remote sensing Article Satellite SST-Based Coral Disease Outbreak Predictions for the Hawaiian Archipelago JamieM.Caldwell1,*,ScottF.Heron2,3,4,C.MarkEakin2andMeganJ.Donahue1 1 Hawai’iInstituteofMarineBiology,SchoolofOceanandEarthScienceandTechnology, UniversityofHawai’i,Ka¯ne‘ohe,HI96744,USA;[email protected] 2 CoralReefWatch,U.S.NationalOceanicandAtmosphericAdministration,CollegePark,MD20740,USA; [email protected](S.F.H.);[email protected](C.M.E.) 3 MarineGeophysicalLaboratory,PhysicsDepartment,CollegeofScience,TechnologyandEngineering, JamesCookUniversity,Townsville,QLD4811,Australia 4 GlobalScienceandTechnology,Inc.,Greenbelt,MD20770,USA * Correspondence:[email protected];Tel.:+1-808-236-7424 AcademicEditors:StuartPhinn,ChrisRoelfsema,XiaofengLi,RaphaelM.KudelaandPrasadS.Thenkabail Received:15September2015;Accepted:20January2016;Published:26January2016 Abstract: Predicting wildlife disease risk is essential for effective monitoring and management, especiallyforgeographicallyexpansiveecosystemssuchascoralreefsintheHawaiianarchipelago. Warmingoceantemperaturehasincreasedcoraldiseaseoutbreakscontributingtodeclinesincoral coverworldwide. Inthisstudyweinvestigatedseasonaleffectsofthermalstressontheprevalence ofthethreemostwidespreadcoraldiseasesinHawai’i: Montiporawhitesyndrome,Poritesgrowth anomaliesandPoritestissuelosssyndrome. Topredictoutbreaklikelihoodwecompareddisease prevalencefromsurveysconductedbetween2004and2015from18HawaiianIslandsandatollswith biotic(e.g.,coraldensity)andabiotic(satellite-derivedseasurfacetemperaturemetrics)variables using boosted regression trees. To date, the only coral disease forecast models available were developedforAcroporawhitesyndromeontheGreatBarrierReef(GBR).Giventhecomplexitiesof diseaseetiology,differencesinhostdemographyandenvironmentalconditionsacrossreefregions, itisimportanttorefineandadaptsuchmodelsfordifferentdiseasesandgeographicregionsofinterest. SimilartotheAcroporawhitesyndromemodels,anomalouslywarmconditionswereimportantfor predictingMontiporawhitesyndrome,possiblyduetoarelationshipbetweenthermalstressanda compromisedhostimmunesystem. However,coraldensityandwinterconditionswerethemost importantpredictorsofallthreecoraldiseasesinthisstudy,enablingdevelopmentofaforecasting systemthatcanpredictregionsofelevateddiseaseriskuptosixmonthsbeforeanexpectedoutbreak. Ourresearchindicatessatellite-derivedsystemsforforecastingdiseaseoutbreakscanbeappropriately adaptedfromtheGBRtoolsandappliedforavarietyofdiseasesinanewregion. Thesemodels canbeusedtoenhancemanagementcapacitytoprepareforandrespondtoemergingcoraldiseases throughoutHawai’iandcanbemodifiedforotherdiseasesandregionsaroundtheworld. Keywords: diseaseoutbreaks;corals;SSTmetrics;coldsnaps;hotsnaps;wintercondition;MPSA; boostedregressiontrees;Hawaiianarchipelago;models 1. Introduction Climate change and associated ocean warming have been linked to increasing frequency and severity of infectious diseases in several economically and ecologically important marine organisms [1,2]. While diseases are an integral component of normally functioning ecosystems, outbreakscanalterpopulationstructure,leadtolarge-scaledie-offsandevenhostextinctions[3,4]. Host-pathogeninteractionsoftenshiftinresponsetoprolongedorsevereenvironmentaldisturbance, RemoteSens.2016,8,93;doi:10.3390/rs8020093 www.mdpi.com/journal/remotesensing RemoteSens.2016,8,93 2of15 suchashightemperaturesorrainfall,whichaltersinteractionsinfavorofeitherthehostorthepathogen (e.g.,promotingpathogengrowthwhilereducinghostimmuneefficacy)[5]. Temperaturechanges alonecanaffecthostandpathogenbehavior,shiftpathogenrangesandincreasehostsusceptibilityand pathogenvirulence[2,5]. Forexample,a+1˝Cincreaseinwatertemperatureincreasestheabundance ofpathogenicbacteriaVibrioharveyiinthewatercolumnandthesusceptibilityofitsabalonehost Haliotis tuerculata [6]. As periods of anomalously high ocean temperatures occur more frequently, marinediseaseoutbreaksareexpectedtobecomemorecommonandmoresevere. Linksbetweenwarmingoceantemperatures,increasedtemperaturevariabilityandcoraldisease outbreaks threaten coral reef ecosystems across the globe. With increasing disease outbreaks and coralbleaching,manycoralsworldwidearethreatenedbyextinction[7],presentingconcernsforfood security,livelihoodsandshorelineprotectionforcoastalcommunities[8]. Diseaseprevalencepatterns varyacrossoceanbasinsandarestronglycorrelatedwithregionallywarmtemperatureanomalies[9]. Previous studies investigating temperature-disease relationships have found that increased ocean temperaturespromotelesionandpathogengrowthrates[10,11],increasetransmissionandvirulence ofpathogens,andreducecoralresistancetopathogensforavarietyofcoraldiseasessuchasBlack BandDisease,YellowBandDiseaseandWhitePlague[1,2,12,13]. Whilediseaseoutbreakshavebeen mostsevereacrosstheCaribbean,coraldiseaseoutbreakshavebecomeincreasinglycommoninthe Indo-Pacific during the last decade [14–16]. Mild winters and anomalously warm summers have coincidedwithmanyoftheseoutbreakevents[7,17–19]suggestinganassociationbetweenbroadscale oceanictemperatureregimesanddiseaseonset. Four previous modeling efforts have advanced our ability to predict coral disease outbreaks usingremotelysensedseasurfacetemperature(SST)anomalies. Brunoetal. usedtheweeklySST anomaliesmetric(WSSTA;thenumberofweeksintheprecedingyearatorabove+1˝Cabovethe weeklymean),coralcoverandlong-termAcroporawhitesyndromeobservationstomodeloutbreak eventsontheGreatBarrierReef(GBR)[20]. Theyfoundthatsiteswith>50%coralcoverandmore thanfiveanomalouslywarmweekswereassociatedwithhigherdiseaseabundance. Maynardetal. alsoassessedtherelationshipamongwhitesyndromeabundance,coralcoverandwarm-seasonhigh thermalstressusingtheMeanPositiveSummerAnomaly(MPSA)metricinaregressionmodelthat predictedoutbreaklikelihoodwith>90%accuracyonreefswith>26%coralcover[18]. Thisstudy revealedthatastemperaturestressincreased,outbreakscouldoccuratlowerthresholddensities. Heronetal. incorporatedthemagnitude(notjustoccurrence)ofsummeranomaliesandalso includedanomalouswintertemperaturemetrics(WinterConditionandColdSnap)duringtheyear priortoadiseaseeventtopredictanoutbreak[17]. Theirstudyconfirmedtheimportanceofhighcoral cover(threshold>30%)andanomalouslywarmsummertemperaturesforincreasedriskofAcropora whitesyndrome,butalsodemonstratedthatmildwintertemperaturesmaybeequallyasimportantas thetwootherfactorsinsusceptibilitytodiseaseoutbreaks. TheNationalOceanicandAtmospheric Administration(NOAA)nowregularlyproducesapredictivetoolforcoraldiseaseoutbreakriskon theGBRbasedonthesefindings[21]. RandallandvanWoesikdevelopedamodelforwhite-banddiseaseonAcroporaintheCaribbean by comparing recent outbreaks with historical and contemporary SST metrics [22]. Their study revealedthatthemostusefulpredictorsofwhite-banddiseasediffereddependingonthehostspecies, wheredepth,30-yearrateoftemperaturechangeandminimumtemperaturesweremostimportant forAcroporapalmatawhilemaximum,minimumandmonthlyrateoftemperaturechangewasmost importantforAcroporacervicornis. Thesefourresearcheffortssetthefoundationtodeveloppredictive modelsforadditionaltemperature-dependentcoraldiseasesinotherregionsacrosstheglobe. ScientistsandmanagerscurrentlyusetheMaynardetal.andHeronetal.Acroporawhitesyndrome modelstoplanresearchandconservationeffortsinAustralia[23]. Remotesensingofenvironmental conditionsassociatedwithdiseaseoutbreaksisparticularlyusefulforreefmanagementagencieswhere timeandfinancialresourcesarelimited,allowingthemtobettermonitorbroadgeographicregions withlowbackgroundlevelsofdiseaseandpatchydistributionofoutbreaks. Giventhecomplexitiesof RemoteSens.2016,8,93 3of15 diseaseetiology,differencesinhostdemographyandenvironmentalconditionsacrossreefregions, suchmodelsmayneedtoberefinedandadaptedfordifferentdiseasesandgeographicregions. MetricsfromHeronetal. wereadaptedtoproduceacomplementary,experimentalpredictive tool for the Hawaiian archipelago [17]. The modifications included determining appropriate SST climatologies, adjusting metric thresholds to represent the new location, and refining the release scheduleforseasonalriskoutlooksandassessments. However,thesemetricsandthresholdshad,until now,neverbeenquantitativelyevaluatedusingdiseaseobservations. Here,weevaluatetheapplicabilityofSST-basedmetricsdescribinganomalouslywarmandcold conditionsforforecastingthreecommoncoraldiseasesinHawai’i: Montiporawhitesyndrome,Porites growthanomaliesandPoritestissuelosssyndrome. Thesediseaseshavecausedsignificantmorbidity, reducedfecundity,andoftencolonymortalityintheregion’sdominantreef-buildingcorals. Montipora whitesyndromeandPoritestissuelosssyndromearecharacterizedbygradualtorapidtissuemortality asthediseaseprogressesacrossthecolony,sometimeskillingcoloniesinlessthantwoweeks[24–26]; Poritesgrowthanomaliesarechronic,protuberantmassesofthecoralskeletonthatdonotcauserapid mortality,butdohaveanumberofdeleteriouseffectsoncoralincludingreducedgrowth,fecundity, fitnessandoverallsurvival[27]. Montipora (and Acropora) white syndrome, Porites growth anomalies and Porites tissue loss syndromehavebeenobservedtoberelatedtohightemperature[26,28],whichsuggeststhatthese threediseasesaregoodcandidatestotestthermalstressmetricsforforecastingfutureoutbreaks. The pathogenicbacteriathatcausewhitesyndromesinAcroporaandMontipora(Vibriospp.) havebeen observed to alter their disease presentation, decrease time until disease onset and/or shorten the incubation period in higher water temperatures [29,30]. The pathogens that cause Porites growth anomaliesandtissuelosssyndromearecurrentlyunknown,butpreviousstudieshaveshownthat siteswithlowerthermalstresswereassociatedwithhigherdiseaseprevalence[26]. Todetermine outbreak risk in this study, we used boosted regression trees, an ensemble statistical modeling approachthatallowedustoidentifyoptimalpredictorsandtheirrelativeimportancewhileminimizing predictivedeviance. 2. ExperimentalSection 2.1. FieldSurveysofCoralDiseases Weused789coralhealthsurveysfromtheHawai’iCoralDiseasedatabase(HICORDIS)conducted intheHawaiianarchipelagobetween2004and2015toexploreassociationsamongSST,bioticfactors anddiseaseprevalence. Surveyswereconductedbytendifferentresearchgroupson18islandsand atolls across the ~2800 km Hawaiian archipelago (Figure 1) representing large variations in coral communitycomposition,densitiesanddiseaseprevalenceacrossninedegreesoflatitude(Table1). Coralhealthobservationswerecollectedusingoneofthreemethods: belttransects,line-intercept andestimatedprevalence,acrossa1–24.5mdepthrange. Forthebelttransectmethod,diversrecorded healthinformationonallcoralcolonieswithinaspecifiedlengthandwidth(averagelength=20m, range=8–50m;averagewidth=1m,range=1–6m). Intheline-interceptmethod,diversrecorded coralhealthinformationforallcolonieslyingdirectlybeneath25moftransecttape. Intheestimated prevalencemethod,diverscountedthenumberofcoloniesinasubsetofabelttransect(average= 10ˆ2m2,range=10ˆ2m2 to10ˆ6m2),andcountedalldiseasedcolonieswithinthelargerbelt transectarea(average=25ˆ2m2,range=25ˆ2m2to25ˆ6m2). Foreachsurvey,wecalculateddiseaseprevalenceasthenumberofinfectedcoloniesdividedby thetotalnumberofhostcolonies(i.e.,MontiporaorPorites)observed. Fortheestimatedprevalence method,weextrapolatedthetotalnumberofhostcoloniesobservedfortheentiretransectsurveyed fromtheabundancescountedinthesubsetregion. Weexcludedsurveysthathad<20totalcoralcolony observationsfromthedatabecausetheydisproportionatelyresultedinexceptionallyhighprevalence values. Wecalculateddensitiesasthetotalnumberofcoloniesdividedbytheareasurveyed. RemoteSens.2016,8,93 4of15 Remote Sens. 2016, 8, 93 4 of 15 175°0'0"W 170°0'0"W 165°0'0"W 160°0'0"W 155°0'0"W 30°0'0"N ¯ 30°0'0"N !(!(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( Surveys !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!( 25°0'0"N !( No outbreaks !( 25°0'0"N !( Porites growth anomalies outbreak (PGA) !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( !( Porites tissue loss syndrome outbreak (TLS) !(!(!(!( !(!( MPGonAt i&po MraW wSh ioteu tsbyrenadkrosme outbreak (MWS) !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( 20°0'0"N !(!( MPGWAS & & T TLLSS o ouutbtbrereaakkss !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( 20°0'0"N 0 120 240 480Miles EEssrrii,, DGeELBoCrmOe, ,N GOEABAC, ON,a NtioOnAaAl G NeGoDgrCa,p ahnicd, DotehLeor rcmoen,t rHibEuRtoErs,, Sources: Geonames.org, and other contributors 175°0'0"W 170°0'0"W 165°0'0"W 160°0'0"W 155°0'0"W !(!(!(!(!(!(!(!(!(!(!(!(!(O!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(a!(!(!(!(!(!(!(hu!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(M!(!(!(!(!(a!(!(!(u!(!(!(!(i!( !(!(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( !(!(!(!(!( !(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( Hawaii!(!(!(!( !(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!( 0 25 50 100Miles Esri, DeLorme, G!(!(!(!(!(!(EB!(!(C!(!(!(O!(!(!(,!(!(!( N!(!(O!(!(!(!(AA NGDC, and other contributors FigFuigruer1e. 1M. Mapapo fofd idsiesaesaeses usurvrveeyyss inin ththee HHaawwaaiiiiaann aarrcchhiippeellaaggoo. .SSuurvrevye ylolcoactaiotinosn (sd(odtso)t sb)ebtwetewene e n 2002040a4n adnd20 210515w wereerea laolnonggt htheee exxtetenntt ooff tthhee aarrcchhiippeellaaggoo.. CCoololoreredd ddootst sinidnidciactaet elolcoactiaotnios nwshwerhee raen an outbreak occurred. outbreakoccurred. Table 1. Host distribution and environmental predictor variables used in boosted regression trees. Table1.Hostdistributionandenvironmentalpredictorvariablesusedinboostedregressiontrees. Variable Type Description and Unit Min Max Total Vcoarriaalb alebundance TByipoetic NuDmebsecrri opfti coonloanndieUs/nsiutrvey M2i0n 26M3a3x TotTaoltcaolr acloarbaul nddeannsciety BBioitoictic NuNmubmerboefr coofl ocnoileosn/iseusr/vmey2 02.015 5226.433 TotPaolcroitreasl ddeennssitiyty BBioitoictic NNuummbbeerro offc ocloolnoinesi/esm/m2 2 00..1052 95.429.4 MPoonritteispodrean sditeynsity BBioitoictic NNuummbbeerro offc ocloolnoinesi/esm/m2 2 00..0022 89..44 9 Depth Abiotic Meters below sea surface <1 24.5 Montiporadensity Biotic Numberofcolonies/m2 0.02 8.4 Accumulation of positive and WintDeerp Cthondition AAbbioitoictic Metersbelowseasurface −1<01.162 212.446.55 negative thermal anomalies; °C-weeks Accumulationofpositiveandnegative WinterCondition Abiotic Magnitude and duration of cold ´10.162 21.465 Cold Snap Abiotic thermalanomalies;˝C-weeks −5.0255 0 stress; °C-weeks Magnitudeanddurationofcoldstress; ColdSnap Abiotic Mean number of degree heating days ´5.0255 0 MPSA Abiotic ˝C-weeks 0 0.78077 in summer; °C Meannumberofdegreeheatingdays MPSA Abiotic Magnitude and duration of heat 0 0.78077 Hot Snap Abiotic insummer;˝C 0 11.02 stress; °C-weeks Magnitudeanddurationofheatstress; HotSnap Abiotic 0 11.02 ˝C-weeks 2.2. Defining Disease Outbreaks 2.2. DefiWnein cgaDlciusleaatseedO duitsberaesaek sprevalence thresholds by statistically isolating outliers as “outbreaks” (i.e., above average levels of disease prevalence), according to the Heron et al. [17] method. Briefly, Wecalculateddiseaseprevalencethresholdsbystatisticallyisolatingoutliersas“outbreaks”(i.e., for each disease, we first isolated the maximum disease prevalence value for each year from 2004 to above average levelsof disease prevalence), according to the Heron et al. [17] method. Briefly, for 2015 and calculated the mean and standard deviation (SD) of the maximum prevalence across years. eacAhndyi saenansuea,lw vealfiuresst tihsoalta etxecdeethdeedm tahxei mmueman dpilsuesa soenep rSeDv awleenrcee revpallauceedfo wreitahc hthyee naerxftr ohmigh2e0s0t4 vtaolu2e0 15 andcalculatedthemeanandstandarddeviation(SD)ofthemaximumprevalenceacrossyears. Any annualvaluesthatexceededthemeanplusoneSDwerereplacedwiththenexthighestvaluefrom RemoteSens.2016,8,93 5of15 thatyearandthemeanandSDrecalculated. Thiswasiterativelyrepeateduntilnovalueswereabove thethreshold. Anyvaluesabovethefinalthresholdwereconsideredoutbreaks. 2.3. SST-BasedMetrics TohindcastSSTanomaliesoverthesametimeperiodasourdiseaseobservationsandtodevelop atoolrelevantforforecastingdiseaseriskintothefuture,weconcatenatedthreeSSTdatasets. Weused anupdatedrelease(v5.2)oftheretrospectivePathfinderSSTdataset[31]usedinotherstudies[17]that spannedtheperiod1985–2012.Dailydatawerecompositedtoweeklytemporalresolution,maintaining thenative1/24˝(~4km)resolutionandgapfilledfollowingHeronetal.[17]. Theseconddatasetwas theNOAA/NESDISBlended5km(precisely0.05˝)datasetavailableinnearreal-timesinceMarch 2013withdailytemporalresolution[32]. Thiswascompositedasaweeklyaverageforconsistencyof temporalresolutionwiththe4kmdataset. Asthe5kmdatasetisproducedinnearreal-time,itisthe leadingoptiononwhichtobuildanyfutureforecastingofdiseaserisk. Tobridgethegapbetween thesedatasetsandtofacilitatethebiasadjustmentbetweenthem(ensuringconsistencyofthetime series),theblended11kmSSTpredecessortothe5kmproductwasused. Thisproductspannedthe periodFebruary2009–October2013andwasalsocompositedtoweeklyresolution. Thethreedatasets wereconcatenatedbylinearlyregressingpairedweeklyvaluesinthetemporaloverlapandadjusting therelativebiasofthe4kmand11kmvaluestoemulatethe5kmdata. Thisresultedinaninternally consistentSSTtimeseriesatweeklyresolutionforeachsurveylocationandfortheperiodJanuary 1985–June2015. Thiscoveredtheperiodofobservations(2004–2015)andalloweddevelopmentof long-termclimatologiesusedinthecalculationofSSTmetrics. Toexamineheatstressprecedingeachdiseasesurvey,weusedtwoSSTmetricsthathavebeen successfully used to hind/forecast Acropora white syndrome on the Great Barrier Reef (Table 1). MeanPositiveSummerAnomaly(MPSA)istheaverageofSSTanomaliesabovethecorresponding monthly mean climatology plus one standard deviation (SD), calculated across the three summer monthsandisexpressedas˝C[18]. HotSnap[17]isanotherindicatorofunusuallywarmconditions experiencedprimarilyduringthesummerperiodaccountingforboththemagnitudeanddurationof heatstress. TheHotSnapmetricusesasinglesummertimebaselinetoidentifystressfultemperature, oneSDabovethesummermeanSST,andintegratedthemagnitudeoftemperatureanomaliesabove thisbaselinethroughtime(unitsof˝C-weeks). HotSnapsalsoincludepositiveanomaliesoutside of the climatological warmest months to include warming prior/subsequent to the three-month summerseason. We also examined two winter metrics that were designed to determine if unusually cold or warmtemperaturesaffectpathogenloadingand/orhostsusceptibility,ultimatelyincreasingriskof diseaseinthesubsequentwarmermonthsasthermalstressaccumulates[17]. ColdSnap[17]combine themagnitudeanddurationofwintertimecoldstressbyintegratingtemperaturesthatareoneSD belowthemeanwinterSST(climatologicalmeanacrossthreecoldestmonthsoftheyear). TheCold Snapmetricconsistsofonlynegativevaluesandiscalculatedacrosstheninemonthsprecedingthe summer. TheWinterCondition[17]complementstheColdSnapmetrictoprovideanoverallmeasure ofwinterpre-conditioningthroughouttheyear.TheWinterConditionconsistsofpositiveandnegative anomaliesaccumulatedaboutthemeanwintertemperaturethroughthedefinedthree-monthwinter periodandalsoincorporatesadditionalnon-wintercoolperiodswhentemperaturesarebelowone winterSDabovethewintermean. Whilethetemperatureprofileintheoceanvarieswithdepth,temperatureanomaliesfromthe surfaceprovideaneffectiveestimateofanomaliestoatleastafewtensofmetersaswellasatthe surface[17]. Aseachofthesemetricswasderivedusingtemperatureanomalies,theyareindicativeof conditionsexperiencedatthedepthofcorals. However,depthmaycontributesignificantinformation tothemodels,soitisindependentlyincludedasamodelparameterandasaninteractivetermwith otherSSTmetrics. WecalculatedallSST-basedmetricsforeachpixelcontainingadiseasesurveyusing theconcatenatedSSTtimeseries. RemoteSens.2016,8,93 6of15 2.4. DeterminingOutbreakRisk To assess the relationship among SST metrics, biotic factors (e.g., host density) and disease prevalence,weusedboostedregressiontrees.Boostedregressiontrees(BRTs)fitresponsevariables(i.e., diseaseprevalence)totheirpredictorsthroughrecursivebinarysplitsinanadditivefashioninwhich simpleregressiontreesarecombinedusingaboostingalgorithm(analgorithmtoreducedevianceat eachiteration)toimprovepredictiveperformance[33]. BRTsaremodelsbuiltinastage-wisefashion usingmachine-learningtechniquestominimizepredictiveerrorateachstageofmodelbuildingand havesuperiorpredictiveperformancecomparedtoothermodelingtechniques[33–35]. ThreeparametersneedtobedefinedtooptimizemodelperformanceinBRTs: treecomplexity, learningrate,andbagfraction. Treecomplexity(tc)controlsthenumberofnodesinatreebasedon whetherinteractionsarefitted. Learningrate(lr)reducesthecontributionofeachtreeasitisadded tothemodel. Together,treecomplexityandlearningratedeterminethenumberoftreesrequiredfor optimalpredictivepower. Numberoftrees(nt)isthenumberofconsecutivetreesusedtobuildaBRT. Theoptimalntindicatesthepointjustbeforethemodelbeginstooverfitthedata. Usinganntbeyond theoptimalntmayincreasepredictivedeviance. Stochasticityaddsaccuracyandreducesoverfitting andiscontrolledinBRTsthroughabagfraction,whichusesabootstrappedsubsetofdatatofiteach newtree. Abagfractionof0.5meansthatateachiteration,individualtreesarefittedwith50%ofthe datathataredrawnatrandom,withoutreplacement,fromthedataset. Todeterminetheoptimalvaluesoflearningrate,treecomplexityandbagfraction,weexamined thecross-validationdevianceoverlrvaluesof0.01,0.001,0.005,tcvaluesof1–5andbagfractionvalues of 0.1, 0.5, 0.75. Cross validation is a technique for evaluating the model using withheld portions of the data and the cross-validation deviance measures how much the predicted values based on thenon-withhelddatadifferfromtheobservationsfromthewithhelddata[33]. Weranallpossible combinationsusinggbm.stepinthegbmpackageinRstatisticalprogramversion3.3.1[36]with10-fold cross-validationineachmodelrunandselectedthethree-parametercombinationthatproducedthe lowest cross-validation deviance to produce the optimal BRT. We further optimized the final BRT modelbyremovingredundant,non-informativepredictorvariablesselectedthroughgbm.simplify,a methodanalogoustobackwardsselectioninregression. For each disease we developed hierarchical BRT models to account for zero-inflated data. The majority of surveys (50%–91% across the three diseases) had no diseased colonies (i.e., a prevalenceofzero). Weaccountedforthezero-inflateddatadistributionusinganapproachsimilar to Cappelleetal.[34], where we combined two BRT models: a presence-absence model assuming a Bernoulli response distribution and a prevalence-if-present model using a Gaussian response distribution on square-root transformed prevalence data. The final prevalence prediction was calculatedastheprobabilityofdiseasepresencegivenbythepresence-absencemodel(0or1)multiplied bythepredictedprevalencegivenbytheprevalence-if-presentmodel. Totestpredictiveaccuracy, wecreatedallmodelsusingtheparametersdescribedaboveona trainingdatasetconsistingofarandomlyselected75%subsetofsurveysandusedthewithheld25%of surveys(testdata)forindependentvalidationofthemodels. ToevaluatetheperformanceofeachBRT individually,wecalculatedthecross-validation(CV)devianceandthestandarderrorofCVdeviance (se). Here,weusedCVdevianceasameasureofeachmodel’sabilitytoexplainthewithhelddatain thetrainingdataset. To determine model performance of the hierarchical BRTs, we calculated the area under the receiveroperatingcharacteristiccurve(AUC)andmodeldevianceforeachhierarchicalmodel. To quantitativelymeasuregoodness-of-fit,weusedAUCvalues,whichprovideametricforhowwellthe modeldistinguishespresencesandabsencesbycomparingratesoftruepositivesandfalsepositives. AmodelthatisunabletoassignpresencesmoreoftenthanrandomisindicatedbyanAUCvalueof0.5 whereasamodelthatalwaysassignspresenceswithahigherprobabilitythanabsences(perfectfit)is indicatedbyanAUCvalueof1.0.Thepercentageoftestdataexplainedbythemodeliscalleddeviance (D).WecalculatedDastheaveragedifferencebetweentrueobservationsofdiseaseprevalenceinthe testdatasetandpredictedestimatesofdiseaseprevalencemadebythemodel. RemoteSens.2016,8,93 7of15 Remote Sens. 2016, 8, 93 7 of 15 3. ResultsandDiscussion 3. Results and Discussion 3.1. DefiningDiseaseOutbreaks 3.1. Defining Disease Outbreaks UsingthemethoddescribedinHeronetal.[17],wedefinedtheoccurrenceofadiseaseoutbreak Using the method described in Heron et al. [17], we defined the occurrence of a disease outbreak forMontiporawhitesyndrome,PoritesgrowthanomaliesandPoritestissuelosssyndromeinHawai’ias for Montipora white syndrome, Porites growth anomalies and Porites tissue loss syndrome in Hawai’i anysurveywhereprevalencevaluesexceeded8.5%,45.5%and16.2%respectively. Accordingtothese as any survey where prevalence values exceeded 8.5%, 45.5% and 16.2% respectively. According to thresholds,outbreaksofMontiporawhitesyndromewererecordedin10surveys(1.3%),outbreaks these thresholds, outbreaks of Montipora white syndrome were recorded in 10 surveys (1.3%), ofPoourtibterseagkrso woft hPoarnitoesm garoliwesthw aenroemreacloiersd wederien r2e6cosrudrevde yins 2(36. 3su%r)veaynsd (3o.u3t%b)r eaankds oouftPbroeraitkess otifs sPuoreitleoss s syntdisrsoume elowsse rseynredcroormdee dwienre4 3rescuorrvdeeyds i(n5 .443% s)u;trhveeryes w(5e.4re%7);8 t9hseurer vweyersei n78t9o tsaulrfvoeryesa icnh tdoitsael afsoer. eMaceha n predviasleeanscee. Mvaelaune sprperveavleionuces lvyarluepeso rptreedvifoourslMy orneptioprotreadw fohri tMeosnytnipdorroa mwehiaten dsytnidssruomeleo asnsds ytinsdsuroe mloessi n Hawsyani’dirroamngee dinf rHomaw0a%i’it ora1n%geadn dfrionmcr e0a%se–d1%se vaenrda l-ifnoclrdeadsuerdi nsgevoeurtablr-efoalkde vdeunritns,gp roeuvtiborueaslky erevpeonrtste, d ashpirgehviaosus3l5y. 9r5ep%oratnedd a2s9 h.1i7g%h arse 3sp5.e9c5t%iv aenlyd [2296.,1377%]. rIenspceocntitvraeslyt, [m26e,3a7n]. pInre cvoanlternacset, vmaelaune spprerveavlieonucsel y repvoartluedesf oprrePvoioriutesslyg rreopwotrhteadn foomr Paloireisteas cgrrooswstthh eanInomdoa-lPieasc aificrco(sisn cthlue dInindgo-HPaacwifaici’ i()inrcalnugdeindgf rHoamw0a%i’i)t o 13.7r%angileluds ftrroamtin 0g%r etloa t1iv3.e7l%y hililguhstreantdinegm rieclalteivveellys ohfigdhi seenadseempirce vleavleenlsc oefd deisspeaitsee dpyrnevaamleinccceh daensgpeistei n theidrypnraemseinc ccehdaunrgiensg itnh ethseuimr pmreerseanncde fdaullr[i2n6g, 3t7h–e3 9su].mTmheerl aarngde sfiazlel o[2f6t,h3i7s–d3a9t]a. sTehtea lllaorwgee dsiuzse toofd tehfiisn e regidoantaalsleyt saplleocwifiecdo uust btroe adkeftihnree srhegoilodnsaflolyr tshpeecfiirfisct toiumtbe.reAask wthitrhesahlollsdtsu dfoiers thine wfiirlsdt litfimede.i sAeass weeitcho laolgl y, studies in wildlife disease ecology, these thresholds should neither be considered an exact or fixed thesethresholdsshouldneitherbeconsideredanexactorfixedthreshold. However,theyprovideda threshold. However, they provided a meaningful metric to distinguish locations with normal versus meaningfulmetrictodistinguishlocationswithnormalversusaboveaveragediseaseprevalence. above average disease prevalence. Many coral disease outbreaks between 2004 and 2015 occurred clustered in space and time Many coral disease outbreaks between 2004 and 2015 occurred clustered in space and time (Figures1and2). ThemostsevereoutbreaksforallthreediseasesoccurredintheMainHawaiian (Figures 1 and 2). The most severe outbreaks for all three diseases occurred in the Main Hawaiian Islands. Montipora white syndrome outbreaks primarily occurred during the winter of 2009/2010 Islands. Montipora white syndrome outbreaks primarily occurred during the winter of 2009/2010 and and2015onOahuandin2014onMaui. GiventheimportanceofhostdensityforMontiporawhite 2015 on Oahu and in 2014 on Maui. Given the importance of host density for Montipora white syndrome transmission [24], the high number of susceptible hosts at these specific locations may syndrome transmission [24], the high number of susceptible hosts at these specific locations may partiallyexplainthisspatialpattern. ThemajorityofoutbreaksforPoritesgrowthanomaliesandtissue partially explain this spatial pattern. The majority of outbreaks for Porites growth anomalies and losssyndromealsooccurredbetween2010and2015,withthemostsevereeventsin2010and2011. tissue loss syndrome also occurred between 2010 and 2015, with the most severe events in 2010 and ThirteenPoritesgrowthanomaliesoutbreaks(48%)wererecordedaroundtheislandofO’ahuwithsix 2011. Thirteen Porites growth anomalies outbreaks (48%) were recorded around the island of O’ahu outwbrietha kssix( 2o2u%tb)rreeackosr d(2e2d%a) rroeuconrddHeda waraoiu’inIds lHanadw.aTi’hi eIsslapnadti.a Tlhcleu sspteartiinalg colufsPtoerriintegs gofr oPwortihteas ngoromwatlhie s aroaunnodmHalaiwesa air’oiumnady Hbaewpaair’it imalalyy ebxe pplaaritniaeldlyb eyxpthlaeinceodrr beyla tthioen cobrertewlaetieonn dbiestewaeseenp dreisveaalseen pcreeavnaldenhcieg h hosatndde nhsigithie hsowsth deerenassititehse wsphaetrieaalsc tlhues tseprastoiaflo culutbstreerask osf oonutOb’raehakusm onay Ob’aeheux pmlaaiyn bede ebxyptlhaienceodr breyl athtieo n betwcoererneladtiisoena sbeetpwreevena lednisceeaasen dprleavrgaleenhcuem aannd plaorpguel ahtuiomnasns ipzoepsu[3la8t]i.oTnesn siPzoersi t[e3s8t]i.s Tsuene lPoosrsitseys ntidsrsoume e outlborsesa ksysn(d29ro%m)ea losoutobcrecaukrsr e(d29o%n)O a’lashou o.cPcurirorreds tuodn ieOs’ahhauv.e Psrhioowr nstuadpieoss ihtiavveec oshrroewlant ioan pboestiwtiveee n Porictoersrteilsastuioenl obsestwsyenend rPoomrieteas ntidsscuoer alolscso svyenr/dhroomsted aennds ictyor[a2l6 c,2o8v]e.rP/hoorsitte sdeisntshitey d[2o6m,2i8n]a. nPtorciotersa lisg tehneu s onadlolmofinthanetM coairnalH gaewnuasi iaonn Iasllla onfd tsh,ein Mcluaidni nHgaOw’aaihiaun [3Is5l]a,nwdsh,i cinhcsluudgignegs tOs’tahheure [a3r5e], awddhiictiho nsualgfgaecsttosr s drivthinegret aisrseu aedldoistsiosnyanl dfarcotmores pdrreivvianlge nticsesuthe alotsasr esycnudrrroemntely purenvkanleonwcen .that are currently unknown. FiguFirgeu2re. D2.i sDeiasseeasper epvreavleanlecneceb ybyd idseisaesaes,e,y eyaera,r,s esaeasosonna anndd rereggioionn.. SSccaatttteerrppllootsts oof fMMoonntitpiporoar awwhihteit e synsdyrnodmroe,mPeo, rPitoersitgesr ogwrotwhtahn aonmomaliaelsieas nadndP Poroirtietsest itsisssuueel loossss ssyynnddrroommee pprreevvaalleennccee tthhrroouugghh titmime.e D.Dasahsehde d horhizoorinztoanltlailn leisnerse prerepsreensetnot uotubtrberaekakt htrhersehshooldldssd deetteerrmmiinneedd bbyy tthhee iitteerraattiivvee aannaalylysissi sddeescsrcirbiebde dini nthteh e metmheotdhso.dMs. HMIH:MI: aMinaiHn aHwaawiiaaiinanIs lIaslnadnsd;s;N NWWHHI:I:N Noortrhthwweesstteerrnn HHaawwaaiiiiaann IIssllaannddss. .WWinintetre rininclculduedse s survsueryvsecyos ncdonudctuecdteidn iNn Novoevmembebre–rA–Apprirli;l;s suummmmeerr iinncclluuddeess ssuurrvveeyys scocnodnudcutcetde din iMnaMy–aOy–cOtocbteorb. er. ReRmemotoetSe eSnesn.s2. 021061,68, ,89, 393 8o8f o1f5 15 3.2. Determining Outbreak Risk 3.2. DeterminingOutbreakRisk We used hierarchical BRT models to retrospectively predict coral disease prevalence. Optimal paraWmeeutesresd fohri etrhaersceh imcaoldBeRlsT rmanogdeedl sfrtoomre 7tr5o0s–p3e5c0t0iv terleyesp, rterdeeic ctocmorpalledxiistieeass eofp 3r–e5v,a lleeanrcnei.nOg pratitmesa olf p0a.r0a0m1 eotre r0s.0f0o5r athneds ea mbaogd ferlascrtaionng eodf 0fr.7o5m (T7a5b0leto 23).5 M00otdreele sc,rotrsese-vcaolmidpatlieoxnit ideesvoiafn3c–e5s, floear rtnhien gtrarianteinsg odfa0t.a0 0r1anogre0d. 0f0ro5ma n0d.04a8b–a1g.21f3ra (cTtiaobnleo 2f).0 .C75ro(sTsa-vbalelid2a).tioMn oddeevliacnrocesss -cvlaolsidera ttioo nzedroe viinadnicceastef ogrretahteer trparinedinicgtidvaet aarcacnugreadcyf.r oAmU0C.0 4v8atloue1s. 21ra3n(gTaedbl efr2o).mC r0o.s6s7-–v0a.l8id5.a tLioanrgdee vAiaUnCce svcaloluseesr toinzdeicroatien dhiicgahteer gpreeartfeorrmpraendciect imveodaeclcsu. rAaclly .mAoUdCelsv aplrueedsicrtaendg eddisefraosme p0r.6e7vatole0n.c8e5 .bLetatregre thAaUnC ravnadluoems i(ni.de.i,c AatUeChi g>h 0e.r5) pberufto trhme amncoedeml ofodre Plso.rAitelsl mgroodwetlhs apnreodmicatleieds dpiesrefaosremperde vbaelsetn ince thbee titnedrethpaenndreanntd voamlid(ia.eti.o,An UteCsts> u0s.i5n)g btuhtet hteesmt doadtaelsefot rwPitohri atens AgrUoCw tvhaaluneo omf a0l.i8e5s (pTearbfolerm 2)e. dCboerastl dinistthreibiuntdioenp e(ni.ed.,e Mntovnatliipdoarati odnentseisttys, uPsoirnitges thdeetnessittyd aatnads/eotrw ciotlhonany AdeUnCsitvya)l,u Weionft0e.r8 C5o(Tnadbilteio2n) .aCndor aa lmdeistrtricib ouft isounm(mi.ee.,rM thoenrtmipaolr astdreesnss i(tiy.e,.P, MoriPteSsA daenndsi/toyr aHndo/t oSrncaopl)o nwyedree nimsitpyo)r,tWanint tfeorrC aolln dmitoidonelsa;n hdoawmeveetrri,c roeflastuivmem ceorntthriebrumtiaolnsst rdesifsfe(ir.ee.d, MamPSoAng anmdo/doerlsH (oFtigSunraep 3)).w Feorre eimxapmoprtlaen, tthfeo rreallaltmivoed ienlfsl;uhenocwee ovfe rW, rienltaetri vCeocnodnittrioibnu itnio tnhsed Miffoenrteipdoaram wonhgite msoydnedlrso(mFieg umreod3e).l Fwoarse x5a4m.1p%l e,cothmepraerleadti vteo inoflnulye n1c4e.5o%fW inin ttehreC Poonrditietsi ognroinwtthhe aMnoonmtiaploieras wmhoidteel sysnudgrgoemsteinmg otdhealt wWasin5t4e.r1 %Cocnodmitpiaorne dpltaoyosn aly m14o.5re% iimnpthoertPaonrti treoslger oinw tdhisaenaosme adlyiensammoicdse losfu Mggoensttiipnogra thwahtiWtei nstyenrdCroonmdeit i(oFnigpularey s3a).m Woree simhopwor ttahnet rroellaetiinved iisnefaluseendcyen aomf iecascohf Mproendtiicptoorra wvahriitaebslye nadnrdom thee (Friegluatrieon3)s.hWipe bsehtowweetnh ethreel faittitveed imnfloudeenl cfeunocfteioacnhs apnredd picrteodrivctaorria vbalreiaabnldest hine rFeilgautiroen 3s.h ipbetweenthe fittedmodelfunctionsandpredictorvariablesinFigure3. Table 2. Optimal setting and predictive performance of boosted regression tree analyses for three Table2. Optimalsettingandpredictiveperformanceofboostedregressiontreeanalysesforthree coral diseases. Models: PA: Presence-Absence; PIP: Prevalence-If-Present; nt: number of trees; tc: coraldiseases.Models:PA:Presence-Absence;PIP:Prevalence-If-Present;nt:numberoftrees;tc:tree tree complexity; lr: learning rate; bf: bag fraction; cv dev: cross-validation deviance; se: standard complexity;lr: learningrate;bf: bagfraction;cvdev: cross-validationdeviance;se: standarderror; error; AUC: area under the operating curve; D: predictive deviance of the final BRT model. Large AUC:areaundertheoperatingcurve;D:predictivedevianceofthefinalBRTmodel.LargeAUCvalues AUC values indicate higher performance models. indicatehigherperformancemodels. Coral Disease Model nt tc lr bf cv dev se AUC D CoralDisease Model nt tc lr bf cvdev se AUC D Montipora white PA 3500 5 0.001 0.75 0.262 0.036 0.70 0.30 Msyonndtirpoormaew hite PIPPA 1430500 0 4 5 0.000.100 1 00..7755 00..216123 00..003866 0.70 0.30 syndrome PIP 1400 4 0.001 0.75 0.113 0.086 Porites growth PA 1350 4 0.005 0.75 1.061 0.031 Poritesgrowth PA 1350 4 0.005 0.75 1.061 0.031 0.85 0.41 anomalies PIP 1900 5 0.005 0.75 0.048 0.005 0.85 0.41 anomalies PIP 1900 5 0.005 0.75 0.048 0.005 Porites tissue PA 750 3 0.005 0.75 1.213 0.027 PA 750 3 0.005 0.75 1.213 0.027 0.67 0.44 Poritleosstsis sueloss PIPPI P 2720700 0 4 4 0.000.500 5 00..7755 00..3333 00..000044 0.67 0.44 Figure3.Cont. Figure 3. Cont. RemoteSens.2016,8,93 9of15 Remote Sens. 2016, 8, 93 9 of 15 FiFgiugruere3 .3P. aPratriatiladl edpeepnednednecnecep lpoltostsr erlealtaintigngc ocroarladl idseisaesaesep rperveavlaelnecneceto tod edmemogorgarpahpihcica nadndth tehremrmalal prperdeidctioctrovra rviaabrilaebslfeosr pfroerv aplernevcea-liefn-pcere-isfe-pntremseondte lsm.oPdloetlss.s hPolwotsth eshporowb abthileit yporfodbiasbeialistey proefv adleisnecaese acproresvsaalernanceg eaocrfovsasl uae srafonrgeth eofp vreadluicetso rfovra rtihaeb lep,rwedhiiclteoar cvcoaurinatbinleg, fworhitlhee aacvceoruangetinefgf efcotsr othfea llaovtehrearge vaerfifaebcltess oifn atlhl eomthoedr evla.rMiaobdleesl sinw tehree dmeovdeleol.p Medowdeitlhs warearne ddoemvelylocpheods ewnit7h5 %a roafntdhoemdalyta cshetosaennd 7w5e%re of tetshteed duastainsgett ahned2 5w%erwe ittehshteeldd .uRsienlga ttihvee i2n5fl%u ewnictehhoefleda.c Rheplaretidviec tionrflvuaerniaceb loefi seaschho wprnedasicatopre vrcaerniatbalgee is insahocowrnn ears oaf peearcchegnrtaagpeh .inW ae cdoirdnnero tofin ecaocrhp gorraatpehn. oWne-i ndfiodr mnoatt iivnecoprrpeodriacttoe rnso,wn-hinicfhorwmearteivdee pterremdiincteodrs, uswinhgicthh ewRerfeu ndcettieornmgimnebd.s iumspinligfy ,thaen dRt hfuernecftoioren wgmebd.osimnoptlifsyh, oawndp atrhteiarelfdoerpe ewnde ednoc enpolto tsshfoowr tphaorsteial vadreiapbelnesde(bnlcaen kpslpoatsc esf)o.rH othstodsee nsvitayriiasbslpese ci(fibeldanbky gsepnaucses()i..e .,HMoosnt tipdoernasoitryP oirsi tesspdeecnifsiietyd) .bMyP SgAenisus M(ei.aen., PMoosnittiivpeorSau omr mPoerritAesn doemnsailtyy.). MPSA is Mean Positive Summer Anomaly. 3.32..21..1M. MonotniptioproaraW WhihteiteS ySnydnrdormomee WWinitnetreCr oCnodnidtiiotino,nC, ColodldS nSanpa,pH, HotoSt nSanpapa nadndh ohsotsdt ednesnistyityw wereereth tehem mosotsitn ifnofromrmataivtievep rperdeidcitcotrosrs ofoMf Monotniptioproaraw whihteites ysnydnrdormomeep rperveavlaelnecnece( F(iFgiugruere3 )3;)a; lallol tohtehrerp rperdeidcitcotrorv avraiaribalbelsesw wereered edteetremrminiended nonno-nin-ifnofromrmataitviev.eT. Thheem meaenanp rperdeidcitcitvievea caccucruarcaycyf ofrorM Monotniptioproaraw whihtietes ysnydndrormomee( A(AUUCC)w) wasas0 .07.070a nadnd exepxlpalianiended3 03%0%o fotfh tehed edveivainacneceu suisnigngth tehete tsetsdt adtaata(T (aTbalbele2 )2.)T. hTeheW WinitnetrerC oCnodnidtiiotinonm metertircich ahdadth tehe hihgihgehsetsrte rlealtaivtievein iflnufleunecnecein inth tehem modoedle,lh, ihgihglhiglihgthintignga are rlealtaiotinosnhsihpipb ebtewtweeenenm mildildW WinitnetreCr Conodnidtiiotinosns (>(0>.08.585˝ C°-Cw-eweekesk)sa)n danhdig hheigrhdeisre adsieseparseev aplerenvcae.leTnhcies. reTlhaitsio nreslhaitpioinssshimipi laisr tsoimthielarre latoti otnhseh irpelbaetitownesehnip wbinettewreteemn wpeirnatteurr teesmapnderAatcurorepso raanwdh Aitcerospyonrdar womhietse osynnthderoGmreeast oBna trhriee rGRreeaeft wBahrerrieerW Rienetfe rwChoenred Witioinntser ofC2o.5n–d6i.t5io˝nCs- wofe 2e.k5s–w6.5e r°eCa-swsoeceikaste wdewreit hashsoigchiaetreddi sweaitshe haibguhnedr adnicseea[1se7 ]a.bAulnsodacnonces i[s1te7n].t Awlistoh cAocnrsoipsotreant wwhiittehs Ayncrdorpoomrae wonhitthee sGynBdRro[1m7]e, foenw tohre nGoBCRo l[d17S]n, afepwsw oerr enoa sCsooclida tSendawpsit hwheirgeh adssisoecaiasetepdr ewviatlhe nhcieg,h podsissiebalsye supgrgevesatlienngceth, eppoastshibolgye nsiucgbgaecstetirniag ththate capuastehoMgoenntiicp obraacwtehriitae styhnadt rocmauesem aMyohnatvipeoraal owwheirte liksyelnihdoroomdeo fmsuayrv hivavaled au lroiwngerv leirkyelciohlodowd ionft seursr.vival during very cold winters. The model results indicated unexpected relationships between disease prevalence and Hot Snaps and host (i.e., Montipora) density. The Hot Snap metric had a non-linear relationship with disease prevalence. Similar to Acropora white syndrome, there was an association between Hot Snaps RemoteSens.2016,8,93 10of15 ThemodelresultsindicatedunexpectedrelationshipsbetweendiseaseprevalenceandHotSnaps and host (i.e., Montipora) density. The Hot Snap metric had a non-linear relationship with disease prevalence. SimilartoAcroporawhitesyndrome,therewasanassociationbetweenHotSnapsabove 2˝C-weeksandhigherdiseaseprevalence. IncontrasttoAcroporawhitesyndromehowever,high disease prevalence was also associated with Hot Snaps less than 1.3 ˝C-weeks. This relationship may help explain why several Montipora white syndrome outbreaks have occurred during winter monthsinHawai’i(Figure2). Howeveradditionalfactorsnotincludedinthestudymaybeneeded to better understand the seasonality of Montipora white syndrome such as increased rainfall and associated runoff. Surprisingly, disease prevalence increased as host density decreased with the highestdiseaseprevalenceatsiteswith<2.7colonies¨m´2.Morestudiesareneededtofurtherexamine thisrelationship,however,becausethisresultmayreflecthostdensitiesinlocationswithpersistent severeoutbreakssuchasKa¯ne’oheBay,O’ahu,ratherthanrealthresholdhostdensitiesneededfor diseaseestablishment. 3.2.2. PoritesGrowthAnomalies The model developed for Porites growth anomalies prevalence had the highest predictive performance where depth and colony density were the strongest drivers of disease prevalence (Figure3). TheAUCvalueforthehierarchicalPoritesgrowthanomaliesmodelwas0.85andexplained 41% of the deviance using the test data (Table 2). Given the high relative influence of site level characteristics in predicting disease prevalence, thermal stress is most likely to increase disease prevalenceatsitesinspecificdepthandhostdensityranges. Spatiallyexplicitmapsofsuchsitelevel characteristicscanbedeveloped(andsubsequentlyupdated)tocomplementthermalriskassessments. Therewerenegativerelationshipsbetweenbothdepthandcolonydensityanddiseaseprevalence, whereshallowercoralcommunities(<12.7m)andlowercolonydensitieswereassociatedwithhigher diseaseprevalence. AlthoughtherelationshipbetweenshallowerdepthsandPoritesgrowthanomalies prevalenceiscurrentlyunclear,onepreviousstudydeterminedthatUVradiationdoesnotexplain thisrelationship[27]. WithinKa¯ne’oheBay,O’ahu,Williamsetal.[28]foundanegativerelationship betweencoralcoverandPoritesgrowthanomaliesprevalence;ourstudyincludestheWilliamsetal. dataset and suggests a similar relationship may exist across the entire archipelago. One possible explanationforthenegativerelationshipbetweencolonydensityanddiseaseisthathighercolony density often reflects a community of very small colonies, and Porites growth anomalies are more commononlargercorals[39]. WinterCondition,MPSAandHotSnapsignificantlycontributedtopredictiveaccuracyofthe Poritesgrowthanomaliesmodel(Figure3). Abi-modalrelationshipexistsbetweenWinterCondition and disease prevalence where cold (<´5 ˝C-weeks) and warm (>8.8 ˝C-weeks) conditions were associated with higher disease prevalence. There was a negative relationship between disease prevalenceandbothMeanPositiveSummerAnomaly(MPSA)andHotSnap,indicatinghighthermal stress is associated with lower disease prevalence. This combination of colder winters and mild summers compliments a prior study that found a negative association between Porites growth anomaliesandaverageoccurrenceofanomalouslywarmtemperature(WSSTA)overthefouryears priortoasurvey[26]. Thiscombinationmayalsohelpexplaintheshorter-termseasonalityassociated withincreasedgrowthanomalydensityandsubsequentgrowthinthefall[27]. 3.2.3. PoritesTissueLossSyndrome Host and coral density, depth, Winter Condition, MPSA and Hot Snap were important for predictingPoritestissuelosssyndromeprevalence(Figure3). ThemeanpredictiveaccuracyforPorites tissuelosssyndrome(AUC)was0.67andexplained44%ofthedevianceusingthetestdata(Table2). Therewasaninteractionbetweenhostdensity,coraldensityanddiseaseprevalence,inwhichsiteswith highcoraldensitybutlowerhostdensitywereassociatedwiththehighestdiseaseprevalencevalues. Diseaseprevalencewasalsohighestinshallowerwater(<7m). TheWinterConditionmetricshowsa
Description: