlag Berlin Heidelberg 1997 Originally published by Springer-Verlag Berlin Heidelberg New York in 1997 AUTHORS Ameodo A., Centre de Recherche Paul Pascal, avenue Schweitzer, 33600 Pessac, France Audit B., Centre de Recherche Paul Pascal, avenue Schweitzer, 33600 Pessac, France Bacry E., Centre de Mathematiques Appliquees, Ecole Polytechnique, 91128 Palaiseau, France Biferale L., University of Rome "Tor Vergata", Department of Physics and INFN, Via della Ricerca Scientifica 1, 00133 Rome, Italy Bouchaud J.-P., Science & Finance, 109-111 rue Victor Hugo, 92532 Levallois, France Bouchaud J.-P., Service de Physique de l'Etat Condense, Centre d'Etudes de Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette cedex, France Brechet Y., L.T.P.C.M., B.P. 75, I.N.P. Grenoble, 38402 Saint-Martin-d'Heres, France Butler S.L., Department of Physics, University of Toronto, Toronto, Ontario, Canada, M5S 1A7 a Castaing B., Centre de Recherches sur les Tres Basses Temperatures, Associe l'Universite Joseph Fourier, CNRS, B.P. 166, 38042 Grenoble cedex 9, France Chatagny R., Group of Parallel Computing, CUI, University of Geneva, 24 rue du General Dufour, 1211 Geneva 4, Switzerland Chopard B., Group of Parallel Computing, CUI, University of Geneva, 24 rue du General Dufour, 1211 Geneva 4, Switzerland Cont R., Service de Physique de l'Etat Condense, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, France, and, Science & Finance, 109-111 rue Victor Hugo, 92532 Levallois, France; and Laboratoire de Physique de la Matiere Condensee, URA 190 du CNRS, Universite de Nice, 06108 Nice cedex 2, France Dahmen K.A., Department of Physics, Harvard University, Cambridge, MA 02138, U.S.A. Dubrulle B., CNRS, CEAIDSMIDAPNIA/Service d' Astrophysique, L'Orme des Merisiers 709, 91191 Gif-sur-Yvette, France IV Graner F., CNRS, UMR 5588, Laboratoire de Spectrometrie Physique, Universite Grenoble I - Joseph Fourier, B.P. 87, 38402 Saint-Martin-d'Heres cedex, France Harrington S.T., Center for Polymer Studies and Physics Department, Boston University, Boston, MA 02215, U.S.A. Henriksen R.N., Department of Physics, Queen's University at Kingston, Ontario, K7L 3N6, Canada Hilfer R., ICA-1, Universitlit Stuttgart, 70569 Stuttgart, Germany; and Institut filr Physik, Universitlit Mainz, 55099 Mainz, Germany Knopoff L., Department of Physics and Astronomy and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, U.S.A. Lachieze-Rey M., C.E.-Saclay, 91191 Gif-sur-Yvette, France Lebyodkin M., L.T.P.C.M., B.P. 75, I.N.P. Grenoble, 38402 Saint-Martin-d'Heres, France Manneville S., Centre de Recherche Paul Pascal, avenue Schweitzer, 33600 Pessac, France Marsili M., Institut de Physique Theorique, Universite de Fribourg, 1700 Fribourg, Switzerland Muzy J.F., Centre de Recherche Paul Pascal, avenue Schweitzer, 33600 Pessac, France Nottale L., DAEC, Observatoire de Paris-Meudon, CNRS and Universite Paris VII, 92195 Meudon cedex, France Peltier W.R., Department of Physics, University of Toronto, Toronto, Ontario, Canada, M5S 1A7 Perkovic 0., Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853-2501, U.S.A. Pocheau A., IRPHE, Universite Aix-Marseille I & II, CNRS, Centre de Saint Jerome, Case 252, 13397 Marseille, France Poole P.H., Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada Potters M., Science & Finance, 109-111 rue Victor Hugo, 92532 Levallois, France Roux S.G., Centre de Recherche Paul Pascal, avenue Schweitzer, 33600 Pessac, France Sciortino F., Dipartimento di Fisica, Universita di Roma La Sapienza, 00185 Roma, Italy Sethna J.P., Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853-2501, U.S.A. v AUlHORS Somette D., Laboratoire de Physique de Ia Matiere Condensee, CNRS and Universite de Nice-Sophia Antipolis, Pare Valrose, 06108 Nice, France; and Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095- 1567, U.S.A. Stanley H.E., Center for Polymer Studies and Physics Department, Boston University, Boston, MA 02215, U.S.A. Zajdenweber D., Department of Economics, Paris-X Nanterre University, Paris, France CONTENTS FOREWORD Scale Invariance and Beyond by B. Dubrulle, F. Graner and D. Somette 1. Introduction .. .. .. ...... .. .. ......... ............ .. .. ... ........ .... .... ... ... .. ......... .. .. .. ...... .. . 1 2. Scale Invariance...................................................................................... 2 2.1. Concept............................................................................................ 2 2.1.1. A defmition of scale invariance............................................ 2 2.1.2. Open questions ..................................................................... 3 2.1.3. Analogy with translation invariance..................................... 3 2.1.4. Link with dimensional analysis............................................ 6 2.2. Tools to study scale in variance........................................................ 7 2.2.1. Wavelets............................................................................... 8 2.2.2. Fractional derivative............................................................. 8 2.2.3. Dimensional similarity ......................................................... 8 2.2.4. Stable laws............................................................................ 9 2.2.5. Computation 9f scaling exponents....................................... 10 2.3. Examples.......................................................................................... 10 2.3.1. Condensed matter systems................................................... 11 2.3.2. From cosmology to earthquakes........................................... 12 2.3.3. From biology to finance....................................................... 