ebook img

SAT II Mathmatics level 2: Designed to get a perfect score on the exam. PDF

406 Pages·2018·5.667 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SAT II Mathmatics level 2: Designed to get a perfect score on the exam.

Dr. John Chung’s       SAT II           Mathematics         Level 2             Good Luck!                 Dr. John Chung's SAT II Math Level 2 1 Dear Beloved Students,  With this SAT II Subject Test Math Level 2 Third Edition, I like to thank all students who sent me  email to encourage me to revise my books. As I said, while creating this series of math tests has  brought great pleasure to my career, my only wish is that these books will help the many students  who are preparing for college entrance. I have had the honor and the pleasure of working with  numerous students and realized the need for prep books that can simply explain the fundamentals  of mathematics.  Most importantly, the questions in these books focus on building a solid  understanding of basic mathematical concepts. Without understanding these solid foundations, it  will be difficult to score well on the exams. These book emphasize that any difficult math question  can be completely solved with a solid understanding of basic concepts.  As the old proverb says, “Where there is a will, there is a way.” I still remember vividly on fifth‐ grader who was last in his class who eventually ended up at Harvard University seven years later. I  cannot stress enough how such perseverance of the endless quest to master mathematical  concepts and problems will yield fruitful results.  You may sometimes find that the explanations in these books might not be sufficient. In such a  case, you can email me at [email protected]  and I will do my best to provide a more detailed  explanation. Additionally, as you work on these books, please notify me if you encounter any  grammatical or typographical errors so that I can provide an update version.  It is my great wish that all students who work on these books can reach their ultimate goals and  enter the college of their dreams.  Thank you.  Sincerely,      Dr. John Chung    2 Contents     61 Tips       TIP 01  Identical Equation  Page 06  Tip 02  Remainder Theorem  Page 07  Tip 03  Factor Theorem  Page 08  Tip 04  Sum and Product of the roots  Page 09  Tip 05  Complex Number  Page 11  Tip 06  Conjugate Roots  Page 12  Tip 07  Linear Function  Page 13  Tip 08  Distance from a Point to a line  Page 14  Tip 09  Distance from a Point to a Plane  Page 15  Tip 10  Quadratic Function   Page 16  Tip 11  Discriminant  Page 17  Tip 12  Circle  Page 18  Tip 13  Ellipse  Page 19  Tip 14  Parabola  Page 21  Tip 15  Hyperbola  Page 23  Tip 16  Function  Page 25  Tip 17  Domain and Range of a Composite Function  Page 26  Tip 18  Piecewise‐Defined Function  Page 28  Tip 19  Odd and Even Function  Page 29  Tip 20  Combinations of functions  Page 30  Tip 21  Periodic Functions  Page 31  Tip 22  Inverse Functions  Page 32  Tip 23  The Existence of an Inverse Function   Page 33  Tip 24  Leading Coefficient Test (Behavior of Graph)  Page 34  Dr. John Chung's SAT II Math Level 2 3 Tip 25  Arithmetic Sequence  Page 35  Tip 26  Geometric Sequence  Page 36  Tip 27  Exponential Functions  Page 37  Tip 28  Logarithmic Functions  Page 39  Tip 29  Basic Trigonometric Identities  Page 41  Tip 30  Circle(Trigonometry)  Page 43  TIP 31  Reference Angles and Cofunctions  Page 44  Tip 32  Trigonometric Graphs  Page 45  Tip 33  Inverse Trigonometric Functions  Page 46  Tip 34  Sum and difference of angles  Page 48  Tip 35  Double Angle Formula  Page 49  Tip 36  Half Angle Formula  Page 50  Tip 37  Trigonometric Equation  Page 51  Tip 38  The Law of Sines  Page 58  Tip 39  The Law of Cosines  Page 54  Tip 40  Permutation  Page 55  Tip 41  Combination  Page 56  Tip 42  Dividing Group  Page 57  Tip 43  Binomial Expansion Theorem  Page 58  Tip 44  Sum of Coefficients of a Binomial Expansion  Page 59  Tip 45  Binomial Probability  Page 60  Tip 46  Probability with Combinations  Page 61  Tip 47  Heron’s Formula  Page 62  Tip 48  Vectors in the Plane  Page 63  Tip 49  Interchange of Inputs  Page 65  Tip 50  Polynomial Inequalities  Page 67  Tip 51  Rational Inequalities  Page 69  Tip 52  Limits  Page 71  Tip 53  Rational Function and Asymptote  Page 73  Tip 54  Parametric Equations  Page 76  4 Tip 55  Polar Coordinates  Page 77  Tip 56  Matrix  Page 79  Tip 57  Inclination Angle  Page 81  Tip 58  Angle between Two Lines  Page 82  Tip 59  Intermediate Value Theorem  Page 83  Tip 60  Rational Zero Test  Page84  Tip 61  Descartes Rule of Sign  Page 85            Practice Tests        Test 01    Page 087  Test 02    Page 113  Test 03    Page 141  Test 04    Page 167  Test 05    Page 195  Test 06    Page 223  Test 07    Page 249  Test 08    Page 277  Test 09    Page 303  Test 10    Page 329  Test 11    Page 355  Test 12    Page 381    Dr. John Chung's SAT II Math Level 2 5 Tips TIP 01 Identical Equation An identical equation is an equation which is true for all values of the variable. 10x5x15x is an identical equation because it is always true for all real x. 10x515 is an algebraic equation because it is true for x1only.  Identical equation has infinitely many solutions.  In an identical equation, the expressions of both sides are exactly same. Example 1: 5x55x5 Example 2: axb0 for all real values of x  axb0x0  a0 and b0 PRACTICE 1. If axb3x2 is always true for all realx, what are the values of a and b? 2. If a(x1)b(x1)x9 is true for all real values of x, what are the values of aand b? 3. If x2 2x6a(x1)2 b(x1)c is true for all real x, where a,b,and care constants, what are the values of a,b,andc? EXPLANATION 1. The coefficients must be equal. 2. axabxb(ab)xab, (ab)x(ab)x9 Coefficients must be equal. ab1 and ab9 Therefore, a5, b4. 3. Since x2 2x6ax2 (b2a)xabc, then a1, b2a2,and abc6. Therefore, a1, b4, and c1. Answer: 1. a3,b2 2. a5,b4 3. a1,b4,c1 6 Tips TIP 02 Remainder Theorem When polynomial P(x)is divided by (xa), the remainder R is equal to P(a). Polynomial P(x)can be expressed as follows. P(x)(xa)Q(x)R The identical equation is true for any value of x, especially xa. Therefore, P(a)R Example: If P(2)5, then you can say that “When polynomial P(x) is divided by (x2), the remainder is 5. PRACTICE 1. If a polynomial f(x)2x2 3x5is divided by (x1), what is the remainder? 2. If a polynomial g(x)x3 2x2 2x3is divided by (x1)(x2), then what is the remainder? EXPLANATION 1. R f(1)2(1)2 3(1)54 2. g(x)(x1)(x2)Q(x)axb When divided by degree 2 polynomial, the remainder is represented by axb At x1 g(1)8ab At x2 g(2)232ab Therefore, a15 and b7. The remainder is 15x7 Also the remainder can be obtained using long-division or synthetic division. Dr. John Chung's SAT II Math Level 2 7 Tips TIP 03 Factor Theorem If p(a)0, then p(x) has a factor of (xa). Polynomial p(x) can be expressed with a factor of (xa) as follows. p(x)(xa)Q(x), where Q(x) is quotient. If (xa) is a factor of p(x), then the remainder after division should be 0. Example: If p(5)0, then p(x) has a factor of (x5). PRACTICE 1. If a polynomial P(x)x2 kx8has a factor of (x2), then what is the value of constant k? 2. If a polynomial f(x)x3ax2 bx1has a factor of (x2 1), what are the values of aand b? EXPLANATION 1. Using the factor theorem, P(2)0  22 2k80  k 2 2. Sincex3ax2 bx1(x1)(x1)Q(x), f(1)ab20 and f(1)ab0 Therefore, a1 and b1. Answer: 1. k 2 2. a1 and b1 8 Tips TIP 04 Sum and Product of the Roots For a polynomial P(x)a xn a xn1a xn2 a xa 0 n n1 n2 1 o a Sum of the roots  n1 a n a Product of the roots  o 1n, where n is the degree of the polynomial a n Example 1: P(x)ax2 bxc0, r and s are the roots of the quadratic equation. b Sum of the roots: r s  a Difference of the roots: (rs)2 (rs)2 4rs If r and s are real and r  s, then b2 4c b2 4ac rs (rs)2 4rs  rs   a2 a a c c Product of the roots: rs  (1)2  a a Example 2: P(x) Ax3Bx2 CxD0 B Sum of the three roots  A D D Product of the three roots =  13  A A PRACTICE 1 1 1. If the roots of a quadratic equation 2x2 5x40are and , what is the value of  ?   2. What is the sum of all zeros of a polynomial function P(x)2x7 3x35x2 4? 3. What is the product of all zeros of g(x)3x7 5x33x2 x2? 4. If one of the roots of a quadratic equation is 2i, what is the equation? Dr. John Chung's SAT II Math Level 2 9 Tips EXPLANATION 5 4 1 1  5 1. Since   and  2, therefore    . 2 2    4 a 0 2. Because the coefficient of x6is 0, the sum of the roots  n1  0 a 2 n a 2 2 3. Because the product of all zeros is o (1)n  17  a 3 3 n b c 4. The quadratic equation can be defined by x2  x 0. a a b b The sum of the roots (2i)(2i)4  4 a a c c The product of the roots (2i)(2i)5  5 a a Therefore, the equation is x2 4x50. Proof Sum of the two roots: b b2 4ac b b2 4ac 2b b    2a 2a 2a a Product of the two roots:  2 b b2 4acb b2 4ac b2  b2 4ac     2a  2a  4a2 4ac c   4a2 a Answer: 1. 5 2. 0 3. 2 4. x2 4x50 4 3 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.