ebook img

SALT2: using distant supernovae to improve the use of Type Ia supernovae as distance indicators PDF

0.63 MB·English
by  J. Guy
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SALT2: using distant supernovae to improve the use of Type Ia supernovae as distance indicators

Astronomy&Astrophysicsmanuscriptno.salt2 (cid:13)c ESO2008 February4,2008 SALT2: using distant supernovae to improve the use of Type Ia ⋆ supernovae as distance indicators J.Guy1,P.Astier1,S.Baumont1,D.Hardin1,R.Pain1,N.Regnault1,S.Basa2,R.G.Carlberg3,A.Conley3,S.Fabbro4, D.Fouchez5,I.M.Hook6,D.A.Howell3,K.Perrett3,C.J.Pritchet7,J.Rich8,M.Sullivan3,P.Antilogus1,E.Aubourg8, G.Bazin8,J.Bronder6,M.Filiol2,N.Palanque-Delabrouille8,P.Ripoche5,V.Ruhlmann-Kleider8 7 1 LPNHE,CNRS-IN2P3andUniversite´sParisVI&VII,4placeJussieu,75252ParisCedex05,France 0 2 LAM,CNRS,BP8,TraverseduSiphon,13376MarseilleCedex12,France 0 3 DepartmentofAstronomyandAstrophysics,UniversityofToronto,50St.GeorgeStreet,Toronto,ONM5S3H8,Canada 2 4 CENTRA-CentroM.deAstrofisicaandDepartmentofPhysics,IST,Lisbon,Portugal n 5 CPPM,CNRS-IN2P3andUniversite´Aix-MarseilleII,Case907,13288MarseilleCedex9,France a 6 UniversityofOxfordAstrophysics,DenysWilkinsonBuilding,KebleRoad,OxfordOX13RH,UK J 7 DepartmentofPhysicsandAstronomy,UniversityofVictoria,POBox3055,Victoria,BCVSW3P6,Canada 9 8 DSM/DAPNIA,CEA/Saclay,91191Gif-sur-YvetteCedex,France 2 ReceivedMonthDD,YYYY;acceptedMonthDD,YYYY 1 ABSTRACT v 8 Aims.WepresentanempiricalmodelofTypeIasupernovaespectro-photometricevolutionwithtime. 2 Methods.Themodelisbuiltusingalargedatasetincludinglight-curvesandspectraofbothnearbyanddistantsupernovae,thelatter 8 beingobservedbytheSNLScollaboration.WederivetheaveragespectralsequenceofTypeIasupernovaeandtheirmainvariability 1 componentsincludingacolorvariationlaw.Themodelallowsustomeasuredistancemoduliinthespectralrange2500−8000Å 0 withcalculableuncertainties,includingthosearisingfromvariabilityofspectralfeatures. 7 Results.Thanks to the use of high-redshift SNe to model the rest-frame UV spectral energy distribution, we are able to derive 0 improveddistanceestimatesforSNeIaintheredshiftrange0.8 < z < 1.1.Themodel canalsobeusedtoimprovespectroscopic / h identificationalgorithms,andderivephotometricredshiftsofdistantTypeIasupernovae. p Keywords.supernovae:general-cosmology:observations - o r t s 1. Introduction shifts,andprovideapreciseestimator,withatypicaldispersion a : of7%ondistance,whennotlimitedbythemeasurementuncer- v Theevolutionofluminosityorangulardistancewithredshiftis tainties(seee.g.Astieretal.2006,hereafterA06). i anessentialobservabletoconstraintheequationofstateofdark X As the number of SNe Ia in Hubble diagrams increases, energy,responsibleforthe accelerationofthe expansionof the systematic uncertainties are becoming the main limitation to r Universe. Type Ia supernovae (SNe Ia) are, today, among the a theaccuracyofmeasurementsofcosmologicalparameterswith best distance indicators. They can be observed up to high red- SNeIa.Amongthepotentiallyserioussystematicuncertainties, thedominantonesareapossibleevolutionofthesupernovapop- Sendoffprintrequeststo:[email protected] ulation,thephotometriccalibration,themodelingoftheinstru- ⋆ BasedonobservationsobtainedwithMegaPrime/MegaCam,ajoint ment response and the uncertainties arising from SN Ia large project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii spectral features, including their possible supernova to super- Telescope(CFHT)whichisoperatedbytheNationalResearchCouncil novavariations.In thispaper,we aim at addressingprincipally (NRC) of Canada, the Institut National des Sciences de l’Univers of the latter although the proposed method makes it also easy to the Centre National de la Recherche Scientifique (CNRS) of France, accountforthemodelingoftheinstrumentandtopropagatethe and the University of Hawaii. This work is based in part on data modeluncertainties. products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collabora- Various approaches to distance estimation have been pro- tiveprojectofNRCandCNRS.Basedonobservationsobtainedatthe posed, using light-curve shape parameters (∆m15 or a stretch EuropeanSouthernObservatoryusingtheVeryLargeTelescopeonthe factor,seee.g.Phillips1993;Riessetal.1995;Perlmutteretal. CerroParanal(ESOLargeProgramme171.A-0486).Basedonobserva- 1997) or color information (Wangetal. 2003b, Wangetal. tions (programs GN-2004A-Q-19, GS-2004A-Q-11, GN-2003B-Q-9, 2005), or both(Riessetal. 1996, Tripp1998, Guyetal. 2005). andGS-2003B-Q-8)obtainedattheGeminiObservatory,whichisoper- Noneofthesemethodsreallyaddresstheproblemofuncertain- atedbytheAssociationofUniversitiesforResearchinAstronomy,Inc., ties due to the variability of the large features of SNe Ia spec- under acooperative agreement withtheNSFonbehalf oftheGemini tra.In thisrespect,mostmethodsrelyonthe spectralsequence partnership: the National Science Foundation (United States), the providedbyNugentetal.