ebook img

Sampled-Data Control for Periodic Objects PDF

258 Pages·2023·3.246 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sampled-Data Control for Periodic Objects

Efim N. Rosenwasser Torsten Jeinsch Wolfgang Drewelow Sampled-Data Control for Periodic Objects Sampled-Data Control for Periodic Objects · · Efim N. Rosenwasser Torsten Jeinsch Wolfgang Drewelow Sampled-Data Control for Periodic Objects EfimN.Rosenwasser TorstenJeinsch DepartmentofShipAutomation LehrstuhlRegelungstechnik MarineTechnicalUniversitySt.Petersburg UniversitätRostock SaintPetersburg,Russia Rostock,Mecklenburg-Vorpommern Germany WolfgangDrewelow LehrstuhlRegelungstechnik UniversitätRostock Rostock,Mecklenburg-Vorpommern Germany ISBN 978-3-031-01955-5 ISBN 978-3-031-01956-2 (eBook) https://doi.org/10.1007/978-3-031-01956-2 MathematicsSubjectClassification:93C05,93C35,93C57,93C80,93C83,93D15,93E20 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Wededicatethisbooktothememoryofour goodfriendandcolleagueBernhardP. Lampe,whomademajorcontributions tothe underlyingtheoryofcomputer-controlled systems. Preface Oneoftheactualproblemsinmoderncontroltheoryisthecontrolofobjectswith periodicallychangingparameters.Manyoftheseobjectsaredescribedwithasuffi- cientdegreeofadequacybymathematicalmodelsintheformofsystemsoflinear differential equations with periodic coefficients. In the literature, such objects are referredtoasFinite-DimensionalLinearContinuousPeriodic(FDLCP),alsosimply referredtoasperiodicbelow.Anincompletelistanddescriptionofdifferenttypes ofsuchFDLCPobjectscanbefoundin[1]–[10]andtheliteraturecitedthere. This monograph deals with the problem of digital control of FDLCP objects. The corresponding closed-loop system belongs to the class of sampled-data (SD) systems,becauseitisbuiltofbothcontinuous-anddiscrete-timecomponents. The main mathematical apparatus used in this book is a method based on the concept of the parametric transfer function or Parametric Transfer Matrix (PTM), respectively.Bydefinition,unliketheordinarytransferfunctionW(s)forlineartime- invariantsystems,theparametrictransferfunctionW(s,t)dependsonthecomplex variables andthetimet asparameters. The concept of the parametric transfer function was introduced into control theoryintheworkofL.A.Zadeh[11],[12].Theideaoftransferringthisconcept tosampled-datasystemswithcontinuouslineartime-invariant (LTI)elementswas putforwardintheworkofJ.R.RagazziniandL.A.Zadeh[13].Thepossibilityof transferringtheparametrictransferfunctionmethodtoSDsystemswithaperiodic non-stationarycontinuousobjectwassetin[14]. Asystematicdescriptionofthemethodsfortheanalysisandsynthesisofsingle- input single-output sampled-data systems with continuous LTI elements based on theparametrictransferfunctionisgiveninthemonographs[15]–[19]. This parametric transfer function approach has been generalized to multidi- mensional computerized systems with continuous linear time-invariant objects by introducingtheconceptofthePTM[20]. Inmonograph[21],thisapproachwasextendedtosystemswithdelay. Themaincontentofthismonographisdividedintofiveparts. vii viii Preface PartI,comprisingChaps.1–4,developstheresultsof[22]andisdevotedtothe formulation of the frequency approach for the mathematical description and study ofFDLCPobjects. In Chap. 1, discrete operational transformations of functions of the continuous argumentt intheinfiniteinterval−∞<t <∞,aswellasarepresentationofthis transformationbythetwo-sidedLaplacetransformation,areintroduced.Thisleads to the definition of the discrete Laplace transformation of functions of continuous argumentsandthecorrespondingtransformationoftheimage.Besides,thefirstpart containsachapterdevotedtotheoperatordescriptionofLTIobjects. Chapter2providesnecessarymaterialfromthetheoryoflineardifferentialequa- tionswithperiodiccoefficients,whichisanimportantbasisforthefurtherpresen- tation. The methodology for calculating the response of LTI objects to periodic andexponentialperiodicinputsignalsusingthediscreteLaplacetransformationis introduced. Chapter 3 defines the parametric transfer matrix of an FDLCP object based on thecontentofthepreviouschaptersandgivesgeneralrelationsdefiningthisPTM. Chapter4introducestheconceptoftheFloquet–Lyapunovdecomposition,which makesitpossibletorepresentaFDLCPobjectintheformofaserialconnectionof anLTIelementandmodulationelementsatitsinputandoutput,respectively. PartIIconsistsofChaps.5–7.Thesechaptersdescribemethodsforconstructing thePTMsofopenandclosedsampled-datasystemswithaperiodicobjectanddelay. The discussion includes both synchronous systems, in which the period of the FDLCP object is equal to the sampling period of the discrete controller, and asynchronoussystems,wheretheseperiodsdifferbyanintegerfactor. Chapter5dealswiththeopen-loopsampled-datasystemwithoutdelay.Chapter6 develops the parametric transfer functions for open-loop synchronous and asyn- chronoussampled-datasystemsincaseofadelay.Chapter7providesgeneralexpres- sionsthatdefinePTMsfordifferenttypesofclosed-loopSDsystemswithFDLCP objectsanddelays. PartIIIincludesChaps.8–12.Inthispart,thetechniqueofsolvingtheproblems ofmodalcontrolandstabilizationofclosed-loopSDsystemsofconsideredclasses is developed. Chapters 8–9 contain the information necessary for understanding the subsequent presentation from the theory of polynomial and rational matrices. Chapter10describesthemethodofsolvingproblemsofmodalcontrolandstabiliza- tion of SD systems based on applying the mathematical apparatus of Determinant PolynomialEquations(DPEs).Thepeculiarityoftheproposedapproachistheuse of discrete models presented in polynomial form described by the backward oper- ator(reverseshift)ζ.Usingthismodelformeliminatestheproblemofseparationof thesubsetofcausalcontrollersfromthewholesetofstabilizingcontrollersbecause alldiscretestabilizingcontrollersforastrictlycausaldiscretebackwardobjectare causal.InChap.11,thetasksofsynchronouscontrolstabilizationofFDLCPobjects areconsideredbasedonthedescribedapproach.Forthispurpose,adiscreteback- wardmodelisbuiltforwhichthesetofallcausallystabilizingdiscretecontrollers isgeneratedusingtheDPEmathematicalapparatus.InChap.12,asimilarapproach Preface ix is used to solve the problem of stabilizing asynchronous closed-loop SD systems, includingdelayintheloop. Part IV, formed by Chaps. 13–19, is devoted to the construction of a quality functionalforsolvingthe H -optimizationproblemofthesynchronousclosed-loop 2 SD system Sτ with FDLCP object and delayed control. Chapters 13–15 establish someadditionalrelationsforthePTMofthesystemSτ requiredfortheconstruction ofthequalityfunctional.Chapters16and17showthatthesetoftransfermatricesof allcausaldiscretecontrollersthatstabilizethesystemSτ canbeparameterizedbya stablerationalmatrixθ(ζ),whichiscalledthesystemfunction,andarepresentation ofthePTMofthesystemSτ bythesystemfunctionisconstructed.InChaps.18,19, therelationsexpressingthe H2-normofthesystemSτ byitsPTMaregiven.Using theserelations,anintegralqualityfunctionalisconstructedwhichdependsonmatrix θ˜(s)=Δθ(e−sT)specifiedontheimaginaryaxisintheinterval−ω ≤Im(s)≤ ω with 2 2 ω= 2π. T PartV(Chaps.20–25)isdevotedtothemethodofH -optimizationofthesystem 2 Sτ, based on minimization of the quadratic quality functional, built in Chap. 19. Chapter20providesauxiliaryinformationfromthetheoryofscalarandmatrixquasi- polynomials, including an important factorization theorem from [23]. Chapter 21 deals with the algorithm of minimizing the quadratic functional on the unit circle, based on the results of [24], [25]. Chapters 22 and 23 describe practical ways of building the matrix η(s,t), which appears in the PTM representation through the system function and matrix C˜ (s,t), which is included in the expression of the T constructedqualityfunctional.InChap.24,thegeneratedqualityfunctionalistrans- lated into a functional specified on the circle |ζ| = 1 by replacing the integration variable ζ = e−sT. It is shown that the coefficients in the integral expression of thetransformedfunctionalarequasi-polynomials,wheretwoofthemonthecircle |ζ| = 1 are non-negative. The final chapter (Chap. 25) is devoted to solving the H2-optimization problem for the system Sτ. A general algorithm for minimizing theconstructedtransformedqualityfunctionalisgiven.Asanapplicationexample oftheproposedmethod,thesequentialsolutionofthe H -optimizationproblemfor 2 thesystemSτ withanFDLCPobjectoffirstorderisdemonstrated. The book is intended for researchers and engineers, involved in research and developmentofmoderncontrolsystems,aswellasforteachers,postgraduates,and undergraduates. TheauthorsverygratefullyacknowledgethefinancialsupportfromtheDeutsche Forschungsgemeinschaft.Wewouldliketoexpressourgratitudeforthededicated andcarefulworkofOliverJacksonofSpringer,whohelpedusgreatlyinovercoming editorialproblems.WethankVladislavRybinskiiandRenateZieglerfortheirhelp infinalizingthemanuscript. SaintPetersburg,Russia EfimN.Rosenwasser Rostock,Germany TorstenJeinsch Rostock,Germany WolfgangDrewelow Contents PartI TheFrequencyApproachtotheMathematicalDescription ofLinearPeriodicObjects 1 Discrete Operational Transformations of Continuous ArgumentFunctionsandOperatorDescriptionofLinear Time-InvariantSystems ........................................ 3 1.1 DiscreteLaplaceTransformationofContinuousArgument Functions ............................................... 3 1.2 DiscreteLaplaceTransformoftheImage .................... 5 1.3 Operator Description of a Finite-Dimensional Linear Time-InvariantSystem .................................... 9 1.4 TransferofanExponentiallyPeriodicSignalThrough aLinearTime-InvariantSystem ............................ 11 2 State-Space Analysis of Finite-Dimensional Linear ContinuousPeriodicObjects ................................... 17 2.1 State-SpaceDescriptionofPeriodicObjects .................. 17 2.2 TransferofPeriodicSignalsThroughPeriodicObjects ......... 20 2.3 Transfer of Exponentially Periodic Signals Through PeriodicObjects ......................................... 23 2.4 Higher-OrderPeriodicObjects ............................. 27 3 TheFrequencyMethodintheTheoryofPeriodicObjects ......... 31 3.1 FrequencyDescriptionofLinearPeriodicOperators ........... 31 3.2 LinearPeriodicIntegralOperators .......................... 33 3.3 OperatorDescriptionofaBasicPeriodicObject .............. 39 3.4 ParametricTransferMatrixoftheBasicPeriodicObject ....... 43 3.5 ParametricTransferMatrixofaComplementedPeriodic Object .................................................. 45 4 TheFloquet–LyapunovDecompositionandItsApplication ........ 51 4.1 Floquet–LyapunovTransformation .......................... 51 xi xii Contents 4.2 Floquet–Lyapunov Decomposition and Its Parametric TransferMatrix .......................................... 53 4.3 PeriodicObjectwithDelay ................................ 54 4.4 Low-Frequency Exponentially Periodic Excitation oftheFloquet–LyapunovDecomposition .................... 58 PartII The Parametric Transfer Matrix Approach to Sampled-DataSystemswithPeriodicObjects 5 Open-LoopSampled-DataSystemwithPeriodicObject ........... 63 5.1 MultivariableZero-OrderHold ............................. 63 5.2 LinearizedModeloftheDigitalController ................... 65 5.3 Open-LoopSystemwithTime-InvariantObject ............... 70 5.4 SynchronousOpen-LoopSystemwithPeriodicObject ......... 72 5.5 AsynchronousRisingOpen-LoopSystemwithPeriodic Object .................................................. 75 5.6 Open-Loop System with Periodic Object andHigh-FrequencyHold ................................. 78 6 Open-Loop Sampled-Data System with Periodic Object andDelay .................................................... 83 6.1 Open-LoopSystemwithLinearTime-InvariantObject andDelay ............................................... 83 6.2 SynchronousOpen-LoopSystemwithPeriodicObject andDelay ............................................... 89 6.3 AsynchronousRisingOpen-LoopSDSystemwithPeriodic ObjectandDelay ......................................... 94 6.4 Open-LoopSystemwithPeriodicObject,High-Frequency HoldandDelay .......................................... 98 7 Closed-Loop Sampled-Data SystemwithPeriodic Object andDelay .................................................... 101 7.1 SynchronousClosed-LoopSystem .......................... 101 7.2 AsynchronousRisingClosed-LoopSystem .................. 106 7.3 Closed-LoopSystemwithPeriodicObject,High-Frequency HoldandDelay .......................................... 110 PartIII Determinant Polynomial Equations, Sampled-Data ModalControlandStabilizationofPeriodicObjects 8 PolynomialMatrices ........................................... 115 8.1 GeneralDefinitionsandProperties .......................... 115 8.2 PolynomialMatricesEquivalence ........................... 117 8.3 LatentEquationandLatentNumbers ........................ 118 8.4 PairsofPolynomialMatrices ............................... 119

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.