72 BritishJournalofMathematicalandStatisticalPsychology(2014),67,72–93 ©2013TheBritishPsychologicalSociety www.wileyonlinelibrary.com Sample size determinations for Welch’s test in one-way heteroscedastic ANOVA Show-Li Jan1 and Gwowen Shieh2* 1ChungYuanChristianUniversity,Taiwan,RepublicofChina 2NationalChiaoTungUniversity,Taiwan,RepublicofChina Forone-wayfixedeffectsANOVA,itiswellknownthattheconventionalFtestofthe equalityofmeansisnotrobusttounequalvariances,andnumerousmethodshavebeen proposed for dealing with heteroscedasticity. On the basis of extensive empirical evidence of Type I error control and power performance, Welch’s procedure is frequentlyrecommendedasthemajoralternativetotheANOVAFtestundervariance heterogeneity. To enhance its practical usefulness, this paper considers an important aspectofWelch’smethodindeterminingthesamplesizenecessarytoachieveagiven power.Simulationstudiesareconductedtocomparetwoapproximatepowerfunctions ofWelch’stestfortheiraccuracyinsamplesizecalculationsoverawidevarietyofmodel configurationswithheteroscedasticstructures.Thenumericalinvestigationsshowthat Levy’s(1978a)approachisclearlymoreaccuratethantheformulaofLuhandGuo(2011) fortherangeofmodelspecificationsconsideredhere.Accordingly,computerprograms areprovidedtoimplementthetechniquerecommendedbyLevyforpowercalculation and sample size determination within the context of the one-way heteroscedastic ANOVAmodel. 1. Introduction Theone-wayanalysisofvariance(ANOVA)Ftestisaprocedurewidelyusedfortestingthe equality of means of independent normal distributions with homogeneous variances. Thecorrespondingimplications,fromthebasicdiagnosticsofunderlyingassumptionsto therequiredpowercalculationsandsamplesizedeterminations,havebeenextensively addressed in the literature; see, for example, Howell (2010), Kirk (1995), Kutner, Nachtsheim, Neter and Li (2005) and Scheff(cid:1)e (1959). However, the violation of the independence,normality,andhomogeneityofvarianceassumptionseitherseparatelyor inconjunctionwithoneanotherhasbeenthetargetofcriticisminapplicationsofANOVA (Coombs,Algina&Oltman,1996;Glass,Peckham&Sanders,1972;Harwell,Rubinstein, Hayes & Olds, 1992; Keselman et al., 1998). Specifically, the F test is not robust to all *CorrespondenceshouldbeaddressedtoGwowenShieh,DepartmentofManagementScience,NationalChiao TungUniversity,Hsinchu,Taiwan30010,RepublicofChina(e-mail:[email protected]). DOI:10.1111/bmsp.12006 SamplesizedeterminationsforWelch’stestinone-wayheteroscedasticANOVA 73 degrees of unequal variances (Brown & Forsythe, 1974; Clinch & Keselman, 1982; De Beuckelaer, 1996; Kohr & Games, 1974; Levy, 1978b; Wilcox, Charlin & Thompson, 1986),and theactual significancelevelandpowercanbedistorted even whensample sizes are equal (Krutchkoff, 1986; Rogan & Keselman, 1977). Accordingly, various parametricandnon-parametricalternativestothetraditionalFtesthavebeenproposedto countertheeffectsofheteroscedasticity(Lix,Keselman&Keselman,1996). Given the extensive Monte Carlo simulation studies conducted in this area, three important aspects of these numerical evidences should be pointed out. First, the non- parametricproceduresarealsosubstantiallyaffectedbyheterogeneousvariancesandare generally inferior to the parametric approaches (Keselman, Rogan & Feir-Walsh, 1977; Tomarken&Serlin,1986;Zimmerman,2000).Second,theparametrictestsofAlexander and Govern (1994), Brown and Forsythe (1974), James (1951) and Welch (1951) have been