(2002)(hereafterN02).Thisisaseri- ParticlePhysicsandAstronomyResearchCouncil(UnitedKingdom), the National Research Council (Canada), CONICYT (Chile), the ousconcernsincethiscouldpossiblyresultinsizable(common) AustralianResearchCouncil(Australia),CNPq(Brazil)andCONICET systematic effects in the distance measurements. In Guyetal. (Argentina). (2005)(hereafterSALT),wehaveappliedbroadbandcorrections 2 J.Guyetal,SNLSCollaboration:SALT2 tothespectralsequenceN02asafunctionofphase,wavelength datemaximumluminosityinB-band,c=(B−V) −hB−Vi. MAX and a stretch factor so that the spectra integrated in response Thisparametrizationmodelsthepartof thecolorvariationthat functionsmatchtheobservedlight-curves.Thisprovideduswith is independentof phase, whereasthe remainingcolorvariation atooltofittheobservedlight-curveswithoutcorrectingthedata withphaseisaccountedforbythe linearcomponents. x isthe 0 pointssincetheK-correctionswerenaturallybuiltintothemodel normalizationoftheSEDsequence,andx fork>0,arethein- k (see e.g. N02 for a definition of K-corrections).This approach trinsicparametersofthisSN(suchasastretchfactor).Tosum- hasbeenquitesuccessfulwhenappliedtoestimatingSNeIadis- marize,whereas(M )andCLarepropertiesoftheglobalmodel, k tancesathighredshift.Howeveritdidnotaddressthe problem (x )andcareparametersofagivensupernovaandhencediffer k ofvariabilityofspectralfeatureseither. fromoneSNtoanother. Inthispaper,weuseasimilarframework.Whereasweonly Except for the color exponential term, Eq. 1 is equivalent usedmulti-bandlightcurvestotrainthemodelinSALT,herewe to a principal component decomposition. However, a princi- include spectroscopic data to improve the model resolution in pal component analysis cannot be used since this would re- wavelengthspace,befullyindependentofthespectralsequence quirehavinganhomogeneousanddensesetofobservationsfor N02, and more generally extract the maximum amount of in- each SN, namely one spectro-photometric spectrum every 4–5 formation from the current data sets. Modeling the supernova days, which is not presently available (note that current ongo- signalinspectroscopicspaceensuresthatthe K-correctionsare ing SN programs such as the SNfactory, Alderingetal. 2002, treated in a consistent manner since there is a single model to the Carnegie Supernova Program, Hamuyetal. 2006, the CfA addressbothlight-curvesandspectra.Italsopermitsacoherent Supernovaprogram1andtheLOTOSSproject2,shouldprovide propagationoferrors,fromthefitoflight-curvestodistancees- suchdatainthecomingyears).Soweresortedtousingamethod timate.Themodelisallowedtovaryasafunctionofphaseand abletodealwithmissingdata.Themethodusedisdescribedin wavelength with a small number of a priori unknown intrinsic thenextsection. parametersandacolorvariationlawwhichisalsoadjusteddur- ing the training process. The main goal of this approach is to 2.1.Modelimplementation provide the best “average” spectral sequence and the principal componentsresponsible for the diversity of SNe Ia, so that the Thephasespacethatwewanttomodel(wavelengthrangetimes model can account for possible variations in SNe Ia spectra at phase range) is not covered by the set of observations of any anygivenphase. given supernova. We typically have for each supernova a lim- Thefluxnormalizationofeachsupernovaisafreeparameter itedsetoflight-curvespointsobservedwithdifferentfiltersand, ofthemodel.Hence,wedonotneedtoknowtheirdistancesto forsomesupernovae,oneorseveralspectraatdifferentphases. trainthemodel.ThisallowsustousebothnearbySNewhichare However,whenusinganensembleofSNe,thisphasespacecan notintheHubbleflowandhigh-redshiftoneswithoutanyprior becorrectlysampledandifthedatasetislargeenough,several oncosmology.Usinghigh-redshiftsupernovaepermitstomodel componentscanbeextracted. therest-frameUVemissionwhichisinvaluabletoimprovedis- Inordertolinkthemodeldefinedbyalimitedsetofparam- tanceestimatesofsupernovaefoundatredshiftslargerthan0.8. eters and the SNe observations, we used a basis of functions, In Sect. 2 we present the model implementation. The su- as function of phase and wavelength f(p,λ) . We used third pernova data sets used for training the model are described in order B-splines (to ensure continuous(cid:2)seicond d(cid:3)erivatives). The Sect. 3. Some technical aspects of the training procedure are actualchoiceofthebasisisirrelevantinthephasespaceregions then given in Sect. 4, and in Sect. 5, we present some qualita- whicharedenselycoveredbydata,aslongasitprovidesasuffi- tive aspectsof the resulting model.In an effortto improvedis- cientresolutiontofollowtheobservedvariabilityoftheSEDse- tanceestimates fora cosmologyapplicationto SNe Iasurveys, quenceasafunctionofphaseandwavelength.Choosinganother wequantifytheremainingvariabilitybeyondtheprincipalcom- basis will modify the model in regions where it is poorly con- ponents extracted in Sect. 6. We show how distance estimates strained,suchasveryearlyspectra(p<−15days).Asdescribed ofSNLSdistantSNeareimprovedwiththisapproachinSect.7 in section 6, those poorly constrained phase space regions are anddiscussseveralotherpossibleuseofthemodelinSect.8. identifiedafterthetrainingusingajack-knifetechnique.Inthis framework, a model is a linear combination of the basis func- tionsandcanbedescribedbyavectorM.Eachmeasurementat 2. TheTypeIasupernovaspectralsequencemodel agivenphaseandwavelengthm(p ,λ )isthencomparedtothe m m We aim at modeling the mean evolution of the spectral energy modelwithavectorHm (withvaluesHm,i = fi(pm,λm)),sothat distribution (SED) sequence of SNe Ia and its variation with a theexpectedvalueforthemodelat(pm,λm)isthescalarproduct fewdominantcomponents,includingatimeindependentvaria- HTM. m tionwithcolor,whetheritisintrinsicorduetoextinctionbydust in the host galaxy(or both).The followingfunctionalform for 2.2.Theuseofspectralinformation thefluxisused Most spectra of SNe Ia available in the literature are not cali- F(SN,p,λ)= x × M (p,λ)+x M (p,λ)+... 0 (cid:2) 0 1 1 (cid:3) brated photometrically. Their flux calibration have broad-band × exp[cCL(λ)] (1) systematicuncertainties. Onewaytocircumventthisdifficultyconsistsinphotometri- where p is the rest-frame time since the date of maximum lu- cally”re-calibrating”agivenspectrumusingtheavailablelight- minosity in B-band (the phase), and λ the wavelength in the curves for this particular SN. However since the full SED se- rest-frameoftheSN. M (p,λ)istheaveragespectralsequence 0 whereasMk(p,λ),fork > 0,areadditionalcomponentsthatde- 1 CfASupernovaGroup: scribe the main variability of SNe Ia. CL(λ) represents the av- cfa-www.harvard.edu/oir/Research/supernova/index.html erage color correction law. As for SALT, the optical depth is 2 The Lick Observatory and Tenagra Observatory Supernova expressedusingacoloroffsetwithrespecttotheaverageatthe Searches:astro.berkeley.edu/bait/lotoss.html J.Guyetal,SNLSCollaboration:SALT2 3 quencemodelis neededto derivean accurate interpolationbe- maximumtoensureagoodestimateoftheluminosityatpeak.A tweenlightcurvepointsatthedateofthespectroscopicobserva- largefractionofthoseSNelight-curvescomefromHamuyetal. tion,andthespectraareneededaswelltoaccuratelymodelthe (1996b); Riessetal. (1996) and Jhaetal. (2006). We did not spectralfeaturesofSNe,thephotometric”re-calibration”ofthe consider 1991bg-like SNe Ia (with very low stretches). They spectrahastobeincludedintheglobalminimizationprocedure. havesuchdifferentlight-curvesandspectrathatthelinearmodel We have chosen to parameterize the ”re-calibration” function weconsidercannotfitthosealongwithotherSNeIa.Thisisnot withtheexponentialofapolynomial(toforcepositivecorrected aproblemsinceweaimatmodelingthebulkoftheSNeIapop- fluxes),withthedegreeofthepolynomiallimitedbythenumber ulation(andwedonotexpecttodetectmanyofthoseobjectsat oflightcurvesfortheSN,andthewavelengthrangeofthespec- highredshift). trum. This re-calibration function is applied to the model, for We donotuseanyspectrawithoutphotometricdataforthe which the SN parameters are mostly constrained by the light- sameSN(atleasttwolight-curvesindifferentfilters),sothatthe curves. Thanks to the simultaneous use of a large amount of date of maximum,color and (x ) can be determined.However, k SNe data, we do not need to have photometric observationsat since spectra are calibrated on the model and not on the pho- thesameepochasspectroscopicones. tometricdata,wedonotneedsimultaneousphotometricobser- Statistical errors are rarely provided with the spectra. We vations; we just need enough photometric observations to de- haveevaluatedthemusingthefactthatallSNespectralfeatures rive the SN parameters. From the sample of 52 SNe, we were arebroadenedduetothekinematicsoftheejectedmatter.Sowe abletogather264spectrafor16SNe.Thereare10spectralse- expectanintrinsiccorrelationlengthgreaterthan30Å(forave- quences (with more than 10 spectra), namely 1989B, 1990N, locityrangelargerthanabout2000km.s−1)whichpermitsoneto 1991T, 1992A, 1994D, 1996X, 1998aq, 1998bu, 1999ee, and evaluatethephotonnoiseinspectra(assumedtobewhitenoise). 