14 3. Beyond scale invariance ......................................................................... 16 3.1. From scale invariance to scale covariance....................................... 16 3.2. Scale symmetry breaking................................................................. 17 4. Conclusion.............................................................................................. 19 VIII CONTENTS Scale lnvariance Concept LECTURE! Scale Invariance Without Mechanism? by F. Graner 1. Introduction ....... ........... .. .. .. .. .. .. ...... .. .... ..... .. .. .. .... .... ...... .. .. ............. ... .. ... 25 2. Magic in the solar system?...................................................................... 25 2.1. A « log versus rank » plot................................................................ 26 2.2. Explanations of this geometrical progression ....... .. .. .... ..... ... .. .. ... .. .. 27 2.3. Comments........................................................................................ 28 3. Hand-waving symmetry argument.......................................................... 28 3.1. Generic equations............................................................................ 28 3.2. Generic solutions ............................................................................. 29 3.3. Comments........................................................................................ 30 4. Example: the flat, cold disk .................................................................... 30 4.1. Symmetry of the equations .............................................................. 31 4.2. Linear stability analysis ................................................................... 31 4.3. Unstable modes................................................................................ 32 5. Discussion............................................................................................... 33 5 .1. From continuous to discrete scale in variance .. ....... ... .. .. ......... ......... 33 5.2. Warnings.......................................................................................... 34 6. Summary................................................................................................. 35 IX Tools LECTURE2 Scale Invariance and Beyond: What Can We Learn from Wavelet Analysis? by A. Ameodo, B. Audit, E. Bacry, S. Manneville, J.F. Muzy and S.G. Roux 1. From global to local characterization of the regularity of fractal functions.................................................................................. 37 2. Statistical analysis of the regularity of fractal functions: the multifractal formalism...................................................................... 38 3. A thermodynamics of fractal signals based on wavelet analysis............ 39 3.1. Singularity detection and processing with wavelets........................ 39 3.2. The wavelet transform modulus maxima method............................ 40 3.3. The structure function approach versus the WTMM method.......... 41 4. Numerical and experimental applications of the WTMM method......... 41 . 4.1. Fully developed turbulence.............................................................. 42 4.2. DNA sequences................................................................................ 45 5. Further developments and perspectives.................................................. 48 LECTURE3 Fractional Derivatives in Static and Dynamic Scaling by R. Hilfer 1. Introduction ................................................................. ........................... 53 2. Fractional derivatives.............................................................................. 54 3. Scaling in thermodynamics..................................................................... 56 4. Scaling in macroscopic dynamics........................................................... 58 X CONTENTS LECTURE4 Multi-Dimensional Self-Similarity, and Self-Gravitating N-Body Systems by R.N. Henriksen 1. Introduction ... ... . .. ........... .. ... ........... ............. ....... .. ............... .... ... .. .......... 63 2. CH prescription for multi-dimensional self-similarity............................ 65 3. Rescaling symmetries inN-body self-gravitating systems..................... 68 3.1. Stationary example.......................................................................... 68 3.2. Asymptotic self-similarity: speculations.......................................... 69 LECTURES Scaling in Stock Market Data: Stable Laws and Beyond by R. Cont, M. Potters and J.-Ph. Bouchaud 1. Introduction ............................................................................................ 75 2. Statistical description of market data...................................................... 76 3. Scale invariance and stable laws............................................................. 77 4. Beyond scale invariance: truncated Levy flights.................................... 78 5. Correlation and dependence.................................................................... 81 6. Turbulence and finance........................................................................... 82 7. Conclusion ....... .. ..... ......... ... ......... .. .. .. .. ..... .... .. . ........... .. .. .. .. ..... .. ............. 83 Examples Condensed Matter Systems LECTURE6 Hysteresis, Avalanches, and Barkhausen Noise by J.P. Sethna, 0. Perkovic and K.A. Dahmen 1. Introduction .... ... ................ .... .. ..... .. .. .. .......... ....................... ..... ..... .. ..... .. 87 2. The model............................................................................................... 89

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.