ebook img

Sampling Terrestrial Environments for Bacterial Polyketides PDF

49 Pages·2017·8.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sampling Terrestrial Environments for Bacterial Polyketides

molecules Review Sampling Terrestrial Environments for Bacterial Polyketides PatrickHill1,GrahamW.Heberlig2andChristopherN.Boddy1,2,* 1 DepartmentofBiology,UniversityofOttawa,Ottawa,ONK1N6N5,Canada;[email protected] 2 DepartmentofChemistryandBiomolecularSciences,UniversityofOttawa,Ottawa,ONK1N6N5, Canada;[email protected] * Correspondence:[email protected];Tel.:+1-613-762-8900 AcademicEditor:KiraJ.Weissman Received:28January2017;Accepted:18April2017;Published:29April2017 Abstract: Bacterialpolyketidesarehighlybiologicallyactivemoleculesthatarefrequentlyusedas drugs,particularlyasantibioticsandanticanceragents,thusthediscoveryofnewpolyketidesisof majorinterest. Sincethe1980sdiscoveryofpolyketideshassloweddramaticallydueinlargepartto therepeatedrediscoveryofknowncompounds. Whilerecentscientificandtechnicaladvanceshave improvedourabilitytodiscovernewpolyketides,onekeyareahasbeenunderaddressed,namelythe distributionofpolyketide-producingbacteriaintheenvironment. Identifyingenvironmentswhere producingbacteriaareabundantanddiverseshouldimproveourabilitytodiscover(bioprospect) newpolyketides. Thisreviewsummarizesforthebioprospectorthestate-of-the-fieldinterrestrial microbial ecology. It provides insight into the scientific and technical challenges limiting the applicationofmicrobialecologydiscoveriesforbioprospectingandsummarizeskeydevelopments inthefieldthatwillenablemoreeffectivebioprospecting. Themajorrecenteffortsbyresearchersto samplenewenvironmentsforpolyketidediscoveryisalsoreviewedandkeyemergingenvironments suchasinsectassociatedbacteria,desertsoils,diseasesuppressivesoils,andcavesarehighlighted. Finallystrategiesfortakingandcharacterizingterrestrialsamplestohelpmaximizediscoveryefforts areproposedandtheinclusionofnon-actinomycetalbacteriainanyterrestrialdiscoverystrategy isrecommended. Keywords: polyketides;bioprospecting;microbialecology 1. Introduction Polyketide natural products are exquisite molecules, often with extraordinary and diverse structuresrangingfrommacrolidestopolyethersandpolyphenols. Theytypicallybindwithhigh affinity and selectivity to a biological target (usually a protein or RNA) and can cross biologically relevantmembranes,enablingthemtomodulatethebiologyoforganisms. Thesefeatureshavemade polyketidenaturalproductsanindispensableresourceforthediscoveryanddevelopmentofnew pharmacologicalagentsincludingtheantibiotics, likeerythromycinAandtetracycline, antitumor agents,likedoxorubicin;andtheanti-fungaldrugs,likeamphotericinB[1]. While structurally diverse, all polyketides are related by their highly conserved biosynthetic origins. The polyketide backbone is assembled, analogously to fatty acid biosynthesis, through sequential additions of two carbon building blocks (ketide units) derived from malonyl-CoA. Thisassemblyiscatalyzedbyenzymescalledpolyketidesynthases(PKS).Inbacteriathesepolyketide synthasestypicallyoccurwithoneoftwodifferentarchitectures,modulartypeIpolyketidesynthases andtheiterativetypeIIpolyketidesynthases. ThetypeIPKSpathwayscontainmultiplemodulesconsistingofketosynthase(KS)domains, whichcatalyzetheadditionofketideunitstothegrowingpolyketidechainviadecarboxylativeClaisen Molecules2017,22,707;doi:10.3390/molecules22050707 www.mdpi.com/journal/molecules Molecules2017,22,707 2of49 condensationofanacylcarrierprotein(ACP)-linkedmalonyl[2,3]. InadditiontotheKSandACP manytypeIPKSpathwaysalsopossessanacyltransferase(AT)domainembeddedintoeachmodule whichloadstheappropriatemalonylextenderunitontotheACP.ThetransATtypeIPKSpathways possessaseparatestandaloneATdomainresponsibleforloadingtheACPdomains[4]. Inaddition tothesecatalyticdomainswhichextendthepolyketidechain,typeIPKSpathwayscanalsopossess reductivedomainssuchasaketoreductase(KR),dehydratase(DH),andenoylreductase(ER)domains thatreducethegrowingpolyketideintermediate,similartomammalianfattyacidbiosynthesisprior tothenextroundofpolyketideelongation[2,3]. Elongationcontinuesuntileventualthecompleted polyketidesisreleasefromtheACPbyathioesterase(TE)domain[5]. TypeIPKSareresponsiblefor theproductionofawidevarietyofbioactivecompoundsincludingtheantibioticerythromycinand theantifungalamphotericinB. TypeIIpolyketidesynthasesaremostfrequentlyfoundintheorderofbacteriaactinomycetales andfunctionsimilarlytobacterialfattyacidsynthases. LiketypeIPKS,thesesynthasesrelyonaKS domain,whichheterodimerizeswithaproteincalledchainlengthfactor(CLF),andanACPdomain. Amalonylacyltransferase(MAT)domainisusedtoloadmalonylontotheACPfordecarboxylative condensation with the growing KS-bound polyketide chain. Unlike type I PKS, these pathways typically use these four catalytic domains iteratively and possess a single reductive domain [3,6]. TypicalproductsfromtypeIIPKSpathwaysarearomaticcompoundsthatareoftenhighlytailoredto generatecomplexmoleculessuchastheantibiotictetracyclineortheanticanceragentdoxorubicin. OftentypeIpolyketidesynthasesformhybridpathwayswithnon-ribosomalpeptidesynthetases, producing natural products containing both polyketide portions and peptide portions [7–9]. TheanticanceragentepothiloneBisaprimeexampleofaproductfromthistypeofpathway. Inthis reviewarticlewebroadlydefinebacterialpolyketidesascompoundsproducedbytypeIandtypeII polyketidesynthasebiosyntheticpathwaysaswellashybridpolyketide-non-ribosomalpeptidepathways. Thediscoveryofnewpolyketideshasslowednoticeablysincethelate1980sasthetraditional methodofdiscovery,isolatingandcultivatingbacteria(usuallyActinomycetes,andespeciallytheir genusStreptomycetes[1])fromsoil,foundfewerandfewernewpolyketides. Atthesametimebacterial resistancetoantibioticshasbeenincreasing. Torestartpolyketidediscovery,bioprospectorsareusing methodsthatimproveorreplacebacterialcultivationandsamplingalternativeenvironmentstosoil. Bothoftheseapproachesmeanthatitisimportanttoknowhowbacterialpolyketidesaredistributed tosamplethemefficiently. Soil