shown to provide accurate control of Type I error rate and competitive power performance (Schneider & Penfield, 1997). However, there appears to be a lack of consensusintheliteratureonwhichmethodismostappropriate.Essentially,thereisno oneuniformlybestalternativetotheFtestunderheterogeneityofvariance(Dijkstra& Werter,1981;Grissom,2000).Third,despitethefactthatnoapproachisideal,itisstillof practicalimportancetohaveareliableandsimpletestprocedurethatissufficientlyrobust toheteroscedasticitywhendistributionsarenormal.Onthebasisofthecomprehensive appraisalsbyBrownandForsythe(1974),DeBeuckelaer(1996),Grissom(2000),Harwell et al. (1992), Levy (1978b), Tomarken and Serlin (1986) and Wilcox et al. (1986), the approximationofWelch(1951)isthemostwidelyrecommendedtechniquetocorrectfor variance heterogeneity. In short, it has distinct advantages over other competing approaches in its overall performance, computational ease, and general availability in statisticalcomputerpackages. Yetanotherproblemwiththecommonmethodsforanalysingthedatafromone-way independent groups designs occurs when the distribution of each population is non- normalinform.SeeCribbie,Fiksenbaum,KeselmanandWilcox(2012),LixandKeselman (1998),Wilcox(2003)andWilcoxandKeselman(2003)formodernrobustmethodsand updatedstrategieswhenthestandardassumptionsofnormalityandhomoscedasticityare violated. In particular, the Welch test with robust estimators of trimmed means and WinsorizedvarianceshasbeenshowntoprovideexcellentTypeIerrorcontrolandpower performancewhendataarenon-normalandheterogeneous.However,wewillrestrictour attentiontotheappropriateprocedurefortestingtheequalityofmeansofindependent normaldistributionswithpossiblyunequalerrorvarianceshere. ItisconceivablethatatestprocedurewithrobustTypeIerrorcontrolandexcellent power performance is not sufficient for the purposes of research design and statistical inference.Thecorrespondingpoweranalysisandsamplesizecomputationmustalsobe consideredbeforeitcanbeadoptedasageneralmethodologyinpractice.Theoretically, thenon-nulldistributionofatestprocedureisrequiredinordertoevaluatetheintrinsic issuesofpoweranalysisandsamplesizeassessment.Buttoourbestknowledge,nopower functionornon-nulldistributionhasbeenproposedfortheprescribedtestsofAlexander and Govern (1994), Brown and Forsythe (1974) and James (1951). On the other hand, several approximations have been described for the non-null distribution of Welch’s (1951)testinLevy(1978a),LuhandGuo(2011)andKulinskaya,StaudteandGao(2003). Althoughtheseresultspermitpowerandsamplesizeconsiderationsforthewell-known Welch(1951)method,noresearchtodatehascomparedtheirdistinctcharacteristicsin termsoftheoreticalprinciples,computationalrequirementsandempiricalperformance. Butinfacttheirformulationsaremarkedlydifferentanddemandvaryingcomputational 74 Show-LiJanandGwowenShieh efforts.Thusitisprudenttoexaminetheiruniquefeatureandfundamentaldiscrepancyin ordertobetterunderstandtheselectionofanappropriateapproachtopoweranalysisand samplesizedeterminationinone-factorANOVAstudies. Insteadofanon-centralFdistribution,Kulinskayaet al.(2003)presentedachi-square- based power approximation to the non-null distribution of Welch’s test. They showed thattheshiftedandrescaledchi-squareapproximationismoreaccuratethanthestandard chi-square transformation. However, there are two obvious disadvantages of their approximatepowerfunction.First,thechi-square-basedformulationdoesnotconformto the entrenched F test of homoscedastic ANOVA or Welch’s test of heteroscedastic ANOVA. Second, the complexity of their proposed expression is overwhelming. It is worthwhile to consider a more transparent procedure with fewer computational and theoreticalhurdles.ThustheapproachofKulinskayaet al.(2003)willnotbeconsidered furtherinthispaper. Recently,LuhandGuo(2011)suggestedanon-centralFdistributiontoapproximate the non-null distribution of Welch’s test. The non-centrality of their non-central F distributionisadirectmodificationofthenon-centralityoftheusualFtest’sexactnon-null Fdistributionunderbalanceddesignandhomogeneityofvariance.Inparticular,thenon- centralityderivedinvolvesasimpleaverageofthevarianceandsamplesizeratiosofeach group. The adapted formula at first sight provides a convenient approximation and is computationallysimple.Notably,LuhandGuo (2011)concludedthattheirtechniqueis suitableforobtainingtheadequatesamplesizesinheterogeneousANOVA.However,a closer inspection of their numerical results reveals that the discrepancy between the nominalpowerandsimulatedpower(orestimateoftruepower)issizeableforseveral casesconsideredintheirsimulationstudy.Hence,theaccuracyoftheirproposedpower functioninsamplesizeestimationisquestionable.Furtherexaminationsarerequiredto demonstratetheunderlyingdrawbacksassociatedwiththeirapproximateprocedure. According to the explication of power and sample size considerations for Welch’s procedure presented above, the approximate technique proposed in Levy (1978a) has beengiveninsufficientconsideration,thoughanotableexceptionisTomarkenandSerlin (1986).DuetothecomplexityoftheoreticaljustificationforWelch’stestprocedure,no explicit analytic form of the corresponding non-null distribution isavailable. However, theapproximatenon-nulldistributionofLevy(1978a)canbeobtainedbyreplacingthe sample means and variances in Welch’s test statistic with corresponding population parameters. It was shown in the numerical comparisons of the estimated power and simulatedpowerofLevy(1978a)thatthesuggestednon-centralFdistributionyieldsan adequateapproximationtothenon-nulldistributionofWelch’statistic.Later,Tomarken and Serlin (1986) also strongly recommended the non-central F approximation for conductingpoweranalysesoftheWelchprocedure.ThustheformulaofLevy(1978a)is ofgreat potential useandshould beproperly recognized.But theexplicationofLevy’s non-centralFdistributionhasbeenconfinedtopowerexamination,andnosinglestudy hasextendedtheinvestigationtosamplesizecalculation.Inviewofthelimitationsofthe existingfindings,itisessentialtogeneralizeandassesstheeffectivenessofLevy’s(1978a) approximateformulainsamplesizedeterminationwithmoderncomputingfacilitiesand accessiblestatisticalsoftware. ItisimportanttonotethattheapproximatepowerfunctionsofLevy’s(1978a)andLuh andGuo(2011)bothrelyonanon-centralFdistribution,withidenticalnumeratorand denominatordegreesoffreedom.Theonlydifferenceisintheirrespectivespecifications of the non-centrality parameter. Because of the complex nature of the non-central distributionandnon-centralityparameter,acompletetheoreticaltreatmentandanalytical SamplesizedeterminationsforWelch’stestinone-wayheteroscedasticANOVA 75 evaluationisnotfeasible.However,therestillremainsnosimultaneouscomparisonofthe empirical performance of the two approaches. In order to offer well-supported recommendations on desirable sample sizes for heteroscedastic ANOVA models, this paper appraises and compares the two approaches of Levy (1978a) and Luh and Guo (2011)forpowercalculationsandsamplesizedeterminationsofWelch’stestprocedure. Since optimal sample size determinations for Welch’s (1938) two-group test were presentedinJanandShieh(2011),thispaperfocusesonthesituationswiththreeormore treatment groups. Comprehensive empirical investigations were conducted to demon- strate the potential advantages and disadvantages between the two methods under a varietyofmeanstructures,variancepatterns,aswellasequalandunequalsamplesizes. Our study reveals unique information that not only demonstrates the fundamental deficiencyofexistinginvestigations,butalsoenhancestheusefulnessoftheWelchtestin thecontextofANOVAundervarianceheterogeneity.Moreover,correspondingSASandR computercodesarepresentedtofacilitatetherecommendedprocedureforcomputing theachievedpowerlevelandrequiredsamplesizeinactualapplications. 2. TheWelchtest Considertheone-wayheteroscedasticANOVAmodelinwhichtheobservationsX are ij assumed to be independent and normally distributed with expected values l and i variancesr2: i X (cid:1)Nðl;r2Þ; ð1Þ ij i i wherel andr2areunknownparameters,i = 1,…,g((cid:3) 2)andj = 1,…,N Totestthe i i i hypothesisthatalltreatmentmeansareequal,theclassicFtestisthemostwidelyused statisticalprocedureassuminghomogeneityofvariance(r2 ¼r2 ¼...¼r2).However, 1 2 g it has been shown in extensive studies that the conventional F test is sensitive to the heteroscedasticityformulationdefinedin(1).OfthenumerousalternativestotheANOVA Ftest,wefocusontheviableapproachproposedinWelch(1951)intheformof P g WðX(cid:3) (cid:4)X~Þ2=ðg(cid:4)1Þ W ¼ i¼1 i i ; ð2Þ 1þ2ðg(cid:4)2ÞQ=ðg2(cid:4)1Þ P P P wherPe Wi¼Ni=Si2;Si2¼ PNj¼i1ðXij(cid:4)X(cid:3)iÞ2=ðNi(cid:4)1Þ;X(cid:3)i¼ Nj¼i1Xij=Ni;X~¼ gi¼1WiX(cid:3)i=U; U ¼ g W, and Q¼ g ð1(cid:4)W=UÞ2=ðN (cid:4)1Þ. Under the null hypothesis H : i¼1 i i¼1 i i 0 l = l = … = l ,Welch(1951)suggeststheapproximateFdistributionforW: 1 2 g W (cid:1)(cid:5) Fðg(cid:4)1;^mÞ; where Fðg(cid:4)1;^mÞ is the F distribution with g (cid:4) 1 and ^m¼ðg2(cid:4)1Þ=ð3QÞ degrees of freedom.Hence,H0isrejectedatthesignificancelevelaifW >Fðg(cid:4)1Þ;^m;a,whereFðg(cid:4)1Þ;^m;a is the upper 100 ath percentile of the F distribution Fðg(cid:4)1;^mÞ. Although numerical evidenceconfirmstheaccurateTypeIerrorcontrolandsuperiorpowerperformanceof Welch’s test, theoretical justification for the non-null distribution of W has rarely been discussed.Especially,twonon-centralFapproximationsareconsideredinLevy(1978a) andLuhandGuo(2011).LuhandGuo(2011)suggested 76 Show-LiJanandGwowenShieh W (cid:1)(cid:5) Fðg(cid:4)1;m;K Þ; LG whereF(g (cid:4) 1,t,ΛLG)isthenon-centralFPdistributionwith(g (cid:4) 1)andt = (g2 (cid:4) 1)/ (3τ)Pdegrees of freedom, where s¼ gi¼1ð1(cid:4)xi=tÞ2=ðNi(cid:4)1Þ;xi ¼Ni=r2i, and t¼ g x,andwithnon-centralityparameter i¼1 i P g ðl (cid:4)l(cid:3)Þ2 K ¼g Pi¼1 i ; LG g ð1=xÞ i¼1 i P wherel(cid:3) ¼ g l=g.ThenthecorrespondingpowerfunctionofWelch’stestisofthe i¼1 i form pðKLGÞ¼PfFðg(cid:4)1;m;KLGÞ>Fðg(cid:4)1Þ;m;ag: ð3Þ Ontheotherhand,Levy(1978a)proposedtheapproximatenon-nulldistributionforW givenby W (cid:1)(cid:5) Fðg(cid:4)1;m;K Þ; L where Xg K ¼ xðl (cid:4)l~Þ2; L i i i¼1 P andl~ ¼ g xl=t.Inthiscase,theassociatedpowerfunctionp(Λ )isexpressedas i¼1 i i L pðKLÞ¼PfFðg(cid:4)1;m;KLÞ>Fðg(cid:4)1Þ;m;ag: ð4Þ Notethatthenon-centralityparameterΛ canbeexpressedas LG P g ðl (cid:4)l~Þ2 K ¼Pi¼1 i : LG g ð1=xÞ=g i¼1 i HPence, the heterPoscedastic variance property is only accommodated in the quantity g ð1=xÞ=g¼ g ðr2=NÞ=g as a simple average of variances of group means. i¼1 i i¼1 i i Contrast this with the form of the non-centrality parameter of Levy’s (1978a) F approximation. The variance heterogeneity directly employed to reflect the weight of eachofthegroupmeansinΛ makesagreatdifferenceinpowerperformance. L It was demonstrated in Levy (1978a) that the actual power of Welch’s test PfW >Fðg(cid:4)1Þ^m;agcanbewellapproximatedbyp(ΛL).AsnotedinTomarkenandSerlin (1986), this procedure may prove useful in conducting power analysis for one-way heteroscedasticANOVA.Moreover,itisofgreatinteresttoextendtheapproachtosample sizedetermination,justasinthecaseofLuhandGuo(2011)withtheapproximatepower functionp(Λ ).InspiteofthecomplexityinthedenominatordegreesoffreedomoftheF LG distribution, the power approximations in equations (3) and (4) closely resemble the powerfunctionoftheANOVAFtest.Butthetwonon-centralityparametersΛ andΛ L LG differ considerably in their expressions, and thus the resulting behaviours of the two powerfunctionsarepresumablydivergent.Wenextperformnumericalinvestigationsto SamplesizedeterminationsforWelch’stestinone-wayheteroscedasticANOVA 77 evaluateandcomparetheaccuracyofthetwoformulasforcomputingsamplesizeunder variousmodelconfigurationslikelytooccurinpractice. 3. Simulationstudies In order to enhance the applicability of sample size methodology and the fundamental usefulnessofWelch’sprocedure,twoMonteCarlosimulationstudieswereconductedto investigatetheperformanceofthesamplesizecalculationwithrespecttothetwopower functions described in Levy (1978a) and Luh and Guo (2011). With the approximate powerformulasgiveninequations (3)and(4),thesamplesizes(N ,…,N )neededto 1 g attainthespecifiedpower1 (cid:4) bcanbefoundbyasimpleiterativesearchforthechosen significance level a and parameter values ðl;r2Þ, i = 1, …, g. Accordingly, the non- i i centralityparametersΛ andΛ definedin(3)and(4)canberewrittenas LG L K ¼N (cid:5)k and K ¼N (cid:5)k ; ð5Þ LG T LG L T L n o P P P rPespectively, where NT ¼P gi¼1Ni;kLG ¼Pg(cid:5) ig¼1ðli (cid:4)l(cid:3)Þ2= gi¼1ðr2j=qjÞ ;kL ¼ g qfðl (cid:4)l~Þ=rg2, l~ ¼ g ðql=r2Þ= g ðq=r2Þ and q = N/N for i = 1, …, i¼1 i i i i¼1 i i i i¼1 j j i i T g.Notethatk andk dependnotonthegroupsizesbutratherontheallocationratio LG L amongthegroups,andserveastheeffectsizemeasuresfortheapproximationsinLuhand Guo(2011)andLevy(1978a),respectively.Astheremaybeseveralpossiblechoicesof samplesizethatsatisfythechosenpowerlevelintheprocessofsamplesizecalculations,it is constructive to consider an appropriate design with a priori designated sample size ratios that leads toauniqueand optimal result. For ease ofillustration,thesample size ratios (r1P, …, rg) are specified in advance with ri = Ni/N1i = 1, …, g. Note that q ¼ r= g r,wherer = N/N fori = 1,…,g.Thusthetaskisconfinedtodeciding i i j¼1 j i i 1 theminimumsamplesizeN (withN = N r,i = 2,…,g)requiredtoachievethedesired 1 i 1 i powerlevel. Each of the vital factors of mean pattern, variance characteristic, and sample size structurehasbeenshowntoaffectthemagnitudeofnon-centralityandpower.Toprovide asystematicdemonstration,fourpatternsofvariabilityinthemeanswereusedtoassess powerandcomputesamplesize:(a)minimumvariability(onemeanateachextremeof therange,andallothermeansatthemidpoint);(b)intermediatevariability(suchasmeans equally spaced through the range); (c) maximum variability (half of the means at each extremeoftherange);and(d)extremevariability(onemeanatoneextremeoftherange, andallothermeansequalandattheotherextreme).Similarmeanconfigurations were considered in Alexander and Govern (1994), Cohen (1988), De Beuckelaer (1996) and TomarkenandSerlin(1986).Theempiricalexaminationconsistsoftwostudies,ofwhich thefirstre-examinestheminimumvariabilitymeanpatternsinLuhandGuo(2011),and thesecondevaluatestheothercasesofintermediate,maximumandextremevariability thatwerenotconsideredinLuhandGuo(2011). 3.1. StudyI 3.1.1. Design Forpurposesofcomparison,wereconsiderthemodelsettingswithg = 4and6inTable 1 ofLuhandGuo(2011)inwhichthemeanvaluesareofminimumvariabilitywithl = {1,0, 0, (cid:4)1} and {1, 0, 0, 0, 0, (cid:4)1}, respectively. The corresponding two variance settings, 78 Show-LiJanandGwowenShieh representinghomogeneousandheterogeneousstructures,arer2 = {1,1,1,1}and{1,4, 9,16},and{1,1,1,1,1,1}and{1,1,4,4,9,9},respectively.Moreover,thesamplesize ratio is fixed as the variance ratio r = N/N = r/r for i = 1, …, g. With these i i 1 i 1 specifications,therequiredsamplesizeswerecomputedforthetwoapproacheswiththe chosenpowervalueandsignificancelevel.Throughoutthisempiricalinvestigation,the significancelevelissetata = .05.NotethatthesamplesizesofLuhandGuo’smethodare calculated with the algorithm presented in Luh and Guo (2011), which involves some further modification when applying the power function p(Λ ) in equation (3). In LG contrast,thesamplesizesforLevy’sprocedurearedeterminedwiththepowerfunctionp (Λ )inequation (4).Inaddition,theactualorapproximatepowersarecalculatedwiththe L resulting sample sizes. The SAS/IML (SAS Institute, 2011) and R (R Development Core Team,2006)programs employed toperformthesamplesizedeterminationandpower calculation for Levy’s (1978a) procedure are presented in Appendices A–D. The computed sample sizes and approximate powers are listed in Tables 1–3 for power levels.7,.8and.9,respectively.Becauseoftheunderlyingmetricofintegersamplesizes, thevaluesachievedaremarginallylargerthanthenominallevelforbothprocedures.The onlytwoexceptionsoccurwiththevariancehomogeneitycasesofcomparativelysmall samplesizesinTable 1.Thenforbothprocedures,estimatesofthetruepowerassociated with given sample size and parameter configuration are computed via Monte Carlo simulation of 10,000 independent data sets. For each replicate, (N , …, N ) normal 1 g outcomes are generated with the one-way homoscedastic or heteroscedastic ANOVA model.Next,theteststatisticWiscomputedandthesimulatedpoweristheproportionof the 10,000 replicates whose test statistics W exceed the corresponding critical value Fg(cid:4)1;^m;:05. For the procedure examined, the adequacy for power and sample size calculation is determined by the difference between the simulated power and approx- imatepowercomputedearlier.Thesimulatedpoweranddifferencearealsosummarized inTables 1–3forthethreedesignatedpowerlevels. 3.1.2. Results An inspection of the reported sample sizes in Tables 1–3 reveals that in general the necessarysamplesizesforLuhandGuo’s(2011)methodarelargerthanthoseforLevy’s (1978a)approach.ThereisonlyonecaseinTable 3wherethetwosetsofsamplesizesare identical.Butevenwiththesamesamplesizes,thetwopowerfunctionsp(Λ )andp(Λ ) L LG still give different approximate power values because of the distinct non-centrality parameterformulations.Moreimportantly,thediscrepanciesbetweensimulatedpowers and approximate powers indicate that the performance of Luh and Guo’s method is noticeably unstable and in several cases disturbing. Specifically, the resulting errors in Tables 1–3 range from .0131 to .1060. On the other hand, the errors associated with Levy’s approach in Tables 1–3 clearly show that the approximate power formula of equation (4)performsextremelywellbecauseallabsoluteerrorsarelessthan.01forthe 12casesexaminedhere. 