ebook img

Scalar, axial-vector and tensor resonances from the $ρD^*$, $ω D^*$ interaction in the hidden gauge formalism PDF

0.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Scalar, axial-vector and tensor resonances from the $ρD^*$, $ω D^*$ interaction in the hidden gauge formalism

r w Scalar, axial-vector and tensor resonances from the D , D ∗ ∗ interaction in the hidden gauge formalism R. Molina , H. Nagahiro†, A. Hosaka and E. Oset ∗ ∗∗ ∗ DepartamentodeFísicaTeóricaandIFIC,CentroMixtoUniversidaddeValencia-CSIC,Institutosde ∗ 0 InvestigacióndePaterna,Aptdo.22085,46071Valencia,Spain 1 †DepartmentofPhysics,NaraWomen’sUniversity,Nara630-8506,Japan 0 ResearchCenterforNuclearPhysics(RCNP),OsakaUniversity,Ibaraki,Osaka567-0047,Japan 2 ∗∗ n Abstract. Weapplyaunitaryapproachtogetherwithasetofhidden-gaugeLagrangianstostudythevector-vectorinteraction. a Westudythecaseofther (w )D interactionwithinthemodel.InI=1/2wegetstrongenoughattractiontobindthesystem. J ∗ Concretely,wegetoneresonanceforeachspinJ=0,1,2.ForJ=1and2theseresonancescanbeeasilyidentifiedwiththe 8 D (2460)andD (2640).WhereasthestateforJ=0withmassM 2600MeVisapredictionofthemodel.InI=3/2we ∗ ∗ 1 getarepulsiveinteractionandhencenoexoticdynamicallygenerate∼dstates. Keywords: D,mesons,charm,vectors ] h PACS: 13.75.Lb,12.40.Vv,12.40.Yx,14.40.Cs p - p INTRODUCTION e h [ In this talk, we report several works that combine coupled channel unitarity and hidden-gaugeLagrangiansfor the interaction of vector meson among themselves. These Lagrangianswere introduced by Bando-Kugo-Yamawaki[1] 1 v and combined with unitary techniques related with the Bethe-Salpeter equation, provide a useful tool to generate 8 resonancesorboundstatesiftheinteractionisstrongenough.Thesetechniqueswerefirstlyappliedtostudytherr 0 interaction and the interaction was strong enough to bind the rr system [2]. Thus, two bound states appeared as 0 polesin the second Riemannsheet that could be identified with the f (1270)and the f (1370).The decay of these 2 0 3 resonancesto two or fourpionswasprovidedby a boxor crossed boxdiagramfromtwo r mesonsgoingto pions. . 1 TheseboxdiagramsprovidedawidthcomparablewiththedataquotedatthePDG[3],leadingtosatisfactoryresults 0 onthemass,widthandquantumnumbers,aswellascouplings,andthus,thesedynamicallygeneratedresonancescan 0 be seen as hadronicmolecules.Later worksthatwe quotein the nextSection haveextendedthe modelto study the 1 vector-vectorinteractioninSU(3)andther (w )D system. : ∗ v Inthismanuscriptwe wanttosummarizebrieflytheformalismofthevector-vectorinteraction.Then,wewantto i showthesimplecaseofther (w )D interaction. X ∗ r a FORMALISM:THEVV INTERACTION Within the theorical framework, there are two main ingredients: first, we take the Lagrangians for the interaction of vector mesons among themselves, that come from the hidden gauge formalism of Bando-Kugo-Yamawaki[1]. Second,weintroducethepotentialV obtainedfromtheseLagrangians(projectedins-wave,spinandisospin)inthe BetheSalpeterequation: T =(1ˆ VG) 1V , (1) − − whereGistheloopfunction.Therefore,wearesummingallthediagramscontainingzero,one,two...loopsimplicit in the Bethe Salpeter equation.Finally,we look for polesof the unitaryT matrix in the second Riemannsheet. All thisprocedureiswellexplainedin[2,4].Intheseworks,twomainverticesaretakenintoaccountforthecomputation ofthepotentialV:thefour-vector-contacttermandthethree-vectorvertex,whichareprovidedrespectivelyfromthe Lagrangians: g2 L(c)= Vm Vn Vm Vn Vn Vm Vm Vn , (2) III 2 h − i L(3V)=ig (¶ m Vn ¶ n Vm )Vm Vn . (3) III h − i BymeansofEq.(3),thevectorexchangediagramsinFig.1arecalculated.ThediagraminFig.1d)leadstoarepulsive p-waveinteractionforequalmassesofthevectors[2]andonlytoaminorcomponentofs-waveinthecaseofdifferent masses[4].Thus,thefour-vector-contacttermin Fig.1a)andthet(u)-channelvectorexchangediagramsinFig.1c) areresponsibleforthegenerationofresonancesorboundstatesiftheinteractionisstrongenough. V V V V −→ + V V V a) b) c) d) FIGURE1. TermsoftheLIII Lagrangian: a)fourvector contactterm,Eq.(2);b)three-vectorinteraction,Eq.(3);c)t andu channelsfromvectorexchange;d)schannelforvectorexchange. In order to consider the pseudoscalar-pseudoscalar decay mode, and thus compare properly with the available experimental data for the width, a box diagram is also included, which we show in Fig. 2 for the particular case of the rr system. Crossed box diagrams and box diagramsinvolving anomalouscouplingswere also calculated in [2],buttheyweremuchsmaller,speciallyinthecaseoftheanomalouscoupling,thanthecontributionscomingfrom the box diagramsin Fig. 2 and theywere not consideredin later works[4, 5, 6]. As we are interested in the region closetothetwovectormesonthreshold,thethreemomentaoftheexternalparticlescanbeneglectedcomparedwith the massofthe vectormeson,andthus,we can make ~q/M 0 forexternalparticles, whichconsiderablysimplify | | ∼ the calculation. In Table 1, the eleven states found with this procedure in the work of [4], where the formalism is applied in SU(3), are shown. As one can see in this table, five of them can be identified with data in the PDG: the f (1370), f (1710), f (1270), f (1525)andK (1430).Inthiswork,theintegraloftwo-meson-vectorloopfunction 0 0 2 2′ 2∗ is calculated by means of the dimensional regularization method. This requires the introduction of one parameter, whichisthesubtractionconstant,thatistunedtoreproducethemassofthetensorstates,whereastheotherstatesare predicted.Inordertocalculatetheboxdiagrams,onehastointroducetwoparameters,thecut-off,L ,fortheintegral, andoneparameter,L ,involvedintheformfactorused.Theseparameterswereconsideredtobearound1GeVand b 1.4 GeV respectively in [2] to get reasonable valuesof the f (1370)and f (1270)widths. In the later work of [4], 0 2 thesevaluesofL andL alsoprovideagooddescriptionofthewidthsfortheotherstates,asshowninTable1. b As one can see, the modelin SU(3) providesa gooddescriptionof the propertiesof manyphysicalstates. In the nextsections,wegeneralizethemodeltoSU(4),whereinterestingnewstateswillappear. ρ+ ρ+ ρ+ ρ− ρ+ ρ+ π+ π0 π0 π0 π0 + π+ π+ + π+ π+ π− π0 π0 ρ− ρ− ρ− ρ+ ρ− ρ− FIGURE2. Boxdiagramsforthecaseoftherr interaction. THE r (w ) D SYSTEM ∗ InthissectionwedescribethesimplecaseofthechannelswithC=1andS=0withintheformalismofthevector- vectorinteractionintroducedbyBando-Kugo-Yamawaki[1].Wehaveasetofthreechannels:r D ,w D andD K¯ .In ∗ ∗ s ∗ fact,wewanttofocustheattentiontotheenergyregionaround2500 2600MeV,wherethereareseveralinteresting − resonancesthatcanbe foundinthe PDG.Inviewofthepreviousworksof[2, 4],we hopetofinda bindingenergy of 200 300MeVandthethresholdoftheD K¯ channelisfaraway,concretely,itis200MeVabovether D and s ∗ ∗ w D∼thres−holds.Thus,wesimplifyevenmorethestudytothesetwochannels:r D andw D . ∗ ∗ ∗ TABLE1. Propertiesofthe11dynamicallygeneratedstates:polepositions, massesandwidthsintherealaxesfortwodifferentL (parameterrelatedtothe b formfactorusedinthecalculationoftheboxdiagram[4])comparedwiththe experiment.AllthequantitiesareinunitsofMeV. IG(JPC) Theory PDGdata (Mass,Width) Name Mass Width 0+(0++) (1520,257 396) f0(1370) 1200 1500 200 500 0+(0++) (1720,133−151) f0(1710) 17∼24 7 13∼7 8 0−(1+−) (180−2,49) h1 ± ± 0+(2++) (1275,97−111) f2(1270) 1275.1±1.2 185.0+22..49 0+(2++) (1525,45 51) f (1525) 1525 5 7−3+6 − 2′ ± 5 − 1−(0++) (1777,148 172) a0 1+(1+−) (1703−,188) b1 1−(2++) (1567,47 51) a2(1700)?? − 1/2(0+) (1639,139 162) K 1/2(1+) (1743−,126) K1(1650)0?∗ 1/2(2+) (1431,56 63) K (1430) 1429 1.4 104 4 − 2∗ ± ± Inordertofollowtheprocedureoftheworksof[2,4],theV matrixisstraigthforwardextendedtoSU(4),asitwas doneintheworkof[7]: r 0 + w r + K + D¯ 0  √2 √2 ∗ ∗  Vm = r − −√r 02+√w2 K∗0 D∗−  , (4)  K K¯ 0 f D   ∗− ∗ ∗s−   D 0 D + D + J/y  ∗ ∗ ∗s m wheretheidealmixinghasbeentakenforw ,f andJ/y .Thedetailsofthefullprocedurethatwetrytosummarizein thissectionarewellexplainedin[5].Besidesthefour-vectorcontactdiagrams,wehavetwokindsofvector-exchange diagrams,oneistheexchangeofonelightvectormeson,r orw ,andtheotheroneistheexchangeofaheavyvector meson, D . Of course, the last terms are proportional to k = m2r 0.15, and this gives rise to corrections of the ∗ m2 ∼ order of 10% of the r -exchange terms. Also, the rrw and theDww∗w vertices violate G-parity, whereas the rww vertexviolatesisospin,therefore,wedonothavetheexchangeofonelightvectormesonintheV(r D w D )and ∗ ∗ V(w D w D ) potentials. For this reason, these two terms, where only the four-vectorcontact term→plus the D - ∗ ∗ ∗ exchang→etermcontributes,aresmallercomparedwiththeV(r D r D ),termthatmainlyprovidestheinteraction. ∗ ∗ → AscanbeseeninTable2,thistermisoftheorderof 300MeVinI=1/2.Thismagnitudeisresponsibletobindthe r D systemandcomesmainlyfromther -exchangete−rmofV(r D r D ).Thisminorrelevanceofthew D channel ∗ ∗ ∗ ∗ → appearswhenonecalculatethecouplingsg tooneparticularchannelibymeansoftheresiduesoftheamplitudes[5] i that we show in Table 3. In I =3/2, it is interesting to see that we get a repulsive interactionwithout any possible generatedexoticstates. We getthreestates with I=1/2andJ =0,1 and2 respectively.We havefixedthe valueof m as 1500MeV and we have fine-tuned the subtraction constant a around its natural value of 2 [8, 9], in order to get the position of the D (2460) state at the PDG. Thus, we have chosen the value of a = −1.74. Because of the strong interaction we ge∗2tthree boundstates with practicallyno width exceptbythe small wi−dthprovidedbythe convolutionof the r propagatortotakeintoaccountitsdecayintwopions.But,thelaterinclusionofthep Dboxdiagramallowsustoget some more width comparablewith the data in the PDG as can be seen in Table 4. In orderto calculate the p D-box diagram,twodifferentformfactorsforthevector-two-pseudoscalarvertexareconsidered.Oneisusedintheworksof [2,4],whichisinspiredbytheempiricalformfactorsusedinthestudyofvectormesondecays[10].Theotherone, is an exponentialparametrizationfor an off-shellpion evaluated using QCD sum rules [11] using at the same time the experimentalvalue of the D Dp coupling,gexp [5]. In bothcases we getreasonablevaluesof the width, with ∗ D Dp thepreference,ofcourse,fortheuseofgexp .In∗Table4,thevaluesobtainedforthelastcaseareshown,wherethe D Dp parameterof the exponentialform factor is∗ taken as L =1 GeV. The interesting thing in the calculation of the box diagram,isthatthisboxdiagramonlyhasJ=0and2,therefore,thestatefoundwithJ =1cannotdecaytop Dby meansofthismechanism,whichisthereasonwhywegetasmallwidthof4MeV,comparedwiththeotherstatesfor TABLE2. V(r D r D )forthedifferentspin-isospinchannelsincludingtheexchangeofoneheavy ∗ ∗ vectormeson.Theap→proximateTotalisobtainedatthethresholdofr D . ∗ I J Contact r -exchange D -exchange Total[I(JP)] ∗ ∼ 1/2 0 +5g2 −2Mg2r2(k1+k3)·(k2+k4) −21kMgr22(k1+k4)·(k2+k3) −16g2[1/2(0+)] 1/2 1 +92g2 −2Mg2r2(k1+k3)·(k2+k4) +21kMgr22(k1+k4)·(k2+k3) −14.5g2[1/2(1+)] 1/2 2 −52g2 −2Mg2r2(k1+k3)·(k2+k4) −21kMgr22(k1+k4)·(k2+k3) −23.5g2[1/2(2+)] 3/2 0 −4g2 +Mg2r2(k1+k3)·(k2+k4) +kMgr22(k1+k4)·(k2+k3) +8g2[3/2(0+)] 3/2 1 0 +Mg2r2(k1+k3)·(k2+k4) −kMgr22(k1+k4)·(k2+k3) +8g2[3/2(1+)] 3/2 2 +2g2 +Mg2r2(k1+k3)·(k2+k4) +kMgr22(k1+k4)·(k2+k3) +14g2[3/2(2+)] TABLE3. Modulesofthecouplingsg inunitsof i GeVforthepolesintheJ=0,1,2; I=1/2sector withthechannelr D andw D . ∗ ∗ Channel D (2600) D (2640) D (2460) ∗0 ∗1 ∗2 r D 14.32 14.04 17.89 ∗ w D 0.53 1.40 2.35 ∗ J=0and2.Thus,wefindareasonableexplanationforwhytheD (2640)hasasmallwidth,G <15MeV,whenwe ∗ associatetothisstatethequantumnumbersJP=1+. InTable5weshowtheuncertaintiesrelatedtotheSU(4)breakingduetotheuseoftheparameterg=m /2f in V the Lagrangian. In this table we distinguish three different cases in which we use g2, gg or g2 in the amplitudes D D obtained,seeTable2,withg=mr /2fp andgD=mD /2fD,andfixingthea parametertogetthepolepositionofthe ∗ tensorstate.Thisisalwaysdoneandthereforethismethodprovidesarealisticwayoflookingattheuncertainties.We canseeinthistablethatthechangesinthemassoftheotherstatesarearound20MeV,whichisquitesmall,andeven ifonefixesalphaandlooksfortheuncertaintiesusingg2,gg org2,thenthechangesinthemassarearound70 90 D D − MeV,whicharetypicalinanyhadronmodel. CONCLUSIONS Wehavestudiedther (w )D interactioncombiningcoupledchannelunitarityandthehiddengaugeLagrangiansfor ∗ theinteractionofvectormesons.WefindastronginteractionthatprovidesoneboundstateforeachspinJ=0,1and 2.WecanassignthestateswithJ=1and2totheD (2640)andD (2460)respectively,whereasthestateobtainedfor ∗ ∗2 J=0isapredictionofthemodel:’D (2600)’.Inthisscheme,theD (2460)andtheD (2600)decaytop Dbymeans ∗0 ∗2 ∗0 ofaboxdiagram.However,thisdecayisnotpossibleforJ=1,providinganaturalexplanationonwhy,whereasthis stateisheavierthantheD (2460),itswidthfoundinthePDGisverysmallcomparedtothat,G <15MeV,andthe ∗2 decaytop Dhasnotbeenobservedeither.TheresultsobtainedhereshouldstimulatethesearchformoreDstatesin theregionof2600MeV. TABLE4. Massesandwidths(inunitsofMeV)obtainedinthecase oftheuseofanexponentialformfactorwithL =1GeVcomparedwith theexperiment. IG[JP] Theory PDGdata (Mass,Width) Name Mass Width 1/2+(0+) (2608,61) "D (2600)" ∗0 1/2+(1+) (2620,4) D (2640) 2637 <15 ∗ 1/2+(2+) (2465,40) D (2460) 2460 37 43 ∗ − TABLE 5. Pole positions and subtraction constant obtained for the three different cases, g2, gg and g2, when one fixes the D D massofthepolewithJ=2. Constant&a J=0 J=1 J=2 g2& 1.74 2592 2611 2450 − ggD& 1.53 2571 2587 2450 g2 & −1.39 2551 2565 2450 D − ACKNOWLEDGMENTS This work is partly supported by DGICYT contract number FIS2006-03438. We acknowledge the support of the European Community-Research Infrastructure Integrating Activity Study of Strongly Interacting Matter (acronym HadronPhysics2,GrantAgreementn.227431)undertheSeventhFrameworkProgrammeofEU.A. H.is supported inpartbytheGrantforScientificResearchContractNo.19540297fromtheMinistryofEducation,Culture,Science andTechnology,Japan.H.N.issupportedbytheGrantforScientificResearchNo.18-8661fromJSPS. REFERENCES 1. M.Bando,T.Kugo,S.Uehara,K.YamawakiandT.Yanagida,Phys.Rev.Lett.54,1215(1985).M.Bando,T.Kugoand K.Yamawaki,Phys.Rept.164,217(1988).M.HaradaandK.Yamawaki,Phys.Rept.381,1(2003).U.G.Meissner,Phys. Rept.161,213(1988) 2. R.Molina,D.NicmorusandE.Oset,Phys.Rev.D78,114018(2008) 3. C.Amsleretal.[ParticleDataGroup],Phys.Lett.B667,1(2008) 4. L.S.GengandE.Oset,Phys.Rev.D79,074009(2009).L.S.Geng,E.Oset,R.MolinaandD.Nicmorus,arXiv:0905.0419 [hep-ph] 5. R.Molina,H.Nagahiro,A.HosakaandE.Oset,Phys.Rev.D80,014025(2009) 6. R.MolinaandE.Oset,Phys.Rev.D80,114013(2009) 7. D.GamermannandE.Oset,Phys.Rev.D80,014003(2009) 8. J.A.OllerandU.G.Meissner,Phys.Lett.B500,263(2001) 9. D.Gamermann,E.Oset,D.StrottmanandM.J.VicenteVacas,Phys.Rev.D76,074016(2007) 10. A.I.Titov,B.KampferandB.L.Reznik,Eur.Phys.J.A7,543(2000) 11. F.S.Navarra,M.NielsenandM.E.Bracco,Phys.Rev.D65037502(2002)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.