cultivation methods can be scaled up to screen millions of isolates a year to find rare polyketides[10].Sequencingofthegenomesofisolatedbacteriashowsthatmostpolyketidegenesare “cryptic”,i.e.,notexpressedundernormalcultivationconditions.Insomecasesthesecrypticpathways havebeencoaxedtoexpressbychangingthecultivationconditions[11],addingantibioticsthatstimulate polyketideproduction[12],overexpressingregulatorygenes[13],orblockingcompetingpathways[14]. Alternativelythesecrypticpathwayscanbeexpressedinheterologoushosts,enablingnewcompound isolation. Whilethisapproachhasanumberoftechnicalhurdles,includingensuringtranscription, codonusage,proteinfolding,ensuringthepresenceofprecursors,andconcernsthatthepolyketide productitselfmaykillthehost[15],therehavebeensomemajordiscoveriesinthisarea[16]. Whilemostbacteriainsoilcannotbereadilygrown,thecultivatablefractionofthesoilbacterial communitycanbeincreasedbykeepingbacteriaincontactwiththesoilinburied“chips”forweeks[17]. Tocircumventcultivation,bacterialDNAcanbeextractedfromsoilandheterologouslyexpressedin bacteriathatcangrowinthelaboratory[18,19]. Thesenewtechniquesarechangingthewaypolyketidesarediscovered(forreviewssee[20–25]), buttheyrequireasmuchormoretimeandeffortforeachsampleasthelowertechisolationmethods thattheyreplace,sosamplingefficientlyisimportant. Theproblemofhowtosampleisnolonger limitedtosoil. Bioprospectorscanandshouldconsiderthemanyalternativestosoilsuchascaves, insectsanddesertsoils. Bioprospectorsneedtocomparethemicrobialpolyketideproducerswithin andbetweenenvironmentstofindthemostpolyketidediversitywiththefewestsamples. Molecules2017,22,707 3of49 Until recently it was impossible to compare the bacterial community structure between Molecules 2017, 22, 707 3 of 48 environments. Ithadlongbeenknownthatonlyoneofeveryhundredtothousandbacteriafromthe environmentthatcouldbeseenthroughamicroscopecouldbegrowninthelaboratory[26]. In1990 Until recently it was impossible to compare the bacterial community structure between DNenAviwroansmeexnttrsa. cItt ehdadfr loomngs boeiel,nd kennoawtunr tehda,t aonndlyi otsnere oafs esvoecriya thiounndtrimede tom tehaosuusraendd, baallcotewriian fgrormes ethaer chersto esteinmvairtoentmhaetntt hthearte cwouelrde bthe eseeeqnu tihvraoluegnht ao fm4i0cr0o0scEo.pceo lciogueldn obme gersoiwnne ianc hthge rlaabmoroaftotrhye [s2o6]i.l I[n2 71]9.9T0 hiswas onDeNoAf t wheasfi erxsttraucsteeds forfomcu slotiivl,a dteionnat-uinredde, paenndd itesn rte,anssuocclieaitcioanc tiidm-eb amseeadsumreedt,h aolldoswtiongs truesdeyarschoeilrsb acteria. Motod eesrtnimnautec ltehiact athceidre bwaesreed thme eeqthuoivdasleunst uoaf l4l0y00u sEe. ctohlie gpenoolymmese rina seeacchh garinamr eoafc tthioe nso(iPl [C27R]). Ttohims easure was one of the first uses of cultivation-independent, nucleic acid-based methods to study soil bacteria. whichbacteriaareinthesoilandestimatehowdiversethebacterialcommunityis(Figure1). Modern nucleic acid based methods usually use the polymerase chain reaction (PCR) to measure PCRproductsamplifiedfromsoilDNAtemplatestypicallycontainthousandsormoredifferent which bacteria are in the soil and estimate how diverse the bacterial community is (Figure 1). sequences. Cloning and sequencing with Sanger sequencing (e.g., [28]) was used until the early PCR products amplified from soil DNA templates typically contain thousands or more different 2000stosequencetheseamplicons.DuetotheintrinsicallylowthroughputofSangersequencingand sequences. Cloning and sequencing with Sanger sequencing (e.g., [28]) was used until the early 2000s thousandstohundredsofthousandsofbacterialspeciesinsoil, itwasdifficulttogetafullpicture to sequence these amplicons. Due to the intrinsically low throughput of Sanger sequencing and oftthhoeusbaancdtes rtioa lhuconmdrmedus noift tyhooufsaansdins golfe bsaactmerpialle s,pleectiaeslo inn esotiol, cito wmaps adrieffiscaumlt ptol egse.t Aa nfulal lpteicrtnuartei vofe wasto septhaer baatectethrieal PcoCmRmaumniptyli ocfo an ssinbgyleg seaml eplleec, tlerot aplhonoer etos icsomtopgareet saam“cpolems. mAnu anlitteyrnfaitnivgee wrparsi ntot ”seapnardatceo mpare fintgheer PpCriRn tampaptltiecornnss btoy ggeetl ealercoturogphhiodreesaiso tfoh goewt ab “accotmermiaulnciotym fminguenriptriienst”d iafnfedr ecodm. Gpaerlef fiinnggeerrpprriinntt ingcan seppaarttaetrenas mtop gliecto an srosuegvhe riadlewa oafy sh,oiwnc bluacdtienrigalg croamdimenutnsitoiefst edmiffpeererdat. uGreel ofrinugreerap,riwnthinicgh csaenp saerpaatreaatem plified amplicons several ways, including gradients of temperature or urea, which separate amplified DNA by DNAbyguanine/cytosine(GC)content(e.g.,DenaturingGradientGelElectrophoresis,DGGE[29]), guanine/cytosine (GC) content (e.g., Denaturing Gradient Gel Electrophoresis, DGGE [29]), or cutting orcuttingampliconsintosmallerfragmentsbyrestrictionendonucleasesandseparatingbysize(e.g., amplicons into smaller fragments by restriction endonucleases and separating by size (e.g., Terminal TerminalRestrictionFragmentLengthPolymorphism,T-RFLP[30]). Communityfingerprintinggives Restriction Fragment Length Polymorphism, T-RFLP [30]). Community fingerprinting gives less lessinformationthanSangersequencing,butcanquicklyandcheaplycomparemanysamples(Figure1). information than Sanger sequencing, but can quickly and cheaply compare many samples (Figure 1). FigFiugruere1 .1.M Miiccrroobbiiaall eeccoollooggyy aapppproraocahcehse ussueds etod etxoaemxianme binoethb coutlhtivcautlatbivlea atanbdl eunacnudltiuvnatcaublltei vfraatcatbiolen fraction ofotfh tehem micircorobbiaiall ccoommmmuunniittyy sstrtuructcutruer. eT.hTish iinscilnucdleusd mesolmecoullearc umlaetrhmodest hliokde sshlioktgeusnh omtegtuagnemnoemtaeg enome sesqeuqeunencicningg,, ccoommmmuunnitiyt yfinfignegrperripnrtiinngt ionf gpoolfympoelryasme cehraaisne rcehacatiinonr (ePaCcRti)o pnro(dPuCcRts), sperqoudenuccitnsg, osef PqCuRen cingof PCpRropduroctdsu, acntsd, pahnodspphhoolisppidh ofalitptyi dacfiadt taynaalcyisdis.a nalysis. In the 2000s next generation sequencing replaced Sanger sequencing and fingerprinting of PCR Inthe2000snextgenerationsequencingreplacedSangersequencingandfingerprintingofPCR products. With next generation sequencing thousands to hundreds of thousands of different amplicons procoduulcdt sb.eW seiqthuennecxetdg fernomer aat isoinngslee qsuamenpclien agntdh omuasnayn sdasmtoplhesu ncodurledd bseo mftuhlotiupsleaxnedds toogfedtihfefer rteon gtiavme plicons couenldormbeouses qduatean sceetsd [3fr1o].m Thais siinncgrelaessedam thpe lveoalunmdem ofa sneyquseanmcipngle rsescuolutsl danbde thme unlutmipbleerx oefd setoqgueenthceedr togive engoernmoomuess.d Raetasesaertcsh[e3r1s ]c.oTuhldis eivnecnr esaesqeudenthcee uvnoalummpleifoiefds eDqNuAen fcrionmg trhees uslotisl amnedtatgheennomume (bFeirguorfes 1e)q uenced geannodm eessti.mRaetes ewahrcichhe prshycloougledneetvice gnroseuqpus eitn bceelounngaemd tpol [i3fi2e]d. DNAfromthesoilmetagenome(Figure1) andestNimucalteeicw achiidcsh apreh ynolot gtheen eotniclyg briooumposleictubleeslo tnhgate cdanto b[e3 2u]s.ed to measure microbial community structure. Analysis of phospholipid fatty acids (PLFA) from the cell membranes of soil microbial Nucleicacidsarenottheonlybiomoleculesthatcanbeusedtomeasuremicrobialcommunity communities began in the 1980s (Figure 1) [33]. Like nucleic acid methods, it provides information structure. Analysis of phospholipid fatty acids (PLFA) from the cell membranes of soil microbial on the uncultivated majority of bacteria. While PLFA has largely been replaced by next generation communitiesbeganinthe1980s(Figure1)[33]. Likenucleicacidmethods,itprovidesinformation sequencing, there is a lot of PLFA data in the literature. Unlike nucleic acid sequencing, PLFA cannot ontheuncultivatedmajorityofbacteria. WhilePLFAhaslargelybeenreplacedbynextgeneration identify bacteria at the genus or species level and is often specific to groups that are even broader seqthuaenn pcihnygla, t(he.egr.e, Gisraamlo-ptoosfitPivLeF bAacdteartiaa)i.n Int hsepiltiet eorfa tthuisr et.hUerne lairkee anduvcalnetiacgaecs itdo sPeLqFuAe.n Ict iins gc,hPeaLpFeAr cannot ide ntifybacteriaatthegenusorspecieslevelandisoftenspecifictogroupsthatareevenbroaderthan Molecules2017,22,707 4of49 phyla(e.g.,Gram-positivebacteria). InspiteofthisthereareadvantagestoPLFA.Itischeaperand fasterthannucleicacidmethodsandgivesabetterpictureoffungaltobacterialratios. Resultsfrom PLFAcommunityanalysisshowedthatsoilpHcontrolledbacterialcommunitystructurewellbefore thiswasfoundbynucleicacid-basedmethods[34]. Ithasalsobeensuggestedthatphospholipidfatty acidsarequicklydegradedinsoil,unlikeDNA,soPLFAmaygiveabetterpictureofthelivebacterial communitythanDNAmethodsthatalsocapturerelicDNA[35]. The most important bacterial group for polyketide production is the Gram-positive phylum Actinobacteria. Withinthisphylum,theActinomycetalesorder,haveproducedmorepharmaceutically useful polyketides than all the rest of the bacteria [36]. This review will use both the terms Actinobacteria and Actinomycete. This is as molecular microbial ecology studies usually use the termActinobacteriawhilecultivationstudiestypicallyusuallyusethetermActinomycetales. The reader might think that deciding where to sample for discovery of new polyketides is straightforward. ReviewthemicrobialecologyliteraturetofindenvironmentswhereActinomyces arediverseandalargefractionofthebacterialcommunity. Whilethereareamanystudiesthatuse molecularbiologymethodstocharacterizethemicrobialcommunities,usingthisliteraturetodecide wheretosampletofindnewpolyketidesisdifficult. Thereareseveralreasonsforthis. MostmodernmicrobialecologystudiesusePCRtoamplifyfromnucleicacidsextractedfromthe environment. TheresultsfromPCR-basedmethodsdependsignificantlyonthechoiceofextraction methods,PCRprimers,andreactionconditions. Manystudiesuseauniqueversionofeachofthese, soresultsareoftennotcomparablebetweenstudies. Recentlyseverallargescaleprojects,suchasThe EarthMicrobiomeproject[37],havebeenapplyingstandardizedmethodsonsamplesfromacross theplanet. Bacterialhabitatsdonotfollowthesamepatternasthehabitatsofeukaryoticlifethatwesee around us. Environments that to the human eye seem very different, can have similar bacterial communities [38]. In addition the actinobacterial community may not be controlled by the same factorsasthewholebacterialcommunity. FurthermoretheActinobacteria,whichhavesofarsupplied mostofourmedicinallyusefulpolyketides,maynotproducemostofthetypeIpolyketidesinthe environment[39]. Understandingwhatcontrolsbacterialcommunitystructureandhowthisaffects thedistributionofpolyketideproducingbacteriaisstillunresolved. Finally the major ecological question of whether bacterial distribution is controlled by biogeography has still not been settled. Biogeography, the pattern of species distribution across geographical area, affects where multicellular eukaryotes such as plants and animals are found, however it is not clear if this is true for bacteria as a whole or for polyketide producing bacteria specifically. Questionssuchas“Arethesamebacterialcommunitiesfoundwherevertherearethe sameconditions?”decidewhetherbioprospectorsshouldsampleparticularenvironmentsinmany placesovertheearthormanyenvironmentsthatmaybeinthesamearea. Wereviewwheretosampleforbacterialpolyketidesinterrestrialenvironments. Thefirstsection ofthisreviewdiscussesproblemsinusingthecurrentscientificliteratureforbioprospectingasbriefly outlinedabove.Becauseterrestrialbioprospectingfornewpolyketidesisalreadyunderway,thesecond partofthisreviewdiscussesseveraloftheterrestrialenvironmentswherenewpolyketideshavebeen foundorwhichhavebeensuggestedforbioprospecting. Thefinalsectionsuggestshowtosampletofindnewpolyketidesinterrestrialenvironments. Werecommendsamplingdifferentenvironmentsandmeasuringsamplespropertiesinseveralstages. Physical/chemicalpropertiessuchaspH,organiccarbonortexturecanbemeasuredforabroadrange of samples. The microbial community of a subset of these samples can be determined with rapid, lowcostcommunityfingerprinting,beforenextgenerationsequencingofsubsetswithcontrasting fingerprints. An advantage of using community fingerprinting is that they give results quickly. Ifcertainsamplesgiveunusualorpromisingfingerprints,theenvironmentorareawheretheyare fromcanberesampled. Bioprospectorsshouldalsotrytofindnon-actinomycetalbacterialpolyketides astheyaremorelikelytobenovel. Molecules2017,22,707 5of49 2. UnresolvedIssuesinMicrobialEcologythatLimitBioprospectingforNewPolyketides Molecularbiologicalmethodshavechangedourviewofsoilbacterialcommunities. SomePhyla, suchastheAcidobacteria,areamuchlargerfractionofsoilbacteriathanwaspreviouslyknown[40]. SoilpropeMrtoileecusless u20c17h, 2a2,s 70t7e xtureandpHareoftenmoreimportantindeterminingcommu5 nof i4t8y structure thanvegetationorclimate[41]. Whileweknowmuchmoreaboutbacterialcommunitiesthanwedid 2. Unresolved Issues in Microbial Ecology that Limit Bioprospecting for New Polyketides 20yearsago,therearestillgapsinourknowledgethatmakeitdifficulttoknowwheretobioprospect Molecular biological methods have changed our view of soil bacterial communities. Some Phyla, fornewbacterialpolyketides. such as the Acidobacteria, are a much larger fraction of soil bacteria than was previously known [40]. Soil properties such as texture and pH are often more important in determining community structure 2.1. DataComparability than vegetation or climate [41]. While we know much more about bacterial communities than we did 20 years ago, there are still gaps in our knowledge that make it difficult to know where to bioprospect Many microbial ecology studies produced data that cannot be compared with other studies. for new bacterial polyketides. Studiesoftenlookatasingleenvironmentandlookatchangesinthemicrobialcommunitycaused bytreatme2.n1.t sD,astau Ccohmapasrathbielitye f fectofdifferenttillageonsoilbacteria[42],thechangesinthemicrobial communityduMrainngy cmoicmropboiaslt eincoglo[g4y3 ]s,tuodritehs eprboadcutceerdia dfaotau nthdati ncadnnifofte rbeen ctokmipnadresdo wfoitfhfi octehedru sstut.dTiehs.e sestudies extractDNStAudfireos mofttehn eloeonk vaitr ao nsimngelen etn,vaimropnmlifeynti atnwd iltohokp arti mchearnsgeasn idn tahne amlyiczroebtihale cofimnmgeurnpitryi ncatsusoerd sequences by treatments, such as the effect of different tillage on soil bacteria [42], the changes in the microbial of the amplicons. They often use a unique combination of extraction method, primers, and community during composting [43], or the bacteria found in different kinds of office dust. These amplification conditions. Changing any one of these steps can significantly change the results. studies extract DNA from the environment, amplify it with primers and analyze the fingerprints or Forexampseleq,uDeneclems oof nthtee atmapl.li[c4on4s]. cTohmeyp oaftreend usae raa unngiqeuoe fcoDmNbiAnateioxntr oafc etxiotrnactmioent mhoetdhosdo, nprtimweorsg, arnadss landsoils andfoundamthpaltifitchaetiyong caovnedivtieornys. dCihfafenrgeinngt apniyc tounree sofo tfhethsee smtepics rcoabn isailgncoifimcamntluyn cihtayn.gHe othneg reestualtls.. [F4o5r ]usedtwo example, Delmont et al. [44] compared a range of DNA extraction methods on two grassland soils extractionmethodsandtwoprimersetstomeasurethebacterialcommunityofabeachsandsample, and found that they gave very different pictures of the microbial community. Hong et al. [45] used only11of1098operationaltaxonomicunits(OTUs,definedas16SribosomalRNAgenesthathaveless two extraction methods and two primer sets to measure the bacterial community of a beach sand than99%ssaimmpillea,r oitnyly) s1e1 qouf e10n9c8e ospwereartieonfaolu tanxdonionmailcl utnhirtse e(OdTaUtsa, sdeetfisne(Fd iagsu 1r6eS 2r)ib.oIsnomoualr RoNwAn gwenoesr ktwosets of“actinobthaact thearviea llessps tehcainfi 9c9”%a snimdiolanrietys) esetqoufenecuebs awcetreer fioauln1d6 iSn palrl itmhreeer sdaatma spetlsi fi(Feigduvree 2r)y. Idn iofufer roewnnt groupsof work two sets of “actinobacterial specific” and one set of eubacterial 16S primers amplified very theactinobacteria[46]. Evenwhenthesamemethodsarecarriedoutindifferentlaboratoriestherecan different groups of the actinobacteria [46]. Even when the same methods are carried out in different besignificantdifferencesinresults[47]. laboratories there can be significant differences in results [47]. Figure 2. The overlap between Sanger sequencing results of three 16S clone libraries at 99% identity Figure2.TheoverlapbetweenSangersequencingresultsofthree16Sclonelibrariesat99%identity from a beach sand using two DNA extraction methods and two primer pairs. Clone library 1 fromabeachsandusingtwoDNAextractionmethodsandtwoprimerpairs.Clonelibrary1Extraction Extraction method 1 PCR primer pair 1, Clone library II Extraction method 2 PCR primer pair 1, Clone method1lPibCraRryp IrIiIm IIe Erxptraaicrtio1n, Cmleotnhoedl i1b rPaCrRy IpIriEmxetrr apcatirio 2n. Rmeeptrhinotedd 2byP CpeRrmpirsismione rfrpoami rM1a,cCmliollnane libraryIII IIExtractiPounblmisheetrhs oLdtd:1 ISPMCER J. p[4r5i]m, ceorpypraigihrt 2(2.0R09e)p. rintedbypermissionfromMacmillanPublishersLtd: ISMEJ.[45],copyright(2009). Bioprospectors need to know where to sample. The most useful results will come from studies that use the same method over a broad range of samples from different environments. As methods Bioproof sapnaelcytsoisr asren ecoendtintouakllny oimwprwovhinegr,e thtoe ssaammplpesle (.alTonhge wmitoh sintfuorsmefautilonr easbuoultts wwheilrle caondm wehferno mstudies they were collected and what they are like) should be stored for reanalysis as new methods come thatusethesamemethodoverabroadrangeofsamplesfromdifferentenvironments. Asmethodsof online [48]. Several large collaborative projects have been set up to do exactly this [37,49–51], and this analysisarecontinuallyimproving,thesamples(alongwithinformationaboutwhereandwhenthey is an area of research that is expanding [52]. werecollectedandwhattheyarelike)shouldbestoredforreanalysisasnewmethodscomeonline[48]. Severallargecollaborativeprojectshavebeensetuptodoexactlythis[37,49–51],andthisisanareaof researchthatisexpanding[52]. Molecules2017,22,707 6of49 Theseconsortiahavethechoiceofusingmethodsthatarelabourandtimeintensivebutgive alotofinformationforafewsamplesorusingmethodsthatarefasterandcheaper,butlessdetailed formanysamples. ThebestexampleofthetimeandlabourintensiveapproachistheTerragenome project[49]. Thisconsortiumbeganbysequencingthemetagenomeofafewwellcharacterizedsoil samples,startingwithsamplesfromtheoldestfieldtrialintheworldatRothamsted. Eventuallythis workwillprovideverydetailedinformationonpolyketidecontentinafewsoils. Shotgun metagenome sequencing of the diverse microbial communities from soil is difficult. Anenormousvolumeofsequencedataisneededanditisdifficulttoassemblegenomesorpolyketide biosyntheticgeneclustersfromtheselargedatasets[53]. Terragenomeinvolvesinvestingalotoftime, workandfundsinafewsoilsbeforeitisknownhowrepresentativetheirmicrobialcommunitiesare. Ithasbeensuggestedthatitwouldbemoreefficienttosurveymanysoilsusingsimple16Sbacterial communityfingerprintingmethods,beforepickingsamplesfordirectmetagenomicssequencing[54]. ThisinitialstephasbeendoneinsoilmicrobialsurveysofGreatBritainandFrance,wherehundredsof samplesfromacrosslandscapeshavebeenfingerprinted[55,56]. Thesestudiesprovidereproducible butlowresolutioninformationonbacterialdistributionanddiversityinsoil. Themostambitiousoftheseprojects,whichusesidenticalmolecularmethodsonmanysamples, istheEarthMicrobiomeproject.Thisprojectsamplesbroadlyfromenvironmentsincludingsoil,marine sediment, and the digestive system of mammals. It uses next generation sequencing to sequence 16Sbacterialand18SfungalribosomalRNAamplicons,aswellasshotgunmetagenomesequencing. Recentlyahostofadditionalprojectslookingatthemicrobiomeofhumanshaveusednextgeneration sequencingof16Sampliconstocharacterizethousandsofsamples[57,58]. Thesestudiesarebeginning toprovideaclearerpictureofbacterialcommunitystructureofmanyenvironments. The laboratory of Brady, a pioneer in polyketide bioprospecting, has developed a database, the Environmental Surveyor of Natural Product Diversity (eSNaPD) that includes information on thedistributionofpolyketidesynthasesintheenvironment. Sofaritislimitedtosoilsandmarine sedimentsfromtheSouthwesternUSandNewEngland[59]. 2.2. SoilBacterialHabitatsDoNotCorrespondtoEukaryoticHabitats For over a hundred years, terrestrial ecologists have studied how eukaryotic life on Earth is distributed. PlantandanimallifeisdistributedovertheEarthinbiomes,suchastundra,rainforest, prairie,etc.Thesebiomesaremorediverseinthetropicsanddiversitydecreaseswithdistancefromthe equator[60].Whenbiomessuchastropicalrainforestareconvertedtocropsorpasture[61],biological diversitydecreases. Givenwhatweknowaboutthesebiomes,itwouldseemreasonabletobioprospect fornewpolyketidenaturalproductsindiversetropicalbiomesundisturbedbyhumanactivity.However whilefungaldistributionmayfollowthesebiomes[62],bacterialdistributiondoesnot. The plants that grow on soil are probably not the best guide to the bacteria that live in them. Soilpropertiesbetterpredictedbacterialcommunitystructurethanvegetationinseveralearlystudies thatlookedatsoilsandlanduses[63–65]. In2006,astudybyFierercompared88soilsundernatural vegetationfromthePeruvianAmazonandacrossthecontinentalUnitedStates[66]. SoilDNAwas usedfor16Scommunityfingerprinting(T-RFLP).Fingerprintsfromsoilsclosetoeachotherbutof differentpHdifferedbutresembledthosefromthousandsofmilesawaywiththesamepH.SoilpH alsodeterminedhowdiversethefingerprintswere,withthemostdiversityatneutralpH.Thiseffectof pHonbacteriacommunitystructurehasbeenconfirmedbystudiesthatcomparesoilsfromnarrower geographicalregionssuchastheArctic[38]andMalaysia[41]. TheimportanceofpHtobacterialcommunitystructureleadstonon-intuitiveconclusionsfor microbial bioprospectors. Biomes such as tundra may have similar soil bacterial communities to biomeswithfarmoreanddiversevegetation[38]. Tropicalrainforestsoil,underneathoneofthemost biodiverse plant and animal ecosystems on earth, has a relatively undiverse bacterial community comparedtosoilsfromecosystemsthathaveordersofmagnitudefewerspeciesofplantsandare Molecules2017,22,707 7of49 thousands of miles further north [66]. Converting Amazonian tropical rainforest to cropland or plantationmayincreasesoilbacterialdiversity[67]. WhilepHmaybethemajorcontrollingfactorforsoilbacterialcommunitystructure,itisnotthe onlyone. WhencomparingsoilsoveranarrowerrangeofpH,othersoilpropertiesareimportant. AstudyinTheNetherlandscompares25sitesoverabroadrangeofsoilsandlanduses. Whenthree acidpinMeolfeocurlees s2t01s7o, 2i2l,s 70w7 ereexcluded(pH3.7–4.1),soilphosphorouscontrolledbacterial7c oof m48 munity structureintheremainingsoils(pH5.1–7.6)[68]. OnarangeofpotatosoilsinGermanyofsimilarpH While pH may be the major controlling factor for soil bacterial community structure, it is not the (5.2–6.2),parentmaterialcontrolledbacterialcommunitystructure[69]. only one. When comparing soils over a narrower range of pH, other soil properties are important. A Microbialbioprospectorscannotrelyonthevegetationthattheyseearoundthemtoknowwhere study in The Netherlands compares 25 sites over a broad range of soils and land uses. When three tosampalceids opiiln.eT fhoreeswt islolilnse wederet oexkcnluodweda (praHn 3g.7e–o4.f1s),o siolipl prohposeprhtioersouths actonctarnollbeed rbeaacdteirliyal dcoemtemrmuniniteyd inthe laboratostrryucoturrteh irno tuhge hresmoailinsiungr vseoyilsin (pgH. U 5.n1–fo7.r6t)u [n68a]t. eOlyn ma raannyges otuf dpoietastoo fsobilost ihn bGaecrmtearniayl oafn sdimpiloarly ketide distribuptiHo n(5.i2n–6s.o2i)l, pdaorennot tmiantcelruiadl ceosnotriollplerdo bpaecrtteireiasl. community structure [69]. Microbial bioprospectors cannot rely on the vegetation that they see around them to know where Eukaryoticandbacterialcommunitiesdonotjustdifferinhowtheyaredistributed,bacterial to sample soil. The will need to know a range of soil properties that can be readily determined in the communitiesarefarmorediverse. FiererandLennondiscusswhythisis,twoofthemostimportant laboratory or through soil surveying. Unfortunately many studies of both bacterial and polyketide reasonsbeingphylogeneticbreadthandgeographicalscale[70]. Bacteriaareoneofthethreedomains distribution in soil do not include soil properties. of life so aEfauikrarcyoomticp aanrdis boanctoerfiatlh ceombamcutneritiiaesl ddoiv neorts jiutyst odfiffseor iiln whoowu ltdhebye arwe idtihstrtihbeuteddi,v bearcstietryiaol f all of the eukcaormymotuensitliievs ianrge fainr mthoree sdoiviler(sie..e F.,ieprelra nantsd, Laennnimona dlsis,cfuussn wgih,yp throist oisz, otwaoe otfc t.h).e mMoostr iemipmorptaonrtt ant for bioprosrpeeacsotonsr sbeiisngth pehyqlougeesnteiotinc borefasdctha laen.d Ggeroagsrsaepshiacrael sscaalme [p70le].d Baicnte1riam ares qounea oref thpel othtsreew dhoimchaincsa n have of life so a fair comparison of the bacterial diversity of soil would be with the diversity of all of the 10,000individualgrasses,tosampleonthisscaleforbacteriamicrobiologistswouldhavetosample eukaryotes living in the soil (i.e., plants, animals, fungi, protozoa etc.). More important for bioprospectors asinglefinesandgrain. Tosamplegrassesonthescalethatwesamplebacteria(tenstohundreds is the question of scale. Grasses are sampled in 1 m square plots which can have 10,000 individual ofbilliognrsa)sspeslo, ttos swamopulled onh athvies stcoalbe efo1r 0bakcmter2i.a Gmricarsosbiionloagi1st0s wkmou2lda hreaavew too sualmdphlea av seindgilfef efirneen scaensd intheir environgmraeinn.t ,Ttoh seamsapmlee gwraossuelsd onb etheev secnalter utheart owfeb saacmteprleia bianctesroiail ,(taencso mto phluenxderendvsi roof nbmillieonnts,) wplhotesr ethere arechanwgoeusldin hcaoven dtoi tbieo n10s kamtt2h. Gerµamss isnc aa l1e0. km2 area would have differences in their environment, the same would be even truer of bacteria in soil, a complex environment, where there are changes in 2.3. Acticnoonbdaitcitoenrsia alt Sthoeil µCmo mscmalue.n ityStructureMayNotFollowBacterialSoilCommunityStructure Ac2ti.3n.o Abcaticntoebraicaterciuall Stuoirl eCdomfrmoumnitsyo Sitlrsucatrueret Mheayt Nraodt iFtoilolonwa Blascoteuriracl eSooilf Cnoemwmupnoitlyy Skteruticdtuerse . Afollowup totheFiererstudy,whichfoundthatthesoilbacterialcommunitystructurewascontrolledbysoil Actinobacteria cultured from soils are the traditional source of new polyketides. A follow up to pH[26],thues Feidernere sxttugdye,n werhaicthio fnousnedq utheant cthineg sooilf b1a6cStearimal pcolimcomnusnoitbyt satirnuectdurfer owmas tchoenitrroollreidg ibnya slosial mpHp lesand foundth[2a6t],A ucsteidn onbeaxtc tgeerniaerwatieorne smeqousetnccoinmg mofo 1n6aS tahmigphliceornps Hob[t7a1in]e(dF ifgroumre th3e).irT ohreigaincatli nsoambapcletes raianldf raction ofthebfaocutnedri athiant cArecatisneodbafcrtoermia 5w.3er5e% maotstp cHom<m4onto a2t 4h.3ig%hear tppHH [7>1]8 (Fbiugutraec t3i)n. oTbhea catcetriniaolbdacitvereirasl itywas fraction of the bacteria increased from 5.35% at pH < 4 to 24.3% at pH > 8 but actinobacterial diversity greatestatanintermediatepHbetween6and7. Thesamerelationshipbetweentherelativeabundance was greatest at an intermediate pH between 6 and 7. The same relationship between the relative ofActinobacteriaandpHwasfoundforthebacterialcommunitiesofpolarsoils[38]. Thissuggests abundance of Actinobacteria and pH was found for the bacterial communities of polar soils [38]. This thatneusturgagletsotsa tlhkaat lnineuetrsaol itlos amlkaaylinbee sothilse mbeayst btea trhgee btefsot rtaarcgteitn foobr aaccttienroibaalcbteiroipalr boisopperocstpinegct.ing. Figure 3. Bacterial 16S 454 pyrosequencing results from 88 non-agricultural soils from across North and Figure3.Bacterial16S454pyrosequencingresultsfrom88non-agriculturalsoilsfromacrossNorthand South America. Reproduced with permission from Lauber et al., Appl. Environ. Microbiol., published by SouthAmerica.ReproducedwithpermissionfromLauberetal.,Appl.Environ.Microbiol.,publishedby the American Society for Microbiology, 2009 [71]. theAmericanSocietyforMicrobiology,2009[71]. Molecules2017,22,707 8of49 HoweveractinobacterialabundanceanddistributionmaynotbecontrolledbysoilpHinthe samewaythatthewholebacterialcommunityis. Atthecontinentalscalesoilsindryclimatesare neutraltoalkalineandsoilsinwetclimatesareacidic. Atthelandscapelevelsoilparentmaterial can determine soil pH. Desert soils are enriched in Actinobacteria compared to soils from wetter climates[72]. FieldplotstudieswherethepHofaplotofsoilisadjustedoveragradientcanseparate the effect of pH from climate. Four field plot studies have been carried out on cropped [49,73] and pasture soils [74,75] in the United Kingdom. While they have found that the actinobacterial community structure changes with pH [74–76], they have not found that the relative abundance oftheactinobacterialfractiondependsonpHthroughsequencingof16Samplicons[46,47,49]and phospholipidfattyacidabundance[48]. Intwoofthesecasestherelativeabundanceofothermajor bacterialphylogeneticgroupschanged[46,47],inanothertherewasnochangeforanyofthebacterial phyla, although there were changes at lower phylogenetic levels [49]. These results suggest that actinobacterialrelativeabundanceisnotcontrolledbypHbutdonotsaywhatdoescontrolit. Alloftheabovestudieshaveeithercomparedsoilsundernaturalvegetationorlookedatasingle agricultural land use (cropping/pasture). Converting native vegetation to agricultural use often increasestheactinobacterialfractionofthesoilbacterialcommunity[65,77],inparticularwhenhumid tropicalforestisconvertedtocrops[67,78]althoughthiseffectcanbebelowstatisticalsignificance[79]. ThismaybebecauseundernativeforestthesesoilsareacidicanddeforestationraisesthesoilpH slightly. Thisistheexplanationgivenfortheeffectoflanduse(cultivation,pasture,pineforest,and deciduous forest) on soil bacterial community structure in a well cited paper by the Fierer group. TheauthorsexaminedtwelvesitesinSouthCarolinaanditwasshownthatlandusechangedthe bacterialcommunitybychangingpHratherthananyotherinherenteffectofthelanduse[77].However therelativeabundanceofActinobacteriacanincreaseaspHdecreasesduringconversionofforested landtocropping[80]. InourownstudyofcontrastingsoilsfromColombia,CanadaandEuropeusing communityfingerprintingwithtwosetsofactinobacterial16Sprimers,wefoundthatfingerprints clusteredbylanduse(cultivatedversusuncultivated),withnoeffectofpH[46](Figure4). Thereareseveralwaysthatlandusecouldaffecttherelativeabundanceandcommunitystructure ofsoilActinobacteria. ThehigherlevelofActinobacteriaincultivatedandpasturelandsversusforest inAlabama[81]orpalmoilplantationversusforestinBorneo,Malaysia[82],ledresearcherstosuggest that Actinobacteria are selected by human disturbance. A study in the savanna region of Ghana found that soils with no or little vegetation between corn cropping seasons had a higher relative actinobacterialfraction[83]thansoilswithmorevegetation. Land use can also affect the bacterial community structure by adding or removing substrate for bacterial growth. Bacteria can be classified as oligotrophs or copiotrophs, similar to K- and r-selectedplantsandanimals. Oligotrophshaveanadvantagewhenfoodislimitedandgrowslowly. Copiotrophsaremorecompetitivewhenfoodisplentiful. Fiereretal. measuredcarbonandnitrogen mineralizationin71soilsandcomparedthiswiththerelativepercentageoftheActinobacteriaand five other bacterial groups, α-Proteobacteria, β-Proteobacteria, Acidobacteria, Bacteroidetes and Firmicutes,asmeasuredbyquantitativereal-timePCR.TheyconcludedthatwhiletheAcidobacteria wereoligotrophsandtheBacteroidetesandβ-Proteobacteriawerecopiotrophs,theα-Proteobacteria, FirmicutesandActinobacteriawereneither[84]. Whether Actinobacteria are oligotrophic or copiotrophic may depend on the nature of the substrate. Additionsofcarbonrichstraworreducedtillagethatleavesstrawonthesurfaceofthesoil reducestherelativeamountofActinobacteriainthesoilbacterialcommunity[42]. Addingnitrogen fertilizerincreasestheactinobacterialfractionofthesoilbacteria. AnincreaseintheActinobacteria withnitrogenwasfoundfor28soilsfromnaturalvegetationacrossthecontinentalUnitedStatesby nextgenerationsequencingof16Samplicons[85],aswellasatagrasslandandcultivatedcornsite throughnextgenerationsequencingof16Samplicons[86,87]andshotgunmetagenomesequencing[60]. BothnitrogenandpotassiumadditionincreasedtheactinobacterialfractionofaDutchgrasslandsoil asmeasuredbyshotgunmetagenomesequencing[88]. Molecules2017,22,707 9of49 A100yearoldfieldtrialinAlabamacomparedtheeffectofaddinglimetoraisepHofanacid soilversusaddinglimeandfertilizer. ThebacterialcommunitystructurewasmeasuredusingPLFA analysis. WhilepHhadmoreofaneffectontheoverallbacterialcommunitystructurethannitrogen fertilizer,nitrogenfertilizerhadamajoreffectontheactinobacterialandfungallevels[89]. Anincrease Molecules 2017, 22, 707 9 of 48 intheactinobacterialfractionofthebacterialpopulationhasbeenascribedtotheflushofnutrients producedabnyalybsuisr. nWinhigle apfHte hradd emfoorree osft aant ieoffnecitn onth thee Aovmeraalzl obnact[e5r1ia]l. community structure than nitrogen fertilizer, nitrogen fertilizer had a major effect on the actinobacterial and fungal levels [89]. An MoreworkisneededcomparingtherelativeimportanceofpH,moisture,landuseandnitrogen increase in the actinobacterial fraction of the bacterial population has been ascribed to the flush of onactinobnautcrtieenrtisa plrcoodmucemd ubyn bituyrnsintrgu acftteur rdeefaornedstartieolna tiniv theea Abmuanzdona [n5c1]e. insoil. Theremaynotbeasimple relationbetweMeonret whoerske isf anecetdoerds .coJmusptarainsgt thhee raeclattiinveo ibmapcotretarniacel ocfo pmHm, muonistiutyre,s ltarnudc utsuer aendd noietrsogneont followthat on actinobacterial community structure and relative abundance in soil. There may not be a simple ofthewholebacterialcommunity,differentsubgroupsoftheActinobacteriamaybeselectedforby relation between these factors. Just as the actinobacterial community structure does not follow that differentfactors. Forexample,Actinobacteriacanbethelargestfractionofthebacterialcommunities of the whole bacterial community, different sub groups of the Actinobacteria may be selected for by ofdesertsd[i7ff2er]eantn fdactloarks.e Fowr eaxtaemrspl[e9, 0A,c9ti1n]o;bpacrtoerbiaa cbalny bde ithffee lraergnetstm fraeccthioann oifs tmhe sbaocftesriealle ccotmiomnunaitrieeso ccurringin thesecaseos.f dTehseisrtsu [n7c2]e arntadi nlatkye mwaetaerns s[9b0i,9o1p];r porsopbeabcltyo drsiffnereeendt mtoecchoanmispmasr oef aseblercotiaodn arraen ogcceuorrfinsgo iinls ofdiffering these cases. This uncertainty means bioprospectors need to compare a broad range of soils of differing properties,landuses,andnutrientinputs. properties, land uses, and nutrient inputs. Figure 4. Forward Terminal Restriction Fragment Length Polymorphism (T-RFLP) community Figure 4. Forward Terminal Restriction Fragment Length Polymorphism (T-RFLP) community fingerprints of the Actinobacteria from Uncultivated soil (blue) Cultivated soils (green), animal associated fingerprints of the Actinobacteria from Uncultivated soil (blue) Cultivated soils (green), animal sediments (orange) and street dust (red). Reproduced from Hill et al., Microb. Ecol., published by associatedSsperidngimer eInnttesrn(aotrioannagl eP)ubalnisdhisntgr AeeGt.,d 2u01s1t [(4r6e]d ).ReproducedfromHilletal.,Microb.Ecol.,published bySpringerInternationalPublishingAG.,2011[46]. 2.4. Non-Actinobacterial Bacterial Polyketide Producers While most polyketides discovered by cultivation of bacteria in the laboratory so far have come 2.4. Non-ActinobacterialBacterialPolyketideProducers from Actinobacteria, many bacterial polyketide producers in the environment are not Actinobacteria. WhileIn mthoe scatspe oofl yarkoemtiadtice stydpei sIcI opovleyrkeetdidbesy mcoustl tpirvoadtuicoenrs oafreb liakcetlye rAiactiinnobtahcetelraiab. Goreanetos renycosdoinfag rhavecome type II polyketide synthases (PKSII) amplified from the soils DNA either directly [92–95] or from fromActinobacteria,manybacterialpolyketideproducersintheenvironmentarenotActinobacteria. metagenomic libraries [96] appear to be entirely actinomycetal. The only example where PKSII Inthecaseamopflaicroonms aaptpiecart ytop bee InIopt-oacltyinkoemtiydceetsalm is oa sstetp orfo fidveu ocuetr osf afirfetyl-sikeveelny sAeqcuteinncoesb aamctpelirfiiead. fGroemn esencoding type II poEluyrkoepteiadne sosilys.n Itnh tahisse csas(eP thKeS PIKI)SIaI mampplliicfioends afprpoemar ttoh bee fsroomils prDotNeoAbaceteirtiha eorr fdirimreiccuttleys [[9962]. –95] or from In contrast many studies have found environmental amplicons and clones with type I polyketide metagenomic libraries [96] appear to be entirely actinomycetal. The only example where PKSII synthase (PKSI) sequences that cluster with non-actinobacterial sequences. A broad range of studies ampliconsappeartobenot-actinomycetalisasetoffiveoutoffifty-sevensequencesamplifiedfrom have used PKSI specific primers to amplify soil DNA followed by cloning and Sanger sequencing. EuropeanFsoor ielxsa.mInpleth, misoscta PsKeStIh seeqPueKnSceIsI farommp sloiiclso fnrosma Mppaleaaysriatno rbaienfforroemst [9p4r],o atne oAbntaacrctetirc iIaslaonrdfi [9r7m] icutes[96]. IncontrastmanystudieshavefoundenvironmentalampliconsandcloneswithtypeIpolyketide synthase(PKSI)sequencesthatclusterwithnon-actinobacterialsequences. Abroadrangeofstudies have used PKSI specific primers to amplify soil DNA followed by cloning and Sanger sequencing. Forexample,mostPKSIsequencesfromsoilsfromMalaysianrainforest[94],anAntarcticIsland[97,98], closetocucumberroots[99],andtheTibetanplateau[100]clusteredwithnon-actinobacterialsequences whentreed. Molecules2017,22,707 10of49 Three studies have sequenced metagenomics PKSI clones from soil that do not appear to be actinomycetal. AspartoftheEuropeanUnionfundedMetacontrolproject,ametagenomiclibrary wasmadeofenvironmentalDNAfromaFrenchcultivatedsoil[101]. The60,000clonesinthelibrary werescreenedwithPKSIspecificprimersand139positiveclonesfound. Threeofthesecloneswere fully sequenced. Two PKS domains from these clones, the ketosynthase (KS) and acyltransferase (AT)domainsclusteredwithmyxobacterialKSandATaminoacidsequences. Afosmidlibraryfrom acultivatedsoilintheMetagenomicprojectatthe[39]UniversityofWisconsin,wasscreenedand 29cloneswereidentifiedascontainingKSdomainsbyhybridization. Theinsertsoffiveoftheseclones weresequenced. TheirKSdomainhomologysuggestedthattheywerefromtheProteobacteriaor Cyanobacteria. Howeveranalysisofthefullinsert,itsGCcontent,andcomparisonwithKSdomain sequencesfromthreeacidobacterialisolatessuggestedthattheywerefromtheAcidobacteria. Asafinalexample,DNAwasextractedfromaBrazilianeucalyptusplantationsoil,andmade into a fosmid clone library. A clone with a PKSI hit was sequenced [102]. The start of the clone containedasinglePKSImodulewith20otheropenreadingframes(ORFs). MatchestotheORFwere allnon-actinomycetal,whiletheKSandATdomainsofthePKSImoduleclusteredawayfromtheir actinobacterial counterparts when treed with the SEARCHPKS database [103]. This database was disproportionatelyactinomycetalpossiblybiasingtheanalysis. Howeverthisresultwasconfirmed whenthesequenceswerereanalyzedwithabroaderrangeofnon-actinomycetalPKSdomains[104]. These environmental PKSI sequences were probably non-actinomycetal, but as only part of theirgenomewassequencedwecannotbecertainwhichbacterialgrouptheywerefrom. Insome environmentsmostPKSIproducersareactinomycetal. InourworkwecomparedPKSIampliconsofKSandATfromstreetsediments[104],whichare enriched with Actinomycetes, and soils [46]. Many soil amplicons clustered with myxobacterial sequences. However several clades clustered with actinomycetal sequences and were specific to samples from the streets of Ottawa (Canada), Faisalabad (Pakistan), and four European cities. TheBradygroupcomparedPKSIKSsequencesinsoilsfromNewEnglandanddesertsoilsofthe SouthwesternUnitedStates[105]throughpyrosequencingamplicons.KSdomaindiversitywasgreater intheactinobacterialrichdesertsoils. As further evidence that non-actinomycetal source may prove important in bioprospecting, anewclassofantibiotics(albeitanon-ribosomalpeptidenaturalproduct)wasrecentlydiscovered throughtheuseofaninsitucultivationtechniquethatgrewanovelβ-proteobacteriafromsoil[17]. Non-actinomycetalproducingorganismsmaybeimportantforfuturepolyketidediscovery. 2.5. TheQuestionofBiogeography Thetermbiogeographyisusedintwowaysinmicrobialecology. Oftenitsimplymeanschanges in the community over geographical distance. An example of this is the study that found that the actinobacterial and PKSII communities of soils in Uzbekistan and New Jersey differed [93]. BiogeographyinthissensewasdiscussedintheearliersectionontheimportanceofpHandother soil properties in the distribution of bacteria and actinobacteria (see Sections 2.2 and 2.3). In the narrowersense,usedinthisreview,biogeographymeansthatcommunitiesinsimilarenvironments thatareseparatedbydistanceorabarriersuchasanoceanwillhavedifferentmicrobialcommunities. ThisdifferenceisattributedtothecommunitiesevolvingseparatelyasWallaceproposedinthe1876 GeographicDistributionofAnimals[106]. Biogeographycanhavealargeeffectonthedistributionof largemulticellularorganisms. Forexample,marsupialsarefoundinAustraliabutnotinAfrica,even thoughtherearesimilarenvironmentsinbothplaces. For polyketide discovery, the more polyketide synthase gene distribution in terrestrial environmentsiscontrolledbybiogeography,themoreimportantitistosamplesimilarhabitatsthat areseparatedfromeachotherbydistanceorgeographicalbarriers. Ifbiogeographyisnotimportant, itismoreimportanttosampledifferenthabitats,eveniftheyareclosetoeachother. Addressingthis questioniscomplicatedbythedifficultyofdefiningbacterial,actinobacterialandpolyketidehabitats.

Description:
application of microbial ecology discoveries for bioprospecting and summarizes key developments .. of the whole bacterial community, different sub groups of the Actinobacteria may be selected for by different .. terrestrial soil is marine environments, a topic covered by many other reviews (e.g., [
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.