University of Warsaw Faculty of Physics Institute of Theoretical Physics Scalar Fields within Warped Extra Dimension Aqeel Ahmed Doctoral Thesis Thesis Advisor: Prof. Bohdan Grzadkowski August 2015 ABSTRACT Inthisthesis,weexploredthreedifferentimplicationsofscalarfieldsinwarpedextradimension. First, scalar fields were employed to dynamically generate singular branes in Randall- • Sundrum (RS)-like models by appropriate profiles — the smooth/thick-branes. In the context of thick-branes, we constructed four different setups: (i) a smooth generalization of RS2 where a scalar field dynamically generates a singular brane allowing symmetric or asymmetric warped geometries on either side of the brane; (ii) a double thick-brane scenario which mimics two positive tension branes and allows to address the hierarchy problem; (iii)aZ symmetrictriplethick-brane; and(iv)adilatonicthick-branescenario. 2 The stability of background solution is verified in all the above mentioned setups. Second, we considered a thick-brane cosmological model with warped fifth-dimension • where dynamics of the 4D universe is driven by time-dependent five-dimensional (5D) background. Different scenarios were found for which the cosmic scale factor a(t,y) and the scalar field φ(t,y) depend non-trivially on time t and fifth-dimension y. Third, we discussed a symmetric 5D model with three D3-branes (IR–UV–IR) where the • Higgs doublet and the other Standard Model (SM) fields are embedded in the bulk. The Z geometric symmetry led to the warped KK-parity for all the bulk fields. Within this 2 setup we investigated the low-energy effective theory for the bulk SM bosonic sector. It turnedoutthatthezero-modescalarsectorcontainsanevenscalarwhichmimicstheSM Higgs boson and a second, stable odd scalar particle which is a dark matter candidate. The model that resulted from the Z -symmetric background geometry resembles the 2 Inert Two Higgs Doublet Model. Implications for dark matter were discussed within this model. i To the memory of my grandfather Khuda-Bakhsh ii CONTENTS Abstract i Acknowledgments v Preface vii 1. Introduction 1 1.1. Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Conventions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. RS models and their generalizations 7 2.1. RS models: a brief review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. RS1: a solution to the hierarchy problem . . . . . . . . . . . . . . . . . 7 2.1.2. RS2: an alternative to compactification . . . . . . . . . . . . . . . . . . 10 2.2. A Z symmetric generalization of RS1: the IR-UV-IR model . . . . . . . . . . . 11 2 2.3. Asymmetric generalization of RS2 . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4. Localization of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. Brane modeling in warped extra dimension 21 3.1. Thick brane generalization of RS1 in modified gravity . . . . . . . . . . . . . . 23 3.1.1. Thick branes with periodic extra dimensions . . . . . . . . . . . . . . . 24 3.1.2. Negative tension brane in modified gravity . . . . . . . . . . . . . . . . 26 3.1.3. Conclusions on thick-brane generalization of the RS1 model . . . . . . . 26 3.2. Modeling branes with scalar fields minimally coupled to gravity . . . . . . . . . 27 3.2.1. Single asymmetric thick-brane model . . . . . . . . . . . . . . . . . . . . 28 3.2.2. Double thick-brane model . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3. Triple Z -symmetric thick-brane model . . . . . . . . . . . . . . . . . . 40 2 iii Contents 3.2.4. Dilatonic thick-brane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.5. Generalized thick-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3. Localization of a scalar field on a thick-brane . . . . . . . . . . . . . . . . . . . 45 3.4. Stability of the background solutions . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.1. Scalar perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2. Vector perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.3. Tensor perturbations and localization of gravity . . . . . . . . . . . . . . 53 3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4. Thick-brane cosmology 57 4.1. Brane-world cosmology: a brief review . . . . . . . . . . . . . . . . . . . . . . . 57 4.2. Thick brane cosmological solutions . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.1. Static thick-brane solutions . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.2. Time-dependent thick-brane solutions . . . . . . . . . . . . . . . . . . . 68 4.2.3. Generalized superpotential method . . . . . . . . . . . . . . . . . . . . . 70 4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5. Warped Higgs dark matter 73 5.1. Warped KK-parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2. SSB in the IR-UV-IR model: the Abelian Higgs mechanism . . . . . . . . . . . 77 5.2.1. SSB by vacuum expectation values of KK modes . . . . . . . . . . . . . 79 5.2.2. SSB by a vacuum expectation value of the 5D Higgs field . . . . . . . . 83 5.3. SM EWSB by a bulk Higgs doublet . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.1. Quantum corrections to scalar masses . . . . . . . . . . . . . . . . . . . 93 5.3.2. Dark matter relic abundance . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6. Summary and conclusions 99 A. Linearized Einstein equations 103 A.1. SVT decomposition of perturbations and gauge choice . . . . . . . . . . . . . . 105 A.2. Scalar perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 A.3. Vector perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.4. Tensor perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 B. SSB in the IR-UV-IR model: real scalar case 111 B.1. SSB by vacuum expectation values of KK modes . . . . . . . . . . . . . . . . . 111 B.2. SSB by a vacuum expectation value of 5D scalar field . . . . . . . . . . . . . . 116 iv ACKNOWLEDGMENTS First and foremost, I thank my advisor Bohdan Grzadkowski, for his invaluable guidance, encouragement and support. I am grateful for his advice and help not just on the technical aspects, but also at the personal level. I am also indebted to him for supporting me to attend many schools and conferences which broadened my horizons about particle physics. I am greatly indebted to my mentors and collaborators, Jack Gunion (UC Davis) and Jose Wudka (UC Riverside). I would like to thank Jack and Jose for their guidance and hospi- tality during my visits at their universities. I greatly benefited from their insightful physics understanding and collaboration. I would like to thank Yun Jiang for his collaboration and introducing me to the world of programming. ThanksarealsoduetoLukaszDulnyforhiscollaboration. Ithankallmyfriends and colleagues at our institute with whom I exchanged many valuable thoughts on physics and non-physics topics, especially Neda Darvishi, Aleksandra Drozd, Mateusz Duch, Mateusz Iskrzynski, Saereh Najjari, Abdur Rehman, Bogumila Swiezewska and Pawel Szczerbiak. I would like to thanks my officemates and colleagues: Subhaditya Bhattacharya, Blazenka Melic (UCRiverside),MarcGillioz,EnnioSalvioni,YuhsinTsai(UCDavis)and,especiallymyfriend Shoaib Munir, for discussions on (and off) physics. I would also like to thank the participants of schools and conferences I have attended, especially Barry Dillon, with whom I had the opportunity to talk and discuss physics. I acknowledge the financial support from the Foundation for Polish Science International PhD Projects Program co-financed by the EU European Regional Development Fund and Na- tionalCentreforPhysics(Pakistan). IamalsogratefultoUCDavis,UCRiverside,NORDITA, Galileo Galilei Institute for Theoretical Physics, and Mainz Institute for Theoretical Physics for their hospitality and partial support during my visits. Last, but not the least, I would like to thanks my family for their love as well as their in- valuable support and encouragement throughout my academic career. Aqeel Ahmed August 2015, Warsaw v “Scientific thought and its creation are the common and shared heritage of mankind.” — Abdus Salam, Nobel Laureate 1979 vi PREFACE Theworkpresentedinthisdissertationisbasedonthefollowingpublications[1,2,3,4,5,6,7]: 1. “Brane modeling in warped extra dimension”, Aqeel Ahmed and Bohdan Grzadkowski, JHEP 1301 (2013) 177, [arXiv:1210.6708]. 2. “Modeling branes in warped extra dimension”, Aqeel Ahmed, Lukasz Dulny and Bohdan Grzadkowski, Acta Phys.Polon. B44 (2013) no. 11, 2381. 3. “Generalized Randall-Sundrum model with a single thick-brane”, Aqeel Ahmed, Lukasz Dulny and Bohdan Grzadkowski, Eur. Phys. J. C 74 (2014) 2862 [arXiv:1312.3577]. 4. “Thick-Brane Cosmology”, Aqeel Ahmed, Bohdan Grzadkowski and Jose Wudka, JHEP 1404 (2014) 061, [arXiv:1312.3576]. 5. “Higgs dark matter from a warped extra dimension – the truncated-inert-doublet model”, Aqeel Ahmed, Bohdan Grzadkowski, John F. Gunion and Yun Jiang, JHEP 1510 (2015) 033, [arXiv:1504.03706]. 6. “Radius stabilization and dark matter with a bulk Higgs in warped extra dimension”, Aqeel Ahmed, Bohdan Grzadkowski, John F. Gunion and Yun Jiang, Acta Phys.Polon. B46 (2015) no. 11, in press, [arXiv:1510.04116]. 7. “Higgs dark matter from a warped extra dimension”, Aqeel Ahmed, Bohdan Grzadkowski, John F. Gunion and Yun Jiang, PoS PLANCK 2015 (2015) 002, [arXiv:1510.05722]. vii
Description: