Scalable methods for optimal control of systems governed by PDEs with random coefficient fields Alen Alexanderian,1 Peng Chen,2 Omar Ghattas,2 No´emi Petra3 Georg Stadler,4 Umberto Villa2 1DepartmentofMathematics NorthCarolinaStateUniversity 2InstituteforComputationalEngineeringandSciences TheUniversityofTexasatAustin 3SchoolofNaturalSciences UniversityofCalifornia,Merced 3CourantInstituteofMathematicalSciences NewYorkUniversity April20,2017 ICESBabuˇskaForum TheUniversityofTexasatAustin Bayesianinversion Experimentaldatay πpost(m|y)∝πlike(y|m)π0(m) Designofexperiments (cid:90) mξin Ψ(cid:2)πpost(m|y;ξ)(cid:3)π(y)dy ξ:experimentaldesign Ψ:designobjective/criterion Optimalcontrol/design underuncertainty (cid:90) e.g.min q(z,m)µ(dm) z From data to decisions under uncertainty Uncertainparameterm MathematicalModel (m,u) = f A QuantityofInterest(QoI) q(m) OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 2/41 Designofexperiments (cid:90) mξin Ψ(cid:2)πpost(m|y;ξ)(cid:3)π(y)dy ξ:experimentaldesign Ψ:designobjective/criterion Optimalcontrol/design underuncertainty (cid:90) e.g.min q(z,m)µ(dm) z From data to decisions under uncertainty Uncertainparameterm prior Bayesianinversion Experimentaldatay posterior πpost(m|y)∝πlike(y|m)π0(m) πlike(y|m)=πnoise(Bu−y) MathematicalModel (m,u) = f A QuantityofInterest(QoI) q(m) OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 2/41 Optimalcontrol/design underuncertainty (cid:90) e.g.min q(z,m)µ(dm) z From data to decisions under uncertainty Uncertainparameterm prior Bayesianinversion Experimentaldatay posterior πpost(m|y)∝πlike(y|m)π0(m) πlike(y|m)=πnoise(Bu−y) experiments MathematicalModel (m,u) = f A QuantityofInterest(QoI) Designofexperiments q(m) mξin(cid:90) Ψ(cid:2)πpost(m|y;ξ)(cid:3)π(y)dy ξ:experimentaldesign Ψ:designobjective/criterion OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 2/41 From data to decisions under uncertainty Uncertainparameterm prior Bayesianinversion Experimentaldatay posterior πpost(m|y)∝πlike(y|m)π0(m) πlike(y|m)=πnoise(Bu−y) experiments MathematicalModel (m,u) = f(;z) zA:=controlfunc·tion QuantityofInterest(QoI) Designofexperiments q(z,m) mξin(cid:90) Ψ(cid:2)πpost(m|y;ξ)(cid:3)π(y)dy ξ:experimentaldesign Ψ:designobjective/criterion Optimalcontrol/design underuncertainty (cid:90) e.g.min q(z,m)µ(dm) z OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 2/41 Example: Groundwater contaminant remediation Source: ReedMaxwell,CSM OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 3/41 Example: Groundwater contaminant remediation Inverse problem Infer (uncertain) soil permeability from (uncertain) measurements of pressure head at wells and from a (uncertain) model of subsurface flow and transport Prediction (or forward) problem Predict (uncertain) evolution of contaminant concentration at municipal wells from(uncertain)permeabilityand(uncertain)subsurfaceflow/transportmodel Optimal experimental design problem Where should new observation wells be placed so that permeability is inferred with the least uncertainty? Optimal design problem Where should new remediation wells be placed so that (uncertain) contaminant concentrations at municipal wells are minimized? Optimal control problem What should the rates of extraction/injection at remediation wells be so that (uncertain) contaminant concentrations at municipal wells are minimized? OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 4/41 Applications of inverse problems in CCGO Antarctic ice sheet flow (+ ocean dynamics) Joint with Patrick Heimbach, Tom Hughes, Tobin Isaac (Georgia Tech), Tom O’Leary-Roseberry, Noemi Petra (UC-Merced), Georg Stadler (NYU), Umberto Villa, Alice Zhu Globalandregionalseismicinversion,jointseismic–EMinversion,inversescattering Joint with Hossein Aghakhani, Nick Alger, Tan Bui, Ben Crestel, David Keyes (KAUST), George Turkiyyah (KAUST), Georg Stadler (NYU), Umberto Villa Global mantle convection Joint with Mike Gurnis (Caltech), Johann Rudi, Georg Stadler (NYU) Poroelastic subsurface flow inversion and management of induced seismicity Joint with Amal Alghamdi, Marc Hesse, Georg Stadler (NYU), Umberto Villa, Karen Willcox (MIT) Turbulent combustion: inference and control Joint with George Biros, Peng Chen, Matthias Heinkenschloss (Rice), Myoungkyu Lee, Bob Moser, Todd Oliver, Chris Simmons, David Sondak, Andrew Stuart (Caltech), Umberto Villa, Karen Willcox (MIT) Reservoir inversion Joint with George Biros, Tan Bui, Clint Dawson, Sam Estes, John Lee, Umberto Villa Soft tissue biomechanical inversion Joshua Chen, Michael Sacks, Umberto Villa OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 5/41 Forward and inverse global mantle convection modeling OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 6/41 Scalable solver (2015 Gordon Bell Prize) OmarGhattas (ICES,UTAustin) Optimalcontrolunderuncertainty Mar24,2017 7/41
Description: