ebook img

Satellite Orbits: Models, Methods and Applications PDF

381 Pages·2000·4.347 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Satellite Orbits: Models, Methods and Applications

Astrodynamical Constants Quantity Value References and Remarks Time MJD(J2000) 51544.5 IAU 1976 (Seidelrnann 1992) fl—TA I 32. 184 s MU 1991 (Seidelmann 1992) GPS—TAI —19s Ilofmann-Wellenhofet at. (1997) Universal C 299 792 458 rn/s IAU 1976 (Seidelmann 1992) 0 6.67310—20 km3/(kg Cohen & Taylor 1987 Earth U Me 398 600.44l5km3/s2 .IGM-3 J2 0.00108263 JGM-3 Re 6378. 137 km WGS-84 (NIMA 1997) f 1/298.257223563 WGS-84 (NIMA 1997) WED 0.72921 Moritz 1980 Sun GM® 1.3271244001810" km3/s2 DE405 (Standish 1998) AU 149597 870.691 km 1DE405 (Standish 1998) km Seidelrnann 1992 P® 4.56010—6 N/rn2 IERS 1996 (McCarthy 1996) Moon 0MM 4902.80 ikm3/s2 DE4QS (Standish 1998) aM 384 400 km Seidelrnann 1992 1738 km Seidelrnann 1992 Satellites TOEC 42164km 23h56m04s orbital period VOEC 3.075 km/s Tops 26561 km 1h58ni02s orbital period vcps 3.874 km/s TLEO 6678.. .7878km 300... 1500 km altitude 7.726.7.113km/s VLEO Underlined numbers indicate a rounding of the original value to the given number of digits. DE405 constants refer to the TDB time system. Montenbruck Gill Satellite Orbits Oliver Montenbruck Eberhard Gill • Satellite Orbits Models, Methods and Applications With 97 Figures Including 10 Color Figures, 47 Tables, and a CD-ROM Springer Dr. Oliver Montenbruck Dr. Eberhard Gill Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. Oberpfaffenhofen Postfach 1116 82230 WeBling, Germany Email: [email protected] Cover Figure: Designed for a mission time of two years; on duty for eight years. Built by Dornier Satellitensysteme GmbH, the German X-ray satellite Rosat was an ongoing success story. ©DSS Library of Congress Control Number: 00038815 Corrected 3rd Printing 2005 1St Edition 2000 Additional material to this book can be downloaded from http://extras.springer.com. ISBN 978-3-642-63547-2 ISBN 978-3-642-58351-3 (eBook) DOl 10.1007/978-3-642-58351-3 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifical]y the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micrDfilm or in any other way, and storage in data banks, Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. springeronline.com © Springer-Verlag Berlin Heidelberg 2000 Originally published by Springer-Verlag Berlin Heidelberg 2000 Softcover reprint of the hardcover 1st edition 2000 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: by the authors and EDV Beratung F. Herweg, Hirschberg using a Springer JSIpC macro package Cover design: Cover design: E. Kirchner, Springer Heidelberg Printed on acid-free paper SPIN: 10761022 55/3141/jl 5 4 3 2 i 0 Preface SatelliteOrbits–Models,Methods,andApplicationshasbeenwrittenasacompre- hensivetextbookthatguidesthereaderthroughthetheoryandpracticeofsatellite orbit prediction and determination. Starting from the basic principles of orbital mechanics,itcoverselaborateforcemodelsaswellasprecisemethodsofsatellite tracking and their mathematical treatment. A multitude of numerical algorithms used in present-day satellite trajectory computation is described in detail, with properfocusonnumericalintegrationandparameterestimation.Thewiderangeof levelsprovidedrendersthebooksuitableforanadvancedundergraduateorgradu- atecourseonspaceflightmechanics,uptoaprofessionalreference innavigation, geodesy and space science. Furthermore, we hope that it is considered useful by theincreasingnumberofsatelliteengineersandoperatorstryingtoobtainadeeper understandingofflightdynamics. The idea for thisbook emerged when we realized thatdocumentationon the methods,modelsandtoolsoforbitdeterminationwaseitherspreadovernumerous technicalandscientificpublications,orhiddeninsoftwaredescriptionsthatarenot, ingeneral,accessibletoawidercommunity.Havingworkedformanyyearsinthe fieldofspaceflightdynamicsandsatelliteoperations,wetriedtokeepinclosetouch withquestionsandproblemsthatariseduringdailywork,andtostressthepractical aspectsoforbitdetermination.Nevertheless,ourinterestintheunderlyingphysics motivatedustopresenttopicsfromfirstprinciples,andmakethebookmuchmore thanjustacookbookonspacecrafttrajectorycomputation. Withtheavailabilityofpowerfulongroundandonboardcomputers,aswellas increasingdemandsforprecision,theneedforanalyticalperturbationtheorieshas almostbeenreplacedbyapurelynumericaltreatmentoftheequationsofmotion. Wethereforefocusonmodelsandmethodsthatcanbeappliedwithinanumerical reconstructionofthesatelliteorbitanditsforecast.Asaconsequence,topicslike orbitdesign,long-termorbitevolutionandorbitaldecayarenotaddressedspecifi- cally,althoughtherequiredfundamentalsareprovided.Geodesicsatellitemissions, ontheotherhand,havereachedanunprecedentedlevelofpositionaccuracywitha needforverycomplexforceandmeasurementmodels,whichcouldnotalwaysbe coveredinfulldetail.Inanycase,referencestobackgroundinformationaregiven, soastoallowthereadereasyaccesstothesespecificareas. Eachchapterincludesexercisesatvaryinglevelsofcomplexity,whichaimat an additional practice of the presented material, or address supplementarytopics ofpracticalinterest.Wherepossible,wehavetriedtofocusonproblemsthathigh- VI Preface lighttheunderlyingphysicalsmodelsoralgorithmicmethods,ratherthanrelying on purely numerical reference examples. In most cases, the exercises include a comprehensivedescriptionofthesuggestedsolution,aswellasthenumericalre- sults.These are either deriveddirectlyfrom equationsgiveninthe text,or based onsamplecomputerprograms. The CD-ROM that was provided with previous printings of this edition has beenreplacedbyazip-archivemadeavailableonSpringer’sExtraMaterialsserver http://extra.springer.com/. Thisarchivecontains theC++sourcecodeofall sample programs and applications, as well as relevant data files. The software is builtaroundapowerfulspaceflightdynamicslibrary,whichislikewiseprovidedas sourcecode.Forthesakeofsimplicitywehaverestrictedthelibrarytobasicmod- els,butemphasizedtransparentprogrammingandin-codedocumentation.This,in turn,allowsforanimmediateunderstandingofthecode,andpavesthewayforeasy softwareextensionsbytheuser.Freeuseoftheentiresoftwarepackageincluding therightformodificationsisgrantedfornon-commercialpurposes.Readers,stu- dents and lecturers are, therefore, encouraged to apply it in further studies, and todevelopnewapplications.Weassumethatthereaderisfamiliarwithcomputer programming,buteveninexperiencedreadersshouldbeabletousethelibraryfunc- tionsasblack boxes.Allsourcecode iswritteninC++, nowadaysa widelyused programminglanguageandonewhichisreadilyavailableonavarietyofdifferent platformsandoperatingsystems. We would liketo thank Springer-Verlag for their cordial cooperationand in- terestduringtheprocessofpublishingthisbook.Ourthanksarealsoduetoallour friendsandcolleagues,who,withtheirideasandadvice,andtheirhelpincorrect- ing the manuscriptand in testingthe programs, have playedan importantrole in thesuccessfulcompletionofthisbook.Realmissiondatasetsfortheapplication programshavekindlybeenprovidedbytheGPS/METprojectandtheFlightDy- namicsAnalysisBranchoftheGoddardSpaceFlightCenter.Numerousagencies andindividualshavecontributedimagesfortheintroductionofthisbook,whichis gratefullyacknowledged. May2000andAugust2012 OliverMontenbruckandEberhardGill Contents 1 AroundtheWorldinaHundredMinutes. . . . . . . . . . . . . . . . 1 1.1 APortfolioofSatelliteOrbits . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Low-EarthOrbits . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 OrbitsofRemoteSensingSatellites . . . . . . . . . . . . . . 3 1.1.3 GeostationaryOrbits . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4 HighlyEllipticalOrbits . . . . . . . . . . . . . . . . . . . . . 6 1.1.5 Constellations. . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 NavigatinginSpace . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 TrackingSystems . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 AMatterofEffort . . . . . . . . . . . . . . . . . . . . . . . 10 2 IntroductoryAstrodynamics . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 GeneralPropertiesoftheTwo-BodyProblem . . . . . . . . . . . . 16 2.1.1 PlaneMotionandtheLawofAreas . . . . . . . . . . . . . . 16 2.1.2 TheFormoftheOrbit . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 TheEnergyIntegral . . . . . . . . . . . . . . . . . . . . . . 19 2.2 PredictionofUnperturbedSatelliteOrbits . . . . . . . . . . . . . . 22 2.2.1 Kepler’sEquationandtheTimeDependenceofMotion . . . . 22 2.2.2 SolvingKepler’sEquation . . . . . . . . . . . . . . . . . . . 23 2.2.3 TheOrbitinSpace . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.4 OrbitalElementsfromPositionandVelocity . . . . . . . . . 28 2.2.5 Non-SingularElements . . . . . . . . . . . . . . . . . . . . . 29 2.3 Ground-BasedSatelliteObservations . . . . . . . . . . . . . . . . . 32 2.3.1 SatelliteGroundTracks . . . . . . . . . . . . . . . . . . . . 32 2.3.2 SatelliteMotionintheLocalTangentCoordinateSystem . . . 36 2.4 PreliminaryOrbitDetermination . . . . . . . . . . . . . . . . . . . 39 2.4.1 OrbitDeterminationfromTwoPositionVectors . . . . . . . . 40 2.4.2 OrbitDeterminationfromThreeSetsofAngles . . . . . . . . 43 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 ForceModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Geopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.1 ExpansioninSphericalHarmonics . . . . . . . . . . . . . . . 56 3.2.2 SomeSpecialGeopotentialCoefficients . . . . . . . . . . . . 59 3.2.3 GravityModels . . . . . . . . . . . . . . . . . . . . . . . . . 61 VIII Contents 3.2.4 Recursions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.5 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 SunandMoon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.1 PerturbingAcceleration . . . . . . . . . . . . . . . . . . . . 69 3.3.2 Low-PrecisionSolarandLunarCoordinates . . . . . . . . . . 70 3.3.3 ChebyshevApproximation . . . . . . . . . . . . . . . . . . . 73 3.3.4 JPLEphemerides . . . . . . . . . . . . . . . . . . . . . . . . 75 3.4 SolarRadiationPressure . . . . . . . . . . . . . . . . . . . . . . . 77 3.4.1 EclipseConditions . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.2 ShadowFunction . . . . . . . . . . . . . . . . . . . . . . . . 81 3.5 AtmosphericDrag . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5.1 TheUpperAtmosphere . . . . . . . . . . . . . . . . . . . . . 86 3.5.2 TheHarris–PriesterDensityModel . . . . . . . . . . . . . . 89 3.5.3 TheJacchia1971DensityModel. . . . . . . . . . . . . . . . 91 3.5.4 AComparisonofUpperAtmosphereDensityModels. . . . . 98 3.5.5 PredictionofSolarandGeomagneticIndices . . . . . . . . . 102 3.6 ThrustForces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.7 PrecisionModeling . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.7.1 EarthRadiationPressure . . . . . . . . . . . . . . . . . . . . 107 3.7.2 EarthTides . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.7.3 RelativisticEffects . . . . . . . . . . . . . . . . . . . . . . . 110 3.7.4 EmpiricalForces . . . . . . . . . . . . . . . . . . . . . . . . 112 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4 NumericalIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.1 Runge–KuttaMethods. . . . . . . . . . . . . . . . . . . . . . . . . 118 4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.1.2 GeneralRunge–KuttaFormulas . . . . . . . . . . . . . . . . 120 4.1.3 StepsizeControl . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1.4 Runge–Kutta–NyströmMethods . . . . . . . . . . . . . . . . 123 4.1.5 ContinuousMethods . . . . . . . . . . . . . . . . . . . . . . 127 4.1.6 ComparisonofRunge–KuttaMethods . . . . . . . . . . . . . 129 4.2 MultistepMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.2.2 Adams–BashforthMethods . . . . . . . . . . . . . . . . . . 134 4.2.3 Adams–MoultonandPredictor–CorrectorMethods . . . . . . 136 4.2.4 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.2.5 VariableOrderandStepsizeMethods . . . . . . . . . . . . . 141 4.2.6 StoermerandCowellMethods . . . . . . . . . . . . . . . . . 143 4.2.7 Gauss–JacksonorSecondSumMethods. . . . . . . . . . . . 145 4.2.8 ComparisonofMultistepMethods . . . . . . . . . . . . . . . 146 4.3 ExtrapolationMethods . . . . . . . . . . . . . . . . . . . . . . . . 147 4.3.1 TheMid-PointRule . . . . . . . . . . . . . . . . . . . . . . 147 4.3.2 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Contents IX 4.3.3 ComparisonofExtrapolationMethods . . . . . . . . . . . . . 150 4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5 TimeandReferenceSystems . . . . . . . . . . . . . . . . . . . . . . . 157 5.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.1.1 EphemerisTime . . . . . . . . . . . . . . . . . . . . . . . . 160 5.1.2 AtomicTime . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.1.3 RelativisticTimeScales . . . . . . . . . . . . . . . . . . . . 162 5.1.4 SiderealTimeandUniversalTime . . . . . . . . . . . . . . . 165 5.2 CelestialandTerrestrialReferenceSystems . . . . . . . . . . . . . 169 5.3 PrecessionandNutation . . . . . . . . . . . . . . . . . . . . . . . . 172 5.3.1 LunisolarTorquesandtheMotionoftheEarth’sRotationAxis 172 5.3.2 CoordinateChangesduetoPrecession . . . . . . . . . . . . . 174 5.3.3 Nutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 5.4 EarthRotationandPolarMotion . . . . . . . . . . . . . . . . . . . 181 5.4.1 RotationAbouttheCelestialEphemerisPole . . . . . . . . . 181 5.4.2 FreeEulerianPrecession . . . . . . . . . . . . . . . . . . . . 182 5.4.3 ObservationandExtrapolationofPolarMotion . . . . . . . . 183 5.4.4 TransformationtotheInternationalReferencePole . . . . . . 185 5.5 GeodeticDatums . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 6 SatelliteTrackingandObservationModels. . . . . . . . . . . . . . . 193 6.1 TrackingSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.1.1 RadarTracking . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.1.2 LaserTracking . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.1.3 TheGlobalPositioningSystem . . . . . . . . . . . . . . . . 203 6.2 TrackingDataModels . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.2.1 TransmitterandReceiverMotion . . . . . . . . . . . . . . . 208 6.2.2 AngleMeasurements . . . . . . . . . . . . . . . . . . . . . . 209 6.2.3 RangeMeasurements . . . . . . . . . . . . . . . . . . . . . . 213 6.2.4 DopplerMeasurements . . . . . . . . . . . . . . . . . . . . . 215 6.2.5 GPSMeasurements . . . . . . . . . . . . . . . . . . . . . . . 217 6.3 MediaCorrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.3.1 InteractionofRadiationandAtmosphere . . . . . . . . . . . 219 6.3.2 TroposphericRefraction . . . . . . . . . . . . . . . . . . . . 221 6.3.3 IonosphericRefraction . . . . . . . . . . . . . . . . . . . . . 225 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 7 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 7.1 Two-BodyStateTransitionMatrix . . . . . . . . . . . . . . . . . . 235 7.1.1 Orbital-ElementsTransitionMatrix . . . . . . . . . . . . . . 235 7.1.2 Keplerian-to-CartesianPartialDerivatives . . . . . . . . . . . 236 7.1.3 Cartesian-to-KeplerianPartialDerivatives . . . . . . . . . . . 238 X Contents 7.1.4 TheStateTransitionMatrixandItsInverse . . . . . . . . . . 239 7.2 VariationalEquations . . . . . . . . . . . . . . . . . . . . . . . . . 240 7.2.1 TheDifferentialEquationoftheStateTransitionMatrix . . . 240 7.2.2 TheDifferentialEquationoftheSensitivityMatrix . . . . . . 241 7.2.3 FormandSolutionoftheVariationalEquations . . . . . . . . 241 7.2.4 TheInverseoftheStateTransitionMatrix . . . . . . . . . . . 243 7.3 PartialDerivativesoftheAcceleration . . . . . . . . . . . . . . . . 244 7.3.1 Geopotential . . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.3.2 Point-MassPerturbations . . . . . . . . . . . . . . . . . . . . 247 7.3.3 SolarRadiationPressure . . . . . . . . . . . . . . . . . . . . 248 7.3.4 Drag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 7.3.5 Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 7.4 PartialsoftheMeasurementswithRespecttotheStateVector . . . . 250 7.5 PartialswithRespecttoMeasurementModelParameters . . . . . . 252 7.6 DifferenceQuotientApproximations . . . . . . . . . . . . . . . . . 253 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 8 OrbitDeterminationandParameterEstimation . . . . . . . . . . . . 257 8.1 WeightedLeast-SquaresEstimation. . . . . . . . . . . . . . . . . . 258 8.1.1 LinearizationandNormalEquations . . . . . . . . . . . . . . 260 8.1.2 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 8.1.3 StatisticalInterpretation . . . . . . . . . . . . . . . . . . . . 263 8.1.4 ConsiderParameters . . . . . . . . . . . . . . . . . . . . . . 265 8.1.5 EstimationwithAPrioriInformation . . . . . . . . . . . . . 266 8.2 NumericalSolutionofLeast-SquaresProblems . . . . . . . . . . . 268 8.2.1 QRFactorization . . . . . . . . . . . . . . . . . . . . . . . . 268 8.2.2 HouseholderTransformations . . . . . . . . . . . . . . . . . 270 8.2.3 GivensRotations . . . . . . . . . . . . . . . . . . . . . . . . 272 8.2.4 SingularValueDecomposition . . . . . . . . . . . . . . . . . 274 8.3 KalmanFiltering . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 8.3.1 RecursiveFormulationofLeast-SquaresEstimation. . . . . . 277 8.3.2 SequentialEstimation . . . . . . . . . . . . . . . . . . . . . 280 8.3.3 ExtendedKalmanFilter . . . . . . . . . . . . . . . . . . . . 282 8.3.4 FactorizationMethods . . . . . . . . . . . . . . . . . . . . . 283 8.3.5 ProcessNoise . . . . . . . . . . . . . . . . . . . . . . . . . . 284 8.4 ComparisonofBatchandSequentialEstimation . . . . . . . . . . . 286 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 9.1 OrbitDeterminationErrorAnalysis . . . . . . . . . . . . . . . . . . 293 9.1.1 ALinearizedOrbitModel . . . . . . . . . . . . . . . . . . . 294 9.1.2 ConsiderCovarianceAnalysis . . . . . . . . . . . . . . . . . 297 9.1.3 TheGEODAProgram . . . . . . . . . . . . . . . . . . . . . 299 9.1.4 CaseStudies . . . . . . . . . . . . . . . . . . . . . . . . . . 300 9.2 Real-TimeOrbitDetermination . . . . . . . . . . . . . . . . . . . . 303

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.