3.2. StudyII 3.2.1. Design To show a profound implication of the sample size procedures, further numerical assessments were performed with different variability patterns in mean structure. By SamplesizedeterminationsforWelch’stestinone-wayheteroscedasticANOVA 79 ominal erence 0036 0035 0027 0070 nn Diff .(cid:4) .(cid:4) .(cid:4) .(cid:4) e h w y(1978a) Simulatedpower .7760 .7094 .7725 .7082 v e L d ay e 2011)an Lev proximatpower .7796 .7129 .7752 .7152 ( p o A u G chesofLuhand Samplesizes (7,7,7,7) (10,20,30,40) (8,8,8,8,8,8) (10,10,20,20,30,30) 0,respectively. a 1 o 0 ppr ce d.1 a n 0 2 7 4 n e e 6 1 6 7 a orth Differ .10 .10 .07 .09 333, f 3 r . we 0, simulatedpo Guo Simulatedpower .8432 .8080 .8276 .8106 are.500,.098 ower,and Luhand proximatepower .7372 .7068 .7509 .7132 figurations p p n mate A elco pproxi sizesures 8) 36,48) 9,9,9) 24,24,6) urmod plesize,a Samplestruct (8,8,8, (12,24, (9,9,9, (12,12,36,3 forthefo m kL Computedsa70 variance }0,1(cid:4)}1,1,1}0,1(cid:4)}4,9,16}0,0,0,1(cid:4)}1,1,1,1,1}0,0,0,1(cid:4)}1,4,4,9,9 eeffectsizes Table1. poweris. Meanand l={1,0,r={21,l={1,0,r={21,l={1,0,={r21,l={1,0,r={21, aTh.Note 80 Show-LiJanandGwowenShieh ominal erence 0094 0049 0066 0050 nn Diff .(cid:4) .(cid:4) .(cid:4) .(cid:4) e h w d 8a) atewer 35 86 60 77 7 ulo 4 9 3 0 9 mp 8 7 8 8 1 . . . . ( Si y v 11)andLe aLevy proximatepower .8529 .8035 .8426 .8127 0 p (2 A o u chesofLuhandG Samplesizes (8,8,8,8) (12,24,36,48) (9,9,9,9,9,9) (12,12,24,24,36,36) 0,respectively. a e 1 theappro Differenc .0583 .0606 .0405 .0814 3,and.10 r 3 o 3 powerf mulatedpower .8997 .8675 .8811 .8957 0980,.3 ed Si 0,. wer,andsimulat LuhandGuo Approximatepower .8414 .8069 .8406 .8143 urationsare.50 g o fi matep ctures 0,10) 3,43) elcon e,approxi esizesstru 9,9) 8,42,55) 0,10,10,1 5,29,29,4 efourmod plesiz Sampl (9,9, (14,2 (10,1 (15,1 forth m kL Computedsa80 variance }0,1(cid:4)}1,1,1}0,1(cid:4)}4,9,16}0,0,0,1(cid:4)}1,1,1,1,1}0,0,0,1(cid:4)}1,4,4,9,9 eeffectsizes Table2. poweris. Meanand l={1,0,r={21,l={1,0,={r21,l={1,0,r={21,l={1,0,={r21, a.ThNote SamplesizedeterminationsforWelch’stestinone-wayheteroscedasticANOVA 81 ominal erence 0071 0010 0026 0063 nn Diff .(cid:4) .(cid:4) .(cid:4) .(cid:4) e h w 978a) ulatedower 975 143 256 006 1 mp 8 9 9 9 y( Si . . . . v e L d ay e 2011)an Lev proximatpower .9046 .9153 .9282 .9069 ( p o A u G chesofLuhand Samplesizes (9,9,9,9) (16,32,48,64) (11,11,11,11,11,11)(15,15,30,30,45,45) 0,respectively. a 1 o 0 ppr ce d.1 a n 8 5 1 2 n e e 9 5 3 4 a orth Differ .01 .04 .01 .03 333, f 3 r . we 0, simulatedpo Guo Simulatedpower .9344 .9493 .9203 .9395 are.500,.098 ower,and Luhand proximatepower .9146 .9038 .9072 .9053 figurations p p n mate A elco plesize,approxi Samplesizesstructures (10,10,10,10) (18,36,54,72) (11,11,11,11,11,11)(17,17,34,34,50,50) forthefourmod m kL Computedsa90 variance }0,1(cid:4)}1,1,1}0,1(cid:4)}4,9,16}0,0,0,1(cid:4)}1,1,1,1,1}0,0,0,1(cid:4)}1,4,4,9,9 eeffectsizes Table3. poweris. Meanand l={1,0,r={21,l={1,0,={r21,l={1,0,r={21,l={1,0,={r21, a.ThNote
Description: