ebook img

Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars PDF

0.44 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars

Mon.Not.R.Astron.Soc.000,1–11(2013) Printed11January2017 (MNLATEXstylefilev2.2) Sc and neutron-capture abundances in Galactic low- and high-α field halo stars(cid:63) C. K. Fishlock1, D. Yong1†, A. I. Karakas1,2, A. Alves-Brito3, J. Mele´ndez4, 7 P. E. Nissen5, C. Kobayashi6, and A. R. Casey7 1 0 1ResearchSchoolofAstronomy&Astrophysics,AustralianNationalUniversity,CanberraACT2611,Australia 2 2MonashCentreforAstrophysics,SchoolofPhysicsandAstronomy,MonashUniversity,VIC3800,Australia 3InstitutodeFisica,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil n 4DepartamentodeAstronomiadoIAG/USP,UniversidadedeSa˜oPaulo,Brazil a 5StellarAstrophysicsCentre,DepartmentofPhysicsandAstronomy,AarhusUniversity,NyMunkegade120,DK-8000AarhusC,Denmark J 6CentreforAstrophysicsResearch,ScienceandTechnologyResearchInstitute,UniversityofHertfordshire,AL109AB,UK 0 7InstituteofAstronomy,UniversityofCambridge,Cambridge,CB30HA,UK 1 ] R Accepted....Received...;inoriginalform... S . h ABSTRACT p - Wedeterminerelativeabundanceratiosfortheneutron-captureelementsZr,La,Ce,Nd, o r and Eu for a sample of 27 Galactic dwarf stars with −1.5< [Fe/H] <−0.8. We also mea- t sure the iron-peak element Sc. These stars separate into three populations (low- and high-α s a haloandthick-discstars)basedonthe[α/Fe]abundanceratioandtheirkinematicsasdiscov- [ ered by Nissen & Schuster. We find differences between the low- and high-α groups in the abundanceratiosof[Sc/Fe],[Zr/Fe],[La/Zr],[Y/Eu],and[Ba/Eu]whenincludingYandBa 1 v fromNissen&Schuster.Forallratiosexcept[La/Zr],thelow-α starshavealowerabundance 3 compared to the high-α stars. The low-α stars display the same abundance patterns of high 2 [Ba/Y]andlow[Y/Eu]asobservedinpresent-daydwarfspheroidalgalaxies,althoughwith 4 smaller abundance differences, when compared to the high-α stars. These distinct chemical 2 patternshavebeenattributedtodifferencesinthestarformationratebetweenthetwopopula- 0 tionsandthecontributionoflow-metallicity,low-massasymptoticgiantbranch(AGB)stars 1. to the low-α population. By comparing the low-α population with AGB stellar models, we 0 placeconstraintsonthemassrangeoftheAGBstars. 7 Keywords: Stars:abundances–Galaxy:halo 1 : v i X r 1 INTRODUCTION liest times (e.g., Eggen, Lynden-Bell & Sandage 1962; Searle & a Zinn1978;Vennetal.2004;Frebel&Norris2015).Duetotheir UnderstandingtheearliestphasesoftheassemblyofourGalaxy, longlifetimes,FGK-typedwarfstarsareidealfortracingtheevo- the Milky Way, remains a key issue in contemporary astronomy. lutionoftheGalaxy.Theatmospheresofdwarfstarscloselymir- Cosmological simulations predict that mergers and accretion of ror the chemical composition of the gas clouds from which they satellite dwarf galaxies may play an important role through hi- formed.Thismeansthatspectroscopicstudiesofthese‘stellarfos- erarchical structure formation (e.g., Bullock & Johnston 2005; sils’willenableustoprobethechemicalandkinematichistoryof Pillepich et al. 2014). Our Galaxy is no exception. Observational ourGalaxyovercosmictime. support for the hierarchical nature of Galactic formation, and the Comparison of chemical abundances between the Galactic role dwarf galaxies play in that process, comes from the accre- haloandsatellitedwarfspheroidalgalaxies(dSph)revealsdiffer- tionoftheSagittariusdwarfgalaxy(Ibata,Gilmore&Irwin1994) encesintheirchemicalcomposition,mostnotablyinthe[α/Fe]ra- andnumeroustidalstreamsobservedintheGalactichalo(e.g.,Be- tio(e.g.,Shetrone,Coˆte´&Sargent2001;Tolstoyetal.2003;Venn lokurovetal.2006). etal.2004;Tolstoy,Hill&Tosi2009).Onaverage,dSphstarswith The chemical abundances and kinematics of Galactic halo [Fe/H]>−2havelower[α/Fe]thantheGalaxy.The[α/Fe]ratio starsholdvaluablecluesconcerningGalacticformationattheear- ∼ dependsontherelativenumberofTypeIatoTypeIIsupernovae, andthisquantityissensitivetothestarformationrate(e.g.,Tins- (cid:63) Thispaperincludesdatagatheredwiththe6.5meterMagellanTelescopes ley1979;Matteucci&Greggio1986;Wheeler,Sneden&Truran locatedatLasCampanasObservatory,Chile. 1989; Nomoto, Kobayashi & Tominaga 2013). The lower [α/Fe] † [email protected] observedindSphwouldthereforesuggestaslowerstarformation (cid:13)c 2013RAS 2 Fishlocketal. raterelativetotheGalaxy.Differencesinthe[α/Fe]ratiobetween precision,instarslikelytohavebeenaccretedfromdwarfgalax- the halo and present-day dwarf galaxies preclude the continuous ies.Starscurrentlyindwarfgalaxiesareveryfaintsuchthathigh merging of such systems although it may be that the mergers of precision chemical abundance studies cannot be conducted with massivedwarfgalaxiesoccurredatveryearlytimesintheforma- existing facilities. The aim of this study is to investigate the role tionoftheGalactichalo(Vennetal.2004). ofAGBstarsinthechemicalenrichmentoftheGalactichaloand Although a handful of α-poor stars were known to exist in dSph.Specifically,webuildupontheworkofNS10andNS11by theGalactichalo(e.g.,Carneyetal.1997;King1997;Preston& studying additional s-process elements (Zr, La, Ce, and Nd). We Sneden 2000; Ivans et al. 2003), the study by Nissen & Schuster also measure, for the first time with this unique sample, a rapid (2010)(hereafterNS10)providedthefirstcompellingevidencethat neutron-captureprocess(r-process)element(Eu).Finally,wemea- the halo hosts two populations that are well separated in [α/Fe]. sureScwhichhasbeenobservedtobehavelikeanαelement(e.g., NS10 studied 94 halo dwarf stars in the solar neighbourhood us- Nissenetal.2000). ingacarefuldifferentialanalysisresultinginabundanceerrorsfor [α/Fe] of only 0.02 dex. They argued that the low-α stars have kinematicsconsistentwithaccretionfromasatellitegalaxywitha 2 SAMPLESELECTIONANDOBSERVATIONS slowerstarformationratethanthehigh-α populationwhichmost likelyformedin-situintheGalaxy.Additionally,NS10foundthat Our observations focused on obtaining high quality blue spectra thelow-andhigh-αpopulationsseparateinthe[Na/Fe]vs.[Ni/Fe] forstarsintheNS10sample.IntheanalysesofNS10andNS11, abundanceplane.Noseparationwasseenfor[Cr/Fe]. only lines redder than 4700 A˚ were measured. Our targets were The study of NS10 was extended by Ram´ırez, Mele´ndez & selectedtoincludebothlow-andhigh-αstarsacrossthemetallicity Chaname´ (2012). Through an analysis of the 777 nm O I triplet rangeof−1.5<[Fe/H]<−0.8.Thesampleconsistsof13low- lines, they found that the low-α stars have a lower [O/Fe] abun- α stars,6high-α stars,and8thick-disc(TD)stars,includingthe dancecomparedtothehigh-αandthick-discstars.Thelow-αstars tworeferenceTDstarsusedinthestudiesbyNS10andNS11,HD alsoshowacosmicstar-to-starscatterin[O/Fe]atagiven[Fe/H]. 22879andHD76932. Before continuing, it is important to recognise that any at- ProgrammestarswereobservedusingtheMagellanInamori temptstoinferthechemicalenrichmenthistoryofastellarpopula- Kyocera Echelle (MIKE) spectrograph (Bernstein et al. 2003) on tionrequiresadetailedunderstandingofthenucleosyntheticorigin the Magellan (Clay) telescope during February 2011 and June of individual elements (Nissen 2013). Low- to intermediate-mass 2011.Weusedthe0.35”slitsizewhichprovidesaresolvingpower starsundergorichnucleosynthesisoncetheyreachtheasymptotic of83,000intheblue.Typicalexposuretimesrangedfrom500to giantbranch(AGB)phase.Ithasbeenobservationallyconfirmed 5000 seconds per target and the signal-to-noise ratio per pixel of that the slow neutron-capture process (s-process) takes place in thespectrawasapproximately400at4500A˚.Thewavelengthcov- AGBstars(e.g.,Wallersteinetal.1997;Busso,Gallino&Wasser- erageprovidedbyMIKEis3350to9000A˚.Datareductionwasac- burg 1999). The s-process is responsible for the production of complishedusingIRAF1 withtheMIKEMTOOLS2 package.Con- aroundhalfoftheabundanceoftheheavyelementsbeyondiron. tinuum fitting was performed using the Spectroscopy Made Hard Throughstrongmassloss,AGBstarsejectenrichedmaterialinto (SMH) package as used in Casey et al. (2014) and described in the interstellar medium and pollute the next generation of stars Casey(2014). (Herwig2005;Karakas&Lattanzio2014). AGBstarsmayplayanimportantroleintheoriginofchem- icalabundancedifferencesbetweentheGalaxyandnearbydwarf galaxies.Inadditionto[α/Fe],differencesintheratiosof[Ba/Y] 3 ABUNDANCES and[Y/Eu]arefoundbetweendSphandtheGalaxy(e.g.,Tolstoy, FollowingNS10,weperformadifferentialline-by-lineanalysisrel- Hill&Tosi2009).Thehigh[Ba/Y]observedindSphwasattributed ativetotheTDstarHD22879.Thisapproachenablesustoobtain tolow-massAGBstarsenrichingtheinterstellarmediumasare- high-precision abundance ratios which are necessary in identify- sult of the slower chemical evolution. To explain the low [Y/Eu] ingpossibleseparationsbetweenthelow-andhigh-α populations. observed,Vennetal.(2004)suggestedthatmetal-poorAGBstars Themodelatmospheresusedintheanalysiswereone-dimensional, didnotcontributeasmuchY(comparedtomoremetal-richAGB plane parallel, local thermodynamic equilibrium (LTE) ATLAS9 stars) because the production of second s-process peak elements models by Castelli & Kurucz (2003). Interpolation between T , suchasBaandLawerefavouredoverfirsts-processpeakelements eff logg, [Fe/H], and [α/Fe] was required to produce model atmo- suchasZrandY(Bussoetal.2001). spheres.Thestellarparameters,T ,ξ ,andlogg,aswellasthe eff turb Nissen&Schuster(2011)(hereafterNS11)determinedabun- abundanceratiosof[Fe/H]and[α/Fe]weretakenfromNS10and dancesfortwoneutron-captureelementsproducedbythes-process NS11(seeTable1).Foracompletediscussiononthedetermination in AGB stars, Ba and Y (along with the iron-peak elements Mn, oftheseparametersseeNS10andNS11.Weusestellarparameters Cu, and Zn). They discovered that the low- and high-α popula- from NS10 without the correction for effective temperature of ∼ tionscouldbeseparatedin[Cu/Fe]and[Zn/Fe].Moreimportantly, 100KfromNS11.Giventhedifferentialnatureoftheabundance NS11foundthatthe[Ba/Y]ratiodiffersbetweenthetwopopula- analysisandthatmoststarshavefairlysimilarstellarparameters,a tions with the low-α stars showing a higher [Ba/Y] value. Those chemicalabundancepatternsaresimilartothatfoundindSphby Vennetal.(2004)andreinforcesthehypothesisthatthelow-αstars 1 IRAF is distributed by the National Optical Astronomy Observatory, arelikelytohavebeenaccretedfromdSph. whichisoperatedbytheAssociationofUniversitiesforResearchinAs- TheNS10sampleprovidesauniqueopportunitytostudyaddi- tronomy(AURA)underacooperativeagreementwiththeNationalScience tionalneutron-captureelementabundancesinthelow-andhigh-α Foundation. populations.Suchananalysiswillenableustoexaminetheabun- 2 www.lco.cl/telescopes-information/magellan/ dancesforalargerrangeofneutron-captureelements,withhigh- instruments/mike/iraf-tools/iraf-mtools-package (cid:13)c 2013RAS,MNRAS000,1–11 Neutron-captureandScabundancesoffieldhalostars 3 Table1.Atmosphericparametersandabundanceratiosfortheprogramme 90 stars(takenfromNS10andNS11). µ= 0.16, σ= 2.18 80 70 ID Teff logg ξturb [Fe/H] [α/Fe] Classa 60 (K) (cgs) (kms−1) ) m 50 CD-453283 5597 4.55 1.0 −0.91 0.12 low-α (S CD-610282 5759 4.31 1.3 −1.23 0.22 low-α WN40 G16-20 5625 3.64 1.5 −1.42 0.26 (low-α) E 30 G18-28 5372 4.41 1.0 −0.83 0.31 high-α G18-39 6040 4.21 1.5 −1.39 0.34 high-α 20 G31-55 5638 4.30 1.4 −1.10 0.29 high-α 10 G56-30 5830 4.26 1.3 −0.89 0.11 low-α G56-36 5933 4.28 1.4 −0.94 0.20 low-α 0 G66-22 5236 4.41 0.9 −0.86 0.12 low-α 0 10 20 30 40 50 60 70 80 90 10 G170-56 5994 4.12 1.5 −0.92 0.17 low-α ) HD3567 6051 4.02 1.5 −1.16 0.21 low-α 5 m HD22879 5759 4.25 1.3 −0.85 0.31 TD ( 0 W HD25704 5868 4.26 1.4 −0.85 0.24 TD E 5 ∆ HD76932 5877 4.13 1.4 −0.87 0.29 TD 10 HD103723 5938 4.19 1.2 −0.80 0.14 low-α 0 10 20 30 40 50 60 70 80 90 HD105004 5754 4.30 1.2 −0.82 0.14 low-α EW (m ) HD111980 5778 3.96 1.5 −1.08 0.34 high-α SMH HD120559 5412 4.50 1.1 −0.89 0.30 TD HD126681 5507 4.45 1.2 −1.17 0.35 TD Figure 1. Comparison between EW measurements for HD 22879 from HD179626 5850 4.13 1.6 −1.00 0.32 high-α NS10 and NS11 (EWNS) and by using SMH (EWSMH, this work). The HD189558 5617 3.80 1.4 −1.12 0.35 TD dashedlineshowstheone-to-onecorrespondenceline.Thebottompanel HD193901 5650 4.36 1.2 −1.07 0.17 low-α showsthedifferencebetweenthetwoanalyses. HD194598 5942 4.33 1.4 −1.09 0.20 low-α HD199289 5810 4.28 1.3 −1.04 0.30 TD HD205650 5698 4.32 1.3 −1.17 0.30 TD HD219617 5862 4.28 1.5 −1.45 0.28 (low-α) Table2.EWmeasurements(inmA˚)ofZrII,CeII,andNdIIforeachstar. HD230409 5318 4.54 1.1 −0.85 0.27 high-α aForstarswith[Fe/H]<−1.4,theclassificationisuncertain(NS10). ID ZrII CeII CeII NdII 4208.98A˚ 4562.36A˚ 4628.16A˚ 4706.54A˚ CD-453283 21.3 7.6 5.3 7.0 systematicshiftof100Kislikelytohaveaminimaleffectonthe CD-610282 17.7 5.2 2.7 4.0 finaldifferentialabundances. G16-20 22.1 6.6 4.1 4.0 ElementalabundancesforZr,Ce,andNdwerederivedfrom G18-28 29.1 10.3 ... 9.4 theanalysisofequivalentwidths(EWs)usingSMH.Forlineswith G18-39 17.3 ... 2.0 3.0 EW<60mA˚,aGaussianprofilewasfittedtotheline.Forlines G31-55 23.8 4.9 3.6 4.6 G56-30 23.1 6.6 7.2 2.9 with EW larger than 60 mA˚, a Voigt profile was used. Figure 1 G56-36 26.1 6.7 4.4 5.4 presentsacomparisonof85EWmeasurements(excludingFeIand G66-22 26.2 ... 8.9 10.6 FeII)ofNS10andNS11totheEWsmeasuredusingSMHwiththe G170-56 23.4 6.8 3.4 4.2 samelinelistforHD22879.ThemeanEWdifferencebetweenthe HD3567 21.3 4.9 5.3 4.0 twomethodsis0.16±0.24mA˚ (σ =2.18mA˚). HD22879 31.4 8.2 6.5 7.9 WeusetheatomicdatacompiledbyYongetal.(2005)forthe HD25704 22.4 6.5 6.1 7.1 measured absorption lines. The abundance of Zr is derived from HD76932 34.3 8.4 5.1 7.9 the EW of the Zr II line at 4208.98 A˚ which is unblended with HD103723 27.5 9.4 7.4 7.7 otherlines,allowingforareliablemeasurement.TheZrIIlineis HD105004 24.6 ... 9.4 5.0 HD111980 37.4 10.6 6.5 6.6 detectedinallstarswithallEWmeasurementsbeinggreaterthan HD120559 23.8 ... 4.1 7.5 10mA˚ (seeTable2).Ceabundanceshavebeendeterminedusing HD126681 28.9 7.4 5.4 5.0 the EWs of two Ce II lines at 4562.36 A˚ and 4628.16 A˚. Seven HD179626 27.6 5.9 4.1 4.1 starsonlyhaveoneCeIIlineavailableformeasurement:fivestars HD189558 39.3 10.9 8.9 7.1 donothaveameasurable4562.36A˚ linewhereastwostarsdonot HD193901 17.4 5.2 ... 5.3 haveameasurable4628.16A˚ line(seeTable2).Forallbutthree HD194598 15.8 3.6 3.2 2.9 Celines,theEWislessthan10mA˚. HD199289 19.1 3.3 2.5 3.6 NdabundanceshavebeendeterminedusingtheNdIIlineat HD205650 19.1 4.6 3.4 3.0 4706.54A˚.TheEWmeasurementsarelessthan10mA˚ exceptin HD219617 10.7 ... 3.3 2.0a twostars(G66-22andHD230409).Wearbitrarilysetaminimum HD230409 26.2 8.2 5.8 10.5 reliableEWmeasurementlimitof2mA˚.Onestar,themostmetal- aUpperlimit poorinthesample(HD219617),fallsbelowour2mA˚ limitand thereforeweadoptanupperlimitof2mA˚ fortheNdEW. (cid:13)c 2013RAS,MNRAS000,1–11 4 Fishlocketal. Table3.AdoptedsolarelementalabundancesfromAsplundetal.(2009). 1.0 Sc Element Z log(X/H)+12 0.9 Sca 21 3.05 x u Zr 40 2.58 Fl 0.8 La 57 1.10 Ce 58 1.58 Nd 60 1.42 0.7 Eu 63 0.52 aMeteoriticvalue. 5526.4 5526.6 5526.8 5527.0 5527.2 3.1 Zr 1.0 Eu The neutron-capture element Zr is predominately produced by AGBstarsandisafirsts-processpeakelement.Thes-processcon- 0.9 x tributiontoZrintheSolarSystemis∼80%(e.g.,Simmereretal. u Fl 2004; Sneden, Cowan & Gallino 2008; Bisterzo et al. 2014). By 0.8 determiningtheabundanceofZr,weexpandonthemeasurements ofY,anotherfirsts-processpeakelementwhoseabundanceswere 0.7 previouslyobtainedbyNS11. Figure3(a)shows[Zr/Fe]asafunctionof[Fe/H].Thedisper- 4129.0 4129.2 4129.4 4129.6 4129.8 4130.0 sionin[Zr/Fe]is∼0.12dexwhichislargerthantheerrorof0.04 dex.Whenconsideringthetwopopulations,thescatterin[Zr/Fe]is Wavelength ( ) smallerforthelow-αstarswithadispersionof0.06dexcompared to a dispersion of 0.13 dex when combining the high-α and TD Figure 2. Synthetic spectrum fit (solid line) to the observations (black stars.Inadditiontothedifferenceinthedispersionof[Zr/Fe],the points)oftheSclineat5526A˚ (top)andtheEulineat4129A˚ (bottom) low-α stars have a systematically lower [Zr/Fe] abundance com- forHD22879.Thedashedlinesshowsyntheticspectrawith[Sc/Fe]and paredtothehigh-αandTDstars. [Eu/Fe]of±0.1. This possible separation in the high- and low-α populations is in agreement with the slight separation in abundance measure- mentsof[Y/Fe]forthetwopopulationsseeninNS11.AsZrand Yarebothfirst-peaks-processelements,theyareexpectedtofol- lowthesametrend.Figure4demonstratesthedifferenceintheZr abundance for a low-α star (HD 194598) and a high-α star (HD 111980) at nearly the same metallicity (see Table 1). The low-α ForSc,La,andEu,wefitsyntheticspectrageneratedbythe starhasaweakerZrIIlinethanthehigh-α star.Whiletheeffec- LTEspectrumsynthesisprogramMOOG(v.2013,Sneden1973)to tivetemperaturediffersbetweenthesetwostarsbyapproximately determineabundances.Theseelementsrequiretheconsiderationof 150K,allotherlinesinthisregionexhibitverysimilarstrengths. hyperfinesplitting(HFS)and/orisotopicshifts.Figure2illustrates A comparison between [Y/Fe] as measured by NS11 and thefitofthesyntheticspectrumtotheobservedspectrumforthe [Zr/Fe]ispresentedinFigure5.TheabundanceofZrfollowsthe ScandEulinesofHD22879.Thebestfittingsyntheticspectrum wasdeterminedusing χ2 minimisation.ForSc,theloggf values abundanceofYwhichisexpectedifYandZrhaveacommonori- gin.Whilethereisasystematicoffsetbetween[Y/Fe]and[Zr/Fe] ofNissenetal.(2000)wereutilisedforthe5526.81A˚ absorption whichmaybeduetoerrorsinthegf valuesofthelines,theimpor- line.LawasdeterminedusingoneLaIIlineat4086.71A˚ withlog tantpointisthattheslopeofthedataiscloseto1.Thehigh-αstars gf valuesfromLawler,Bonvallet&Sneden(2001).FortheEuII haveatightercorrelationbetween[Y/Fe]and[Zr/Fe]comparedto spectrallineat4129.72A˚ weusetheloggf valuesfromLawler thelow-αstars. etal.(2001)andsolarisotoperatiosfromLodders(2003). We adopt solar elemental abundances from Asplund et al. (2009)asdetailedinTable3.Sinceweperformadifferentialanal- 3.2 La,Ce,andNd ysis to measure abundances, the choice of solar abundance only shiftsthestellarabundancesupordownanddoesnotaffecttherel- We extend upon the Ba measurements of NS11 by determining ativeabundances.Toreiterate,weareprimarilyinterestedinrela- abundances for other elements belonging to the second s-process tiveabundances,andthereforeabundancedifferences,betweenthe peak,namelyLa,Ce,andNd. low-andhigh-αpopulations.TheabundancesaregiveninTable4. Thes-processcontributiontoLaintheSolarSystemis75% Weestimatederrorsusingthestellarparameteruncertainties andthereareanumberofadvantageswithusingLaasans-process from NS10 where the differential errors for σ(logg) and σ(T ) indicator compared to Ba (e.g., Simmerer et al. 2004; Winckler eff are±0.05and±30K,respectively.The1-σ errorsfromNS10for etal.2006).WhileBaconsistsoffivestableisotopesandrequires [Fe/H]and[α/Fe]were0.04and0.02dex,respectively.Weesti- theconsiderationofisotopeshifts,99.91%ofLaisintheisotope matedthe1-σerrorsin[Zr/Fe]and[Ce/Fe]tobe0.04.For[Sc/Fe], 139La (Lodders 2003; Asplund et al. 2009). Figure 3(b) presents [La/Fe],and[Eu/Fe],theerrorsare0.05.Theerrorfor[Nd/Fe]is [La/Fe]asafunctionof[Fe/H].Thereisnocleardifferenceinthe 0.07. Laabundancebetweenthelow-α,high-α,andTDstars.Thedis- (cid:13)c 2013RAS,MNRAS000,1–11 Neutron-captureandScabundancesoffieldhalostars 5 Table4.Abundancesforeachofthemeasuredelements.Thevaluesfor[Fe/H]aretakenfromNS10. Star [Fe/H] [Sc/Fe] [Zr/Fe] [La/Fe] [Ce/Fe] [Nd/Fe] [Eu/Fe] CD-453283 −0.91 −0.11 −0.07 0.00 −0.01 0.36 0.31 CD-610282 −1.23 −0.15 0.00 −0.01 −0.05 0.32 0.26 G16-20 −1.42 −0.11 −0.00 0.02 −0.04 0.17 0.32 G18-28 −0.83 0.11 0.03 −0.02 0.04 0.34 0.13 G18-39 −1.39 −0.00 0.21 0.07 −0.03 0.47 0.26 G31-55 −1.10 −0.03 0.06 −0.08 −0.11 0.26 0.05 G56-30 −0.89 −0.22 −0.12 −0.06 −0.04 −0.09 0.09 G56-36 −0.94 −0.02 0.04 −0.04 −0.05 0.31 0.13 G66-22 −0.86 −0.16 −0.08 −0.04 0.02 0.34 0.30 G170-56 −0.92 −0.14 −0.10 −0.02 −0.16 0.14 0.16 HD3567 −1.16 −0.04 0.05 0.16 0.07 0.33 0.39 HD22879 −0.85 0.12 0.06 −0.09 −0.04 0.34 0.16 HD25704 −0.85 0.09 −0.16 −0.02 −0.09 0.33 0.15 HD76932 −0.87 0.15 0.13 0.03 −0.08 0.36 0.21 HD103723 −0.80 −0.03 −0.05 −0.03 0.01 0.33 0.17 HD105004 −0.82 −0.04 −0.13 −0.12 0.10 0.10 0.04 HD111980 −1.08 0.00 0.25 0.13 0.09 0.33 0.14 HD120559 −0.89 0.17 −0.05 −0.05 −0.22 0.32 0.20 HD126681 −1.17 0.00 0.28 0.14 0.13 0.34 0.20 HD179626 −1.00 0.12 0.03 0.02 −0.14 0.14 0.03 HD189558 −1.12 0.09 0.24 0.07 0.08 0.24 0.17 HD193901 −1.07 −0.19 −0.14 −0.00 −0.08 0.31 0.24 HD194598 −1.09 −0.07 −0.11 −0.03 −0.11 0.17 0.27 HD199289 −1.04 0.08 −0.09 −0.12 −0.30 0.15 0.09 HD205650 −1.17 −0.01 0.01 −0.03 −0.07 0.14 0.19 HD219617 −1.45 −0.11 −0.05 −0.11 0.18 0.03a 0.21 HD230409 −0.85 0.05 −0.03 −0.00 −0.07 0.43 0.27 aUpperlimit persion in the abundance of [La/Fe] is ∼0.07 dex, the lowest of investigatethecontributionofr-processnucleosynthesistothelow- all the s-process abundances measured here. The [La/Fe] ratio is andhigh-αstars. almostconstantwith[Fe/H]andthemeanabundanceclosetothe Figure6(a)presentsthe[Eu/Fe]abundanceswherethereisa solarvalue. potentialseparationbetweenthetwopopulations:thelow-α stars Thes-processcontributiontoCeintheSolarSystemis81% appeartoshowahigher[Eu/Fe]abundancecomparedtothehigh- where140Ceistheonlystableisotopeaccessiblebythes-process αstars.However,duetothelackofstarsatlowermetallicities,the (Sneden,Cowan&Gallino2008).Figure3(c)presentstheresults separationisnotasclearaswhatisfoundforotherelementssuch for [Ce/Fe]. The majority of stars have a subsolar [Ce/Fe] abun- asZr.Thelow-α groupalsoshowsapotentialdecreasein[Eu/Fe] dance with a mean value of around −0.04 dex and no apparent with increasing metallicity. A larger sample of stars is needed to separationbetweenthelow-andhigh-α stars.Thedispersionsfor confirmtheseresults. thelow-αandhigh-αstarsareessentiallythesame(0.09dexcom- paredto0.10dex,respectively). ForNd,58%oftheSolarSystemabundanceisduetothes- process(Sneden,Cowan&Gallino2008).Figure3(d)presentsthe abundanceof[Nd/Fe]against[Fe/H].DuetotheweakNdIIline forHD219617,weprovideanupperlimitof[Nd/Fe]=0.03for thisobjectbasedonanEWlimitof2mA˚.Thereisnoobviousdif- 3.4 Sc ference in [Nd/Fe] between the two populations except for a few low-α starshavingalowerNdabundance.Thiscausesthedisper- ThereisonlyonestableisotopeofSc(45Sc)anditismainlysyn- sion to be higher for the low-α stars relative to the high-α stars, thesisedduringcarbonandneonburninginmassivestars(Woosley, 0.14 dex compared 0.10 dex. The mean abundance of [Nd/Fe] is Heger&Weaver2002).ItisalsoproducedtoalesserextentinAGB 0.26dexandallbutonestarhasasupersolar[Nd/Fe]abundance. stars(e.g.,Fishlocketal.2014).WemeasureScinordertoverify the conclusions of Nissen et al. (2000) in which the low-α stars havealower[Sc/Fe]abundancecomparedtothehigh-αstars. Figure 6(b) reveals a clear separation in [Sc/Fe]. The low-α starshaveasubsolar[Sc/Fe]abundancewithameanvalueof−0.11 3.3 Eu dexwhereasthehigh-α starshaveamostlysupersolarabundance Euispredominatelyanr-processelementwithlessthan2%ofthe withameanvalueof0.07dex.Theseresultsconfirmtheseparation SolarSystemabundancearesultofs-processnucleosynthesis(Sne- in[Sc/Fe]foundintheearlierworkbyNissenetal.(2000)between den,Cowan&Gallino2008).WehaveincludedEuinthisstudyto thelow-andhigh-αpopulations. (cid:13)c 2013RAS,MNRAS000,1–11 6 Fishlocketal. 0.5 0.4 (a) 1.0 0.3 0.9 0.2 Fe] 0.1 0.8 Zr/ 0.0 ux 0.7 [ 0.1 Fl I 0.2 0.6 r I Z 0.3 0.5 0.4 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.4 HD 111980 HD 194598 0.5 0.4 (b) 4207 4208 4209 4210 0.3 Wavelength ( ) 0.2 ] Fe 0.1 Figure4.MIKEspectraaroundtheZrlineat4208.98A˚ foralow-α star a/ 0.0 (HD194598)andahigh-αstar(HD111980). L [ 0.1 0.2 0.3 0.3 0.4 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.2 0.5 0.4 (c) 0.1 0.3 ] Fe] 00..21 [Y/Fe 0.0 Ce/ 0.0 0.1 [ 0.1 0.2 0.2 0.3 0.4 0.3 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.5 [Zr/Fe] 0.4 (d) 0.3 Figure5.Comparisonof[Y/Fe](takenfromNS11)and[Zr/Fe].Thered 0.2 circlesindicatelow-αstars,theblueopencirclesindicatehigh-αstars,and e] theplussignsindicateTDstars.Thedashedlineshowstheone-to-onecor- F 0.1 Nd/ 0.0 respondenceline.The1-σerrorisshowninthetop-left. [ 0.1 0.2 now seek to quantify this potential limitation by introducing our 0.3 methodologyonhowwedecidewhetheragivenabundanceratio 0.4 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 exhibitsadifference(i.e.,separation)betweenthelow-andhigh-α groups. [Fe/H] We first consider the NS10 measurements of Cr, a repre- sentative element for which NS10 found no significant separa- Figure3.Fours-processelements(Zr,La,Ce,andNd)versus[Fe/H].The tion between the low- and high-α groups. Using a two sam- redcirclesindicatelow-αstars,theblueopencirclesindicatehigh-αstars, pleKolmogorov-Smirnov(KS)testbetweenthelow-andhigh-α andtheplussignsindicateTDstars.The1-σerrorisshowninthebottom- groups(withoutdistinguishingTDstars),wefindap-valueof0.07 leftofeachplot. when considering [Cr/Fe] for all stars in the NS10 sample with −1.45(cid:54)[Fe/H](cid:54)−0.8. Inordertoinvestigatehowoursmallersamplesizeaffectsour 4 ANALYSIS abilitytoidentifyabundanceseparations,weperformedthefollow- AswiththeNS10andNS11studies,wecombinetheTDandhigh- ingtests.Werandomlyselect13low-α and14high-α starsfrom α halostarsintoonehigh-α group.Duetoasmallersamplesize thefullNS10samplewith−1.45(cid:54)[Fe/H](cid:54)−0.8,applytheKS comparedtoNS11,wedonotremovetheabundancedependence test and obtain the p-value. We repeat this exercise 10,000 times on [Fe/H] for the high-α stars as it cannot be definitively deter- andfindthatforapproximately25%oftherealisations,thep-value mined. Given that our sample size is smaller than in NS10, we isbelow0.07.Ifwearbitrarilydefinethethresholdtobea p-value (cid:13)c 2013RAS,MNRAS000,1–11 Neutron-captureandScabundancesoffieldhalostars 7 Table5.Meanvalueandstandarddeviationofeachabundanceratioforthe 0.4 (a) low-α groupandthehigh-α group.YandBaaretakenfromNS11.The 0.3 p-valuebetweenthetwogroupsisalsogiven. ] 0.2 e F u/ 0.1 low-α high-α E x˜ σ x˜ σ p-value [ 0.0 0.1 [Sc/Fe] −0.107 0.062 0.067 0.063 0.000 [Zr/Fe] −0.058 0.061 0.069 0.131 0.017 0.2 [La/Fe] −0.022 0.065 0.004 0.076 0.589 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 [Ce/Fe] −0.012 0.087 −0.058 0.114 0.340 [Nd/Fe] 0.217 0.137 0.299 0.098 0.614 0.4 (b) [Eu/Fe] 0.222 0.097 0.161 0.068 0.173 0.3 [La/Zr] 0.037 0.061 −0.066 0.084 0.005 [ls/Fe] −0.109 0.057 0.049 0.117 0.004 ] 0.2 e [hs/Fe] 0.005 0.056 0.038 0.084 0.303 F c/ 0.1 [hs/ls] 0.114 0.046 −0.010 0.065 0.000 S [ 0.0 [Y/Eu] −0.382 0.101 −0.133 0.122 0.000 [ls/Eu] −0.332 0.092 −0.112 0.126 0.001 0.1 [Ba/Eu] −0.387 0.122 −0.253 0.122 0.024 0.2 [La/Eu] −0.244 0.064 −0.157 0.082 0.173 [hs/Eu] −0.218 0.082 −0.122 0.081 0.022 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 [Y/Fe] −0.160 0.064 0.028 0.107 0.000 [Fe/H] [Ba/Fe] −0.165 0.070 −0.092 0.115 0.303 [Ba/Y] −0.005 0.055 −0.120 0.030 0.000 Figure6.(a)[Sc/Fe]and(b)[Eu/Fe]versus[Fe/H].Theredcirclesindicate low-αstars,theblueopencirclesindicatehigh-αstars,andtheplussigns indicateTDstars.The1-σerrorisshowninthebottom-leftofeachplot. of0.03,roughly10%oftherandomrealisationsresultinap-value below0.03. Zr,theabundanceratiosforelementsbelongingtothesecondpeak Wenowexamine[Ba/Y],anabundanceratiothatwasfoundto [La/Fe], [Ce/Fe], and [Nd/Fe] show no significant difference be- exhibitasignificantseparationbetweenthelow-andhigh-α pop- tweenthelow-andhigh-α groups.Theseconds-processpeakele- ulations.ForthefullNS10samplewith−1.45(cid:54)[Fe/H](cid:54)−0.8, mentBa,measuredbyNS11,alsoshowsnoseparationin[Ba/Fe] wecomputea p-valueof2.9×10−9.Wethenseektoquantifythe betweenthetwogroups. effectofhavingasmallersamplesize.Asabove,werandomlyse- We confirm the separation in [Ba/Y] reported by NS11 (see lect13low-α and14high-α starsfromthefullNS10samplewith Figure 7(a)). In Figure 7(b) we plot [La/Zr] and are able to re- −1.45(cid:54)[Fe/H](cid:54)−0.8,applytheKStestandobtainthep-value. produce the separation between a light-s (ls) element at the first We repeat the exercise 10,000 times. For a threshold p-value of s-processpeakandaheavy-s(hs)elementatthesecondpeak.The 0.03,about99.7%ofrandomrealisationshaveap-valuebelowthis p-valueof0.005islowerthantheindividual p-valuesfor[Zr/Fe] level,indicatingthatweareabletoidentifytheseparationin[Ba/Y] (0.017)and[La/Fe](0.589)demonstratingthat aclearseparation inallbut0.3%ofcases. betweenthelow-andhigh-α populationscanbeseenwhencon- Basedonthesetests,wechoosea p-valueof0.03whichen- sideringcertaincombinationsofelements. suresthatthereisatleasta90%chancethattheabundancesepara- Assumingthatthehigher[La/Zr]ratiosinthelow-α starsare tioninoursampleof27starsisgenuinedespitehavingasmaller duetoenrichmentfromAGBstars,weusethemodelpredictions number of stars than NS10 and NS11. We also confirm using a ofFishlocketal.(2014)with[Fe/H]=−1.2toestimatethemass KStestthatthehigh-α populationandTDstarshaveasignificant rangeofthoseAGBstars.Startingatlowermasses(1to3M(cid:12)),cal- probability of coming from the same population. In Table 5 we culationspredict[La/Zr]ratiosabovesolar;forexample,the3M(cid:12) present the mean of each abundance ratio and its standard devia- modelpredictsafinal[La/Zr]ratioof0.32dex.Movingtotheinter- tionforbothlow-andhigh-α groups.Wealsopresentthe p-value mediatemasses(3.25to7M(cid:12)),calculationspredict[La/Zr]ratios ofthetwosampleKStestbetweenthelow-andhigh-αgroups.The belowsolar;forexample,the6M(cid:12) modelpredictsafinal[La/Zr] analysesof[Y/Fe],[Ba/Fe],and[Ba/Y]areincludedinTable5for ratio of −0.68 dex. Therefore, based on the [La/Zr] ratio, AGBs comparisonusingtheabundancesmeasuredbyNS11foroursam- starsintherange1to3M(cid:12)couldberesponsiblefortheabundance ple of 27 stars. For comparison, the mean p-value calculated for differencebetweenthelow-andhigh-αgroups. [Mg/Fe]whenrandomlyselecting13low-αand14high-αstarsis For stars in the range −1.5< [Fe/H] <−1, there is a pos- 4.9×10−7. sible separation in [Eu/Fe] where the low-α group has a higher ForabundancesrelativetoFe(e.g.,[Zr/Fe]),ScandZrshowa [Eu/Fe]abundancecomparedtothehigh-αgroup.However,higher separationbetweenthelow-andhigh-αgroups.Forbothelements, metallicity stars show no difference between the two groups and thehigh-αgrouphasahigher[X/Fe]ratiothanthelow-αgroup. thehintofaseparationisnotstatisticallysignificantwithap-value We find that the separation between the low- and high-α of0.173.Wereturntothisintriguingpossibilityofaseparationin groupsisdetectedfor[Y/Fe]despitehavingasmallersamplesize Section5. thanNS11.Incontrasttothefirsts-processpeakelementsYand Thes-processindicatorsaretheaverageabundanceoftheele- (cid:13)c 2013RAS,MNRAS000,1–11 8 Fishlocketal. [ls/Fe]=([Y/Fe]+[Zr/Fe])/2 (1) 0.3 (a) and 0.2 0.1 [hs/Fe]=([Ba/Fe]+[La/Fe]+[Ce/Fe]+[Nd/Fe])/4. (2) ] Y a/ 0.0 The[ls/Fe]and[hs/Fe]ratiosagainst[Fe/H]arepresentedin B [ 0.1 Figure 7(c) and 7(d). The low-α stars have a lower [ls/Fe] ratio thanthehigh-α stars.For[hs/Fe],thereisnoapparentdifference 0.2 betweenthetwopopulations. 0.3 Figure7(e)showsthereisaclearseparationinthes-process 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.3 indicator [hs/ls] between the low- and high-α groups. The low- (b) α populationhasahigher[hs/ls]ratiothanthehigh-α population 0.2 withamean[hs/ls]valueof0.11dexcomparedto−0.01dexfor ] 0.1 thehigh-αpopulation.Allthelow-αstarshaveasupersolar[hs/ls] r a/Z 0.0 ratioandthiswouldbeexpectedifthestarswereenrichedbyprevi- L ousgenerationsoflow-massAGBstars.Forexample,thelow-mass [ 0.1 modelsofFishlocketal.(2014)endtheAGBphasewith[hs/ls]ra- 0.2 tiosofbetween0.45and0.59dex,excludingthe1M(cid:12)modelwhich 0.3 experiencesminimalthirddredge-up.Incontrast,theintermediate- 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 mass models have final [hs/ls] ratios between −0.71 and −0.41 0.3 dex.Thedifferencesbetweenthelow-massandintermediate-mass (c) 0.2 modelsarearesultofthedifferentneutronsources(Lugaroetal. 0.1 2012). ] e The abundance ratio of s-process elements to r-process ele- F 0.0 /s mentsoffersapowerfuldiagnosticforGalacticchemicalevolution [l 0.1 (Wheeler,Sneden&Truran1989;McWilliam1997).InFigure8 0.2 we present the abundance ratios of [ls/Eu], [Y/Eu], [hs/Eu], and [La/Eu]against[Fe/H].Thelow-α starshavealower[ls/Eu]ratio 0.3 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 comparedtothehigh-α starswiththeseparationmoreevidentat 0.3 [Fe/H]<−1.Thereisalsoanapparentincreasein[ls/Eu]within- ∼ (d) 0.2 creasing[Fe/H]forthelow-αgroupwhichisnotseeninthehigh-α group. 0.1 e] Figure8(b)presentstheabundanceratioofthelselement,Y, /Fs 0.0 relativetoEu.Thelow-α grouphasalowerabundanceof[Y/Eu] [h 0.1 comparedtothehigh-α groupwitha p-valueof2.2×10−4.This p-valueismoresignificantthanthe[ls/Eu]separation.Wealsofind 0.2 thatthe[Y/Eu]abundanceforthelow-αstarswith[Fe/H]<−1is 0.3 almost constant at approximately −0.4 dex with minimal scatter. 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.3 Similarbehaviourisalsoseenfor[ls/Fe]. (e) Theseparationin[hs/Eu]isnotasclearasthatof[ls/Eu],al- 0.2 thoughithasap-valueof0.022,justbelowthechosensignificance 0.1 level.Thelow-α grouphasa[hs/Eu]ratiothatisclosertother- ] s /sl 0.0 processcontributionofthehselementsandEuintheSolarSystem [h 0.1 thanthehigh-αgroup.Aswith[ls/Fe],thereisanapparentincrease in[hs/Eu]withincreasing[Fe/H]forthelow-αstars. 0.2 Figure 8(d) presents the abundance ratios of the hs element, 0.3 La,relativetoEuwhereallthestarshaveasubsolar[La/Eu]ratio. 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 Unliketheseparationfoundfor[hs/Eu],wedonotfindaseparation [Fe/H] in [La/Eu] between the two groups. We also show the r-process contributiontotheSolarSystemabundancesofLaandEu(andits Figure7.[Ba/Y](fromNS11),[La/Zr],[ls/Fe],[hs/Fe],and[hs/ls]versus uncertainty)inFigure8(d)asdeterminedbyWinckleretal.(2006). [Fe/H]wherelsistheaverageabundanceofYandZrandhsistheaverage ThetheoreticalpredictionofanAGBstellarmodelwithaninitial abundanceofBa,La,Nd,andCe.Theredcirclesindicatelow-αstars,the massof3.25M(cid:12)atametallicityof[Fe/H]=−1.2,fromFishlock blueopencirclesindicatehigh-αstars,andtheplussignsindicateTDstars. etal.(2014)isalsopresentedinFigure8.Ofallthemodelscalcu- latedbyFishlocketal.(2014),thelowest[La/Eu]ratioof0.08dex occursforthe3.25M(cid:12)model. mentsateachofthetwos-processpeaks.WeincludetheYandBa resultsfromNS11anddefine[ls/Fe]and[hs/Fe]3tobe: 3 Asnoted,theSolarSystemabundanceofNdhasa∼40%contribution from the r-process. Had we excluded Nd from hs, as did Lugaro et al. (2012),ourconclusionswouldbeunchanged. (cid:13)c 2013RAS,MNRAS000,1–11 Neutron-captureandScabundancesoffieldhalostars 9 ement. The simplest explanation is that Sc is preferentially made 0.1 in higher mass stars along with the α elements and that Type Ia (a) 0.0 SNe have a negligible contribution to Sc (Iwamoto et al. 1999; 0.1 Woosley & Weaver 1995; Romano et al. 2010). Indeed, Nissen ] (2016)findthatthe[Sc/Fe]ratioexhibitsasimilarbehaviourwith u 0.2 E ageas[Mg/Fe]intheirsampleofsolartwins.Thelow-αstarshave [/ls 0.3 low[Sc/Fe]ratiosduetotheextracontributionofFefromTypeIa 0.4 SNe. Asnotedintheintroduction,thereisanotherchemicalsigna- 0.5 turebesides[α/Fe]4 thatdistinguisheshalostarsfromtheirdSph 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 counterparts, namely, the neutron-capture element abundance ra- 0.1 tios.IndSph,roughlytwo-thirdsofthestarsshowahigher[Ba/Y] (b) 0.0 ratio and a lower [Y/Eu] ratio compared to Galactic halo stars 0.1 (Vennetal.2004;Tolstoy,Hill&Tosi2009).McWilliam,Waller- Eu] 0.2 stein & Mottini (2013) analysed three Sagittarius dSph stars and Y/ foundlow[α/Fe],[Na/Fe],[Al/Fe],and[Cu/Fe]ratiosalongwitha [ 0.3 high[La/Y]ratiorelativetotheGalactichalo.ThestudyoftheCa- 0.4 rinadSphbyVennetal.(2012)alsofoundthatthelow-metallicity starshaveslightlylower[Y/Eu]ratios(andslightlyhigher[Ba/Y] 0.5 ratios) when compared to Galactic stars. The dSph of today are 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 chemically different to the galaxies that merged early during the 0.1 formationoftheGalaxy. (c) 0.0 The NS11 study found that the low-α stars show a higher 0.1 [Ba/Y] ratio than the high-α stars. We also find differences for u] [Zr/Fe], [La/Zr], [ls/Fe], [hs/ls], [Y/Eu], [Ba/Eu], [ls/Eu], and E 0.2 /s [hs/Eu]betweenthetwopopulations.Thesefindingsrevealthatthe [h 0.3 low-α populationdisplaysmanychemicalsignaturesalsoseenin 0.4 dSphtherebysupportingtheaccretionhypothesisfromNS10. Wenowturnourattentiontothepossiblesourcesthatcould 0.5 produce these abundance differences among the neutron-capture 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 elements. Due to the slower rate of chemical evolution, it has been suggested that the dSph and low-α population have been (d) 0.2 3.25 M enriched from low-metallicity, low-mass AGB stars (NS11, Venn fl etal.2012).Intermediate-massAGBstars(>3M(cid:12))producesub- u] 0.0 solar [Ba/Y] ratios (e.g., Karakas & Lattanzio 2014), i.e., these E a/ objectscannotexplainthebehaviourof[Ba/Y]inthelow-α pop- L 0.2 [ ulation. On the other hand, low-metallicity, low-mass AGB stars 0.4 (∼<3M(cid:12))produce[Ba/Y]ratiosabovesolar(e.g.,Cristalloetal. 2011; Fishlock et al. 2014), and this is consistent with the low- α population. The high [La/Zr] and [hs/ls] ratios for the low-α 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 populationfurthersupportthehypothesisofenrichmentfromlow- [Fe/H] metallicity, low-mass AGBs in the low-α populations as a result oftheslowerrateofchemicalevolution(e.g.,inlow-massAGBs, Figure8.[ls/Eu],[Y/Eu],[hs/Eu],and[La/Eu]versus[Fe/H]wherelsis thefirsts-processpeakelementsarebypassedinfavourofsecond theaverageabundanceofYandZrandhsistheaverageabundanceofBa, s-processpeakelements). La,Nd,andCe.Theredcirclesindicatelow-αstars,theblueopencircles Oneissuewiththisscenarioisthatwewouldthereforeexpect indicatehigh-αstars,andtheplussignsindicateTDstars.Theredsolidline theabundanceofYtobegreaterthan(orequalto)Zr,i.e.,[Y/Fe](cid:62) representsther-processratiofor[La/Eu]andthereddashedlineitsupper [Zr/Fe](e.g.,Bisterzoetal.2014;Trippellaetal.2016).Theobser- uncertainty(Winckleretal.2006).Thefinalsurfaceabundanceof[La/Eu] vationsindicateotherwise,andthisissuehasalsobeenidentifiedin forthe3.25M(cid:12),Z = 0.001AGBmodelfromFishlocketal.(2014)isalso CEMP-sstars(Abateetal.2015).Thereasonforthediscrepancy indicated(dash-dottedline). betweenobservationsandtheoryisunknown.AsnotedinSection 3.1,whiletheabundancesofYandZrfolloweachother,theremay beazero-pointoffsetduetoerrorsintheatomicdata(e.g.,gf val- 5 DISCUSSION ues). Wehavestudiedchemicalabundancesinasubsampleoflow-and If low-metallicity, low-mass stars have contributed to chem- high-α starsfromNS10inwhichthelow-α starswerelikelyac- creted from satellite dwarf galaxies whereas the high-α stars are representativeofGalactichaloobjects.Wenowseektounderstand 4 We note that there is some overlap in [α/Fe] between dSph stars and theabundancedifferencesbetweenthesepopulations. Galactichalostarswithextremeretrogradeorbits(Fulbright2002;Stephens ForSc,weconfirmandextenduponresultsfromNissenetal. &Boesgaard2002).Additionally,themostmetal-poorstarsindSphappear (2000)inwhichthelow-αstarshavealower[Sc/Fe]ratiothanthe tohavehalo-like[α/Fe]ratios(Frebeletal.2010;Norrisetal.2010;Venn high-α stars. That is, Sc appears to behave like an α-capture el- etal.2012). (cid:13)c 2013RAS,MNRAS000,1–11 10 Fishlocketal. ical enrichment of the low-α population, then we can place con- The low abundance of [Y/Eu] found in the low-α popula- straintsontheenrichmenttimescalesinvolvedintheearliestdwarf tioncomparedtothehigh-α populationmatchesoneofthechem- galaxies. Models from Fishlock et al. (2014) predict that low- icalsignaturesofpresent-daydSph.Vennetal.(2004)discardthe metallicity,low-mass(∼<3M(cid:12))starshavelifetimesbetween0.29× possibilitythattheGalactichalocouldconsistoflow-massdwarf 109yrto6.8×109yr. galaxies that have continuously merged with the Galaxy as high WealsopresentmeasurementsofEu;ther-processisrespon- [Ba/Y] and low [Y/Eu] ratios are not observed in Galactic halo sibleforproducingthemajorityofEuintheSolarSystem(Sneden, stars.TheideaofmoremassivemergerswiththeGalaxywasnot Cowan&Gallino2008).Theevolutionof[Eu/Fe]forbothGalac- ruledoutbyVennetal.(2004).Inaddition,modelsofAGBstars ticstarsanddSphstarsgenerallyfollows[α/Fe](Vennetal.2004; areunabletoexplainthelower[hs/Eu]ratiosobservedinthelow-α Tolstoy,Hill&Tosi2009)indicatingacommonoriginbetweenα starscomparedtothehigh-αstars. elementsandEu,mostlikelytobemassivestars.Iftrue,thenwe Theresultspresentedhereoffernewandimportantobserva- would expect the low-α stars to have a lower [Eu/Fe] abundance tionalevidenceregardingthenatureoftheGalactichalo.Itisap- thanthehigh-αstarsatagivenmetallicity.However,thereissome parentfromthestudyofNS10andNS11thatthereareatleasttwo evidencethatthelow-α starshaveahigher[Eu/Fe]ratiothanthe populationsintheGalactichalo,onethatformedin-situaswellas high-αstars,incontrasttoourexpectations.Thisseparationisonly oneaccretedfromdwarfgalaxies.Thelow[Y/Eu]abundancesin observedat[Fe/H]<−1andincludeshalfthesample.Whenusing dSphhavebeenattributedtothecontributionofmetal-poorAGB thewholemetallicityrange,theKStestdoesnotfindastatistically stars(Vennetal.2004).Low-metallicityAGBstarscouldalsobe significantseparationbetweenthetwopopulations(seeTable5). responsible for the high [Ba/Y] abundances. Only with detailed If the low-α stars do have a higher Eu abundance than the chemicalevolutionmodels,alongwithmeasurementsofadditional high-α stars at lower metallicities, it would suggest that the r- r-process elements beyond Eu, will there be a better understand- process contributed more to the chemical evolution of the low-α ingofthechemicalenrichmentoftheearliestdwarfgalaxiesthat starsatagivenmetallicity.Thisisdifficulttoreconcilewithchem- mergedwiththeGalactic halo.Inparticular,throughabetter un- icalevolutionmodelswhichsupporttheideathatintensegalactic derstandingofthes-process,wewillbeabletoprovideconstraints winds remove Eu from a system (Lanfranchi, Matteucci & Ces- ontheformationsite(s)ofther-process. cutti 2008). Another possibility is that the α and Eu abundances areduetodifferentinitialmassfunctionsratherthantheaddition ofSNeIamaterial(Ishimaru&Wanajo1999;Travaglioetal.1999; Kobayashietal.2006).Todetermineifthereisthepossibilityofa 7 ACKNOWLEDGEMENTS statisticallysignificantseparation,additionalobservationsofEufor We thank the referee, Maurizio Busso, for helpful comments. theNS10samplearerequired,particularlyforstarswith[Fe/H]< ThisworkhasbeensupportedbytheAustralianResearchCouncil −1. (grantsFT110100475andFT140100554)andtheEuropeanUnion Weobserveconstant[Y/Eu]abundances(∼−0.4dex)inthe FP7 programme through ERC grant number 320360. JM thanks lower metallicity low-α stars (−1.5(cid:54) [Fe/H] (cid:54)−1) suggesting support by FAPESP (2012/24392-2 and 2014/18100-4). Funding thatYandEuhaveacommonoriginortimescaleforenrichment, fortheStellarAstrophysicsCentreisprovidedbyTheDanishNa- most likely to be the r-process, at these metallicities. The dSph tional Research Foundation (Grant DNRF106). Australian access chemical evolution models of Lanfranchi, Matteucci & Cescutti to the Magellan Telescopes was supported through the National (2008)showconstant[Y/Eu]ratiosuptoa[Fe/H]ratioofapproxi- Collaborative Research Infrastructure Strategy of the Australian mately−1.5.Theratioof[Y/Eu]thenincreasesathighermetallic- FederalGovernment. itiesduetotheproductionofYbyAGBstars. We observe lower [Y/Eu], [ls/Eu], and [hs/Eu] ratios in the low-α starscomparedtothehigh-α starswiththeseparationbe- comingmorenoticeableatlowermetallicities.ThestudyoftheCa- REFERENCES rinadSphbyVennetal.(2012)alsofoundthatthelow-metallicity starshaveslightlylower[Y/Eu]ratios(andslightlyhigher[Ba/Y] Abate C., Pols O. R., Izzard R. G., Karakas A. I., 2015, A&A, ratios) when compared to Galactic stars. Venn et al. (2012) con- 581,A22 cludedthatthesedifferencesarearesultofmetal-poorAGBstars AsplundM.,GrevesseN.,SauvalA.J.,ScottP.,2009,ARA&A, contributing to the chemical enrichment of Carina, and this may 47,481 alsoapplytothelow-αpopulation. BelokurovV.etal.,2006,ApJ,642,L137 Bernstein R., Shectman S. A., Gunnels S. M., Mochnacki S., AtheyA.E.,2003,inProc.SPIE,Vol.4841,InstrumentDesign andPerformanceforOptical/InfraredGround-basedTelescopes, 6 CONCLUSIONS IyeM.,MoorwoodA.F.M.,eds.,pp.1694–1704 We found that the low-α and high-α populations of NS10 sepa- BisterzoS.,TravaglioC.,GallinoR.,WiescherM.,Ka¨ppelerF., ratewhenusingtheabundanceratiosof[Sc/Fe],[Zr/Fe],[La/Zr], 2014,ApJ,787,10 [ls/Fe],[hs/ls],[Y/Eu],[Ba/Eu],[ls/Eu],and[hs/Eu].Thesediffer- BullockJ.S.,JohnstonK.V.,2005,ApJ,635,931 encesinchemicalabundanceratioshaveonlybeendetectedusing BussoM.,GallinoR.,LambertD.L.,TravaglioC.,SmithV.V., adifferentialanalysisrelativetoareferencestarwithcomparable 2001,ApJ,557,802 stellar parameters to minimise the errors in abundance measure- BussoM.,GallinoR.,WasserburgG.J.,1999,ARA&A,37,239 ments. The separation observed in [La/Zr] between the low- and CarneyB.W.,WrightJ.S.,SnedenC.,LairdJ.B.,AguilarL.A., high-α groupsconfirmstheresultsofNS11whofindaseparation LathamD.W.,1997,AJ,114,363 in[Ba/Y],whereZrandYarefirsts-processpeakelementsandLa CaseyA.R.,2014,PhDthesis,AustralianNationalUniversity andBaareseconds-processpeakelements. CaseyA.R.etal.,2014,MNRAS,443,828 (cid:13)c 2013RAS,MNRAS000,1–11

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.