2002bo (see Table 2 for the complete list of spectra and their Nonetheless,wescalederrorssothattheweightofspectrawas references). of order of that of lightcurvesfor which we expectlower sys- All available UV spectra from the InternationalUltraviolet tematic errors.Thisweighting,alongwith the resolutionof the Explorer(INES2006)wereincluded.Thisisveryhelpfulsince re-calibrationfunction,is a bitarbitrarybutcannotbeavoided mosthigh-redshiftSNe spectra which coverthe rest-frame UV atthisstageduetothequalityofcurrentlyavailabledatasets. range have a low signal to noise ratio. For all spectra from ground-based observations, we do not consider any measure- mentbelow 3400Å becauseof thestrengthof the atmospheric 3. Thetrainingsupernovadatasets absorptioninthisspectralregion. In this section we describe the data sets used for training the model. 3.2.Thehigh-redshiftsupernovasample In the proposed model (Eq. 1), the overall SED sequence normalizationofagivenSNisafreeparameter(x ).Asaconse- We used a set of 121TypeIa supernovaelight-curvesobtained 0 quence,itispossibletouseboththeverynearbysupernovaedata bytheSupernovaLegacySurvey(SNLS)duringthefirst2years thatarenotintheHubbleflow(z<0.001)andthehighredshift ofthesurvey(seeTable2).Thelightcurveswereobtainedwith oneswithoutadoptingvaluesofcosmologicalparameters. the same reduction pipeline as described in A06, but with new Nearby supernovae have much higher signal to noise than imagesinthephotometricfit,sothatlight-curveshavemoredata their distant counterparts over a much wider range of phases. pointsandwithimprovedstatisticalaccuracysincethereference One important difficulty however in using nearby SNe is that data used to anchor the estimate of the galaxy brightness be- theysufferfrompotentiallylargesystematic errorsinthe ultra- come deeper with time (thanks to the rolling search observing violet(UV),since the atmosphericextinctionis stronganddif- strategy).Allthe71SNeusedforcosmologyinA06wereused, ficult to model in this wavelength range. Including SNe from with50additionalones. a largeredshiftrangehelps to sample homogeneouslythe rest- In addition to the light-curve points, we used 39 high- framevisiblewavelengthrangewithbothphotometricandspec- redshift SNLS spectra obtained at VLT (Basaetal. 2007) and troscopic data, especially in the rest-frame UV. Indeed, if only Gemini (Howelletal. 2005) during the regular SNLS observa- nearby SNe are used, photometric data do not cover the gaps tionprograms,whichaimattypingandmeasuringtheredshifts between the central wavelength of the filter set used (mostly of SN candidates. Obviously more spectra were recorded (at Johnson-CousinsUBVRI),andonereliesonlyonspectraforin- leastoneforeachSN)butwechoosetouseonlythosewithneg- terpolation between those bands, which may introduce (weak) ligibleresidualcontaminationfromthehostgalaxy.Thecontri- systematiceffectsonK-corrections. butionfromthehostgalaxywasremovedinthereductionproce- One may argue that possible evolution of the SNe Ia with dure of the VLT spectra (Baumont 2007). For all spectra, the redshift might cause some problems with the modeling since remaining contamination was evaluated a posteriori using the objects at all redshifts are used to obtain the model. Actually, modelitselfwiththefollowingprocedure:usingtheSNparame- themodeldescribesanaverageSNIaatanaverageredshiftbut tersretrievedfromthefitoflight-curves,themodelwasfitonthe evolutioncanstillbestudied.Forinstance,withoutanyapriori SN spectrum with re-calibration parameters, and an additional ontheeffectofevolutiononSEDsequence,onecanlookatthe contribution of the host galaxy. We used for this purpose tem- variationofthe(x )parameterswithredshift. platesofelliptical,S0,Sa,SbandScgalaxies,theactualgalaxy k typewasfittedatthesametimeasitsnormalization.Allspectra with a non zero contribution of the galaxy (at 68% confidence 3.1.Thenearbysupernovasample level)werenotusedinthetrainingsample. We use a sample of 52 nearby supernovae (without restricting Figure1showsthe(p,λ)phase-spaceregioncoveredbythe ourselvestoverynearbyonesasinSALT)listedtable2.Those photometric and spectroscopic data sets. Since we do not use SNewereselectedfromthequalityoftheirlight-curvesampling infra-redphotometricdata,there-calibrationofspectramaynot where we basically require measurements before the date of bereliableforrest-framewavelengthslargerthan8000Å,which 4 J.Guyetal,SNLSCollaboration:SALT2 of the SALT modelSED sequence with respect to all previous components. 8000 102 We endup with morethan 3000parametersto fit, with ob- viousnon-linearities,sothatweusedtheGauss-Newtonproce- dure,whichconsistsin: 1. Approximatinglocallytheχ2 byaquadraticfunctionofthe )6000 Å 10 parameters. ( λ 2. Solvingalargelinearsystemtogetanincrementofthepa- rameters(δP). i 3. Incrementtheparametersanditerateuntiltheχ2 decrement 4000 withrespecttothepreviousiterationbecomesnegligible. 1 First, the average model is estimated along with the color- law, calibration coefficients for spectra, and parameters of the 2000 -20 0 20 40 SNe((x),c).Whenthesystemhasconverged,weaddanother i p component,andalltheparametersarefittedagain(components, color-law,SNparameters).Theconvergencealgorithmisinsen- sitivetotheinputsetofcomponents. 8000 4.2.Regularization Theremightbesomedegeneracyin partofthe phasespace for the given data set. For instance, if a phase×wavelength region )6000 Å isonlycoveredbyphotometryandnotspectroscopy,wedonot ( λ have enough data to constrain the combinations of parameters thatmodelspectralfeatures,whereaswecanstillmodelapho- 4000 tometric measurement,since the signal is integrated on a large spectralband.Addingaregularizationtermintheχ2 solvesthis issue. If its contributionis low enough,it will not alter signifi- cantlythedeterminationofparametersthatareaddressedbythe 2000 data, while putting some limitation on the parameters that are -20 0 20 40 not.Wehavechosentominimizesecondderivativeswithrespect p tophaseandwavelength(onceagain,effectiveonlywhenthere isnotenoughdata).Theregularizationtermisthefollowing: Fig.1Phase-spacemappingbyphotometricdata(top)andspec- tra (bottom).For photometricobservations,the rest-framecen- tralwavelengthofthefilterisconsidered. χ2REGUL =n×XMTkDTDMk whereM isthevectordescribingcomponentk,Disthederiva- k tivematrixandnanormalizationthatcontrolstheweightofthis isthecentralwavelengthofthe I-bandfilter. Also,wehavelit- regularizationwithrespecttodata.Sincesuchatermintroduces tle spectroscopic informationin the UV for phases earlier than abiasintheestimator(departurefromthemaximumlikelihood −10daysorgreaterthan10dayssincethespectroscopicobser- estimator),wehavetoquantifyitinordertoadjustthenormal- vations of the SNLS are designed to be as close as possible to ization n. For this purpose, we used a simulated dataset. This the date of maximum luminosity. The few late UV spectra we simulationhelpsus to define the resolutionof the model.Each haveinoursamplecomefromIUEdatabase(INES2006). SNofthetrainingsamplewasadjustedusingtheSALTmodel, then fake light-curvesandspectra were computedby replacing each true measurement of the SN by the best fit value of the 4. Trainingthemodel model.Thetrainingprocedureappliedtothisdatasetgivesare- sult that is slightly biased due to the regularizationterm in the 4.1.Thetrainingprocedure χ2 in the UV wavelengthregion.The weight of the regulariza- The convergenceprocess consists in minimizing a χ2 that per- tion term (normalization n) was chosen so that the bias in K- correctionsissmallerthan0.005magforallwavelength,which mitsthecomparisonofthefulldatasetwiththemodelofequa- issignificantlylessthanthestatisticaluncertainties. tion 1. For each SN, the parameters are the normalization and coordinates along the principal components (x ), a color and k re-calibration parameters for spectra if any. The actual com- 4.3.Modelresolution ponents (M ) and the parameters of the color-law CL(λ) also k have to be estimated. This procedure requires a first guess for Thechoiceofthemodelresolutionisimposedbythedatasetwe the model components (Mk), for a first estimate of normaliza- have. We used 10×120 parametersfor M0 (10 along the time tion,spectrare-calibrationandcolor.We usedtheSALTmodel axis and 120 for wavelength), in a phase range of [−20,+50] SED sequence for a SN with stretch = 1 for M and the dif- daysandaspectralrangeof[2000,9200]Å.Thisgivesaspectral 0 ference of SED sequence of a SN with stretch = 1.1 and the resolutionoforderof60Åwhichissufficientforthemodeling previousoneforM (i.e.a linearizedversionof SALTmodel). ofSNewithbroadlinesduetothevelocityoftheejecta.ForM , 1 1 Additionalcomponentswhereinitiatedwiththeorthogonalpart wechoosetousealowerresolution(10×60parameters).The J.Guyetal,SNLSCollaboration:SALT2 5 time axis is remapped so that the time resolution at maximum ultravioletmaynotbereliable,whereasUVspectraobtainedby and+20daysaftermaximumisafactortwobetterthanat−20 the InternationalUltravioletExplorerhavea verylowsignalto and +50 days (approximately4.5 and 9 days respectively). As noiseratioforwavelengthslargerthan3000Å.Thisfeaturecan inSALT, weusedonlytwofreecoefficientstomodelthe color hardlybeapproximatedbyabroad-bandcolorevolution.Hence lawCL(λ)(thirdorderpolynomial,withtwocoefficientsfixedso we expect a net improvementof the accuracy of distance esti- thatCL(λB)=0andCL(λV)=0.4log(10),seeEq.1).Usingthis matesintheUVrangewithrespecttoSALTorotherequivalent numberofparameters,whenthemodelistrainedwiththesim- methodswhichrelyonasinglespectralsequence.Asanexam- ulateddatasetdescribedabove,wefoundthatthelimitedreso- pleofthemodelingofthevariabilityofspectralfeatures,figure5 lution introduces a scatter in colors of only 0.01 mag standard presentsthevariationoftheR(SiII),asdefinedinNugentetal. deviation(it is a scatter rather than a systematic effect because (1995),asafunctionof∆m retrievedfromthemodel.Itiscom- 15 of the varying epochs of photometric observations),which has paredto a compilationof observationsbyBenettietal. (2004). anegligibleondistanceswhencomparedtotheintrinsicdisper- Thereisagoodmatchinthe∆m rangeofthetrainingsample 15 sionofSNeIaluminosities. (∆m <1.6). 15 One must however evaluate carefully the statistical signifi- canceofthetrendsinthemodel.Statisticalerrorsofthismodel 5. Resultofthetraining rely on the weighting applied to spectra, and are sensitive to We decided to consider only two components for the current theerrorsassumedforphotometricmeasurementswhicharenot analysis since additionalcomponentsare poorlyconstrained in verysecureformostnearbysupernovae.Hencethisaccuracyof most of the phase space and marginally significant in the re- themodelingmustbeevaluatedwithdistributionsofresidualsas gionofgooddatacoverage.Asthedatasetsimprovesowillthe describedinthenextparagraph. powerto extractadditionalcomponents.As a consequence,for each SN, we endedup with fourparameters,a date of B−band 6. Theremainingvariability maximum, a normalization, the parameter x and a color. The 1 averagevalueofx anditsscalearearbitrarysincewecanmod- In order to assert the predictability of the model we need an 1 ifythecomponentsinconsequence.Weadopted< x >= 0and independentdata set that is not used in the training procedure. 1 < x2 >=1. However,sincewedonothavealargenumberofmeasurements 1 Figure 2 shows the variation of the UBVRI light-curvesas available, we resorted to a jackknife procedure: for each SN, a functionof parameter x . We find thatmostofthe variability we trained the model using all SNe from Table 2 but this one, 1 can be described by a simple stretching of light-curvesdespite andlookedatresidualsoftheSNmeasurementstotheretrieved thefactthatwedidnotforcesuchbehaviorinthemodel.More model,fittingonlytheparametersconcerningthisparticularSN, quantitatively,the parameter x can be convertedinto a stretch i.e.thedateofmaximum,(x ),andcolor. 1 0,1 factor3,whoseactualvaluedependsonthereferencelight-curve Theresidualsobtainedbythismethodareapriorihighlycor- template used, here the one of SALT and of Goldhaberetal. related,andthiscorrelationisdifficulttoestimatefromfirstprin- (2001)(B-bandlightcurvetemplate“Parab-18”,G01);orinto ciples.Howeverwewouldliketousethisinformationtoextract ∆m (Phillips1993)usingthefollowingtransformations: someintrinsicvariabilityoftheSNe,beyondtheprincipalcom- 15 ponentsof the model,in orderto weightdata accordingto this variabilityinadditiontomeasurementerrors.Weresortedtothe s(SALT) =0.98+0.091x +0.003x2−0.00075x3 1 1 1 followingsimplification,usingtwokindsofresiduals(ormodel s(G01) =1.07+0.069x −0.015x2+0.00067x3 errors):i) Diagonalerrorsofthemodelareestimatedfromfits 1 1 1 of light-curves with an independent normalization for each of ∆m =1.09−0.161x +0.013x2−0.00130x3 15 1 1 1 them. The residuals obtained are of course still correlated, but weallowourselvestotreatthemasindependent,assumingthat Since there is not a perfect match of the non-linear stretch and∆m modelswiththisone,thosetransformations(obtained the correlationlength(alongtime axis)is smallerthan thedata 15 samplingformostlight-curves4.ii) K-correctionuncertainties, withsimulations)varywiththeweightattributedtoeachphase which can be estimated using the difference between the peak (thescatterforstretchisabout0.02). WealsonoticetheU −Bcolorvariationasafunctionof B- magnitude obtained from a single light-curve fit, and the one band light-curve broadening.The value of U − B for phase=0 predictedbythemodelinthesamefilter,fittingalllight-curves. does not vary with x (see Fig. 2), but when the flux is inte- 1 gratedin the phase range-10, +10days, we find thatU − B ∝ 6.1.Diagonaluncertainties −0.2×s(SALT).ThisisabouthalfthevalueobtainedwithSALT. However,wefindacolorlawveryclosetotheoneobtainedwith Weusethecorrelationsbetweentheestimatesofthecomponents SALT (see Fig. 3), despite the factthatthe supernovamodelis givenbythecorrelationmatrixretrievedattheendofthetrain- significantlydifferentandthetrainingsetmuchlarger. ing procedure.However,we allow ourself to scale these statis- TheseresultsconfirmthemainfindingsofSALT.Moreinter- tical uncertainties on the model in p,λ bins to account for the estingisthevariabilityofspectrawiththefirstcomponentasdis- remainingvariability. playedin Figure4 forthreephasesaboutmaximum.Itappears Themodelvariancecanthenbedefinedas: thatthevariabilityinU-bandatmaximumidentifiedwithlight- V (x ,p,λ) = S(p,λ)×V (x ,p,λ) MODEL 1 MEAN 1 curvescanbeattributedtoasharpvariationofthespectrumfor V (x ,p,λ) = HTV H +x2HTV H +2x HTC H wavelengthslowerthan3400Å.Itispossibletoidentifysucha MEAN 1 0 0 0 1 1 1 1 1 0 0,1 1 featurethankstothehighredshiftSNLSspectra.Indeed,thecal- whereH (p,λ)andH (p,λ)arethe vectorsdefinedinSec. 2.1 0 1 ibrationofground-basedspectroscopicobservationsinthenear forcomponents0and1,V ,V andC arethefullvarianceand 0 1 0,1 3 Ofcourse,sincethemodelisalinearcombinationoftwocompo- 4 It is actually the purpose of the principal component analysis to nents,wedonotretrieveexactlythestretchmodel. extractallthecorrelationsbetweenobservablesforagivenSN 6 J.Guyetal,SNLSCollaboration:SALT2 covariancematricesofthecomponents,andS(p,λ)thescaling (consistentwiththeoneobtainedinA06,Fig.11.),butanuncer- function. taintyofonly0.022magnitudehastobeaddedtothestatistical Ineach p,λbin,S(p,λ)isevaluatedsothat errorstomatchtheobserveddispersion.Diagonaluncertainties and K-correctionuncertaintiesaretakenintoaccountinthefits 1Xhfi−x0(cid:16)HT0,iM0+x1HT0,iM1(cid:17)i2 =1 performedinthefollowingsection. n σ2+x2S(p,λ)V (x ,p,λ) i 0 MEAN 1 7. ImprovingthedistanceestimatesofdistantSNe where (f) and (σ) are the measurements and their associated i i uncertainties. We evaluated separately these errors for light- Despite the fact that our modeling is less accurate in the UV curvesand spectra, in order to take into accountthe correlated range,itisstillveryusefulfordistanceestimatesofhigh-redshift errorsalongthewavelengthaxiswhendealingwithphotometric SNe(z > 0.8)forwhich,asinthecaseofSNLS,therest-frame data. BandV-bandobservationsoftenhaveaverypoorsignaltonoise Photometric residuals of the jackknife-like procedure are ratio. shown figure 6. The data set are split in four rest-frame wave- length ranges, [3200,3900], [3900,5000], [5000,5700] and 7.1.Light-curvefitofdistantsupernovae [5700,7300] Å, that roughly correspond to U, B, V, R and I bandsrespectively.Themodeluncertaintiesbasicallyfollowthe Figure 8 shows the SN Ia SNLS-04D3gx at z = 0.91 fitted by statisticalerrorsofdata,withverygoodaccuracyatpeakbright- the model. All four light-curves (g,r,i,z) are well described by ness and a poor quality at early and late phases, especially in thebestfitmodelforwhichonlyfourparameterswereadjusted the U−band. In the rise time region, the large errorsare partly (dateofmaximum,normalization,colorandx ).Theχ2 perde- 1 duetothelimitingresolutionofthemodel.Thoseerrorsarealso gree of freedom (d.o.f.) of the fit is 0.76 (for 50 d.o.f.) when displayedinfigure2for|x1|=2. diagonal and K-correction uncertainties of the model are con- When fitting spectra, we imposed the values of the date of sidered.Table1illustratesthegainintheaccuracyofthecolor maximum, x1 and color obtained with the light-curvesfit. The estimateforSNLS-04D3gx. only remaining free parameters were those used to photomet- rically ”re-calibrate” spectra. We found that model accuracy is pooratearlyphasesandintheUVregion(Fig.4). bands λmin color i,z 3980 −0.220±0.180(s)±0.033(d)±0.005(k) These estimates of the model errors can be accounted for r,i,z 3250 −0.147±0.051(s)±0.026(d)±0.049(k) when fitting the light-curves or spectra. It gives more reliable g,r,i,z 2520 −0.172±0.047(s)±0.023(d)±0.047(k) statistical errors for parameters (peak brightness, color, x and 1 dateofmaximum)thanwhenonlystatisticalerrorsofmeasure- Table1ErroronthecolorestimateofSNLS-04D3gxasafunc- mentsareconsidered. tionofthenumberoflight-curvesincludedinthefit.Thecontri- butionstotheerroraremeasurementstatisticalerrors(s),diago- nalmodelerrors(d)andK-correctionerrors(k). 6.2.K-correctionuncertainties A direct approach to access the quality of K-corrections is to comparetheobservedpeakmagnitudeofalight-curveinagiven Thetotaluncertaintyonthecolorparameterisreducedbya filterwiththeonepredictedbythemodelusingafitoftheother factor 2.5 when g and r-band (rest-frame UV) light-curves are light-curves. Figure 7 presents the differences between the ob- includedinthefit.Weseethatthemodeluncertaintiesarelarge served and predicted magnitudes as a function of the effective inthiswavelengthrangeandthereforemustbepropagated. rest-framewavelengthoftheinstrumentresponseused. A more elaborated approach consists in modeling K- 7.2.Improvingcosmologicalresults correction errors with a parametric function of wavelength whichvaluevanishesforwavelengthcorrespondingtotherest- Theparametersretrievedfromthelight-curvefitcanbeusedto frame B andV−bands(errorson B and V magnitudesat maxi- estimatedistancesusingthesameprocedureasdescribedinA06. mumenterinthenormalizationandcolorevaluation).Foreach Thedistanceestimatorisalinearcombinationofm∗,x andc: B 1 SNwithenoughlight-curves,those K-correctionadditionalpa- rameters can be estimated and their standard deviation used to µ =m∗ −M+α ×x −β×c B B x 1 derive a model of K-correction errors. Such a model is repre- sented by the solid line figure 7 and is given by the following with m∗, x and c derived from the fit to the light curves, and B 1 formula: α 5,βandtheabsolutemagnitudeM areparameterswhichare x fittedbyminimizingtheresidualsintheHubblediagram.Asin σK(λ)= 0.022(cid:16)λλU−−λλBB(cid:17)3 forλ<λB A06,we introducean additional”intrinsic” dispersion(σint) of = 0.018 λ−λV 2 forλ>λ SNabsolutemagnitudestoobtainareducedχ2 ofunityforthe (cid:16)λR−λV(cid:17) V bestfitsetofparameters. We minimize the following functional form, which gives Since the estimate of σ is based on the fit of the normal- K negligiblebiasestotheestimatesofα andβ: ization of light-curves,it measures a dispersion of colorsaver- x aged over the phase range defined by the data set. Clearly, the VTX −M−5log d (θ,z)/10pc K-correction errors are large in the UV range. Also, those er- χ2 = s 10(cid:0) L (cid:1) X rors must be added to the statistical errors on normalizations, s VT C(Xs)V but they do notaccountfor the whole observedscatter. For in- stance,forλU ≃3600Å,wefindadispersionof0.04magnitude 5 NotethatthedefinitionofαxdiffersfromthatofαinSALT J.Guyetal,SNLSCollaboration:SALT2 7 with Light-curvescanbefittedwithallthemodelsfromthejack- m∗ 1 knifeprocedure,sothatwecanderiveasmanyestimatesofΩ  B   M Xs =xc1, V=−αβx aosftthheisredaisrteriSbNuteioinnitshe0.t0ra0i3n,insogsthaamtpwlee.eWxepefcotuanddethvaiatttihoenRfrMomS θ stands for the cosmological parameters that define the fitted a modeltrained with an infinitenumberofSNe of the orderof modelanddListheluminositydistance.C(Xs)isthecovariance 0.0015onΩM(foraflatΛCDMcosmology),avaluethatisneg- matrixof the parametersX for whichwe haveincludedin the ligiblecomparedtotheothersourcesofsystematicerrorsinsuch s variance of m∗ the intrinsic dispersion and an error of the dis- ananalysis. B tance modulus due to peculiar velocities, which we take to be 300km.s−1. 8. Otherapplications To estimate the systematic effect due to modeling of the SN Ia SED sequence, we fit the data set of A06, which con- Theproposedmodelprovidesatoolforspectroscopicandpho- sistsin44nearbySNeIaand71SNLSSNe.Whereasweused tometric identification,and photometricredshiftdetermination. improvedphotometryforthetrainingofthemodel,weconsider Adetailedanalysisofthepurityandefficiencyofaphotometric here exactly the same data set as in A06, in order to ease the identificationtoolwithrespecttoSNeIb,IcandIIisbeyondthe comparisonwiththeresultsobtainedwithSALT. scopeofthispaper. Thankstotheevaluationofthemodelerrors,wecansafely use all available light-curves in the fit. Especially the r−band 8.1.Spectroscopicidentification dataatredshiftsgreaterthan0.8(effectiverest-framewavelength lowerthan3440Å)areveryusefultoconstrainthecolorofthe Themodelproposedallowssimultaneousfitsoflight-curvesand supernova. With this additional information, the uncertainty in spectra (with additional galaxy templates to evaluate the host distancemoduliissignificantlyreducedathighredshift,yielding contamination as mentioned in Sec. 3.2). This can turn out to abetterresolutiononcosmologicalparameters.ForflatΛCDM beveryusefulforidentificationofTypeIasupernovae.Indeed, cosmology,weobtain: someTypeIcSNecanpresentlight-curvesandspectrathatlook qualitatively like SNe Ia, and in the most extreme cases, pho- Ω = 0.240±0.033 M tometricandspectroscopicidentificationstakenseparatelymay α = 0.13±0.013 x failtotagthisobjectcorrectly.Adetailedanalysisisbeyondthe β = 1.77±0.16 scopeofthispaper.Wewillshowonlytwoexamples. First, figure 10 shows the observed light-curves and spec- with σ = 0.12 (which is smaller than the value of 0.13 in int trumofSNLS-03D4agata redshiftof0.285alongwiththere- A06 because we have considered uncertainties in the model). sultofthesimultaneousfit.Four“re-calibration”parametersfor TheRMSoftheresidualsaroundthebestfitHubblerelationis thespectrumwereconsidered(sincetherearefourlight-curves). 0.161mag(comparedto0.20inA06,seeFig.9). Theχ2 perdegreeoffreedomforthelight-curvesandthespec- TheuncertaintyonΩ isimprovedby10%withrespectto M trum are respectively 0.53 (for 28 d.o.f.) and 0.63 (for 1770 theA06(Ω =0.263±0.037,table3ofAstieretal.2006)anal- M d.o.f.),taking into account the model errors 7), so that this SN ysis. We find a difference of 0.023 on Ω which is consistent M canbesafelyconsideredasatypicalnormalSNIa. with the assumed systematic error due to modeling of 0.02 in NowifweconsideranSNIc,forinstanceSNLS-03D4aaat thatpaper.HoweverthesupernovaSNLS-03D1cmataredshift aredshiftof0.166,themodelgivesaverybadfitofthedata(re- of0.87nowappearsasasignificantoutlierasthedistancemod- ducedχ2 of4.6(for10d.o.f.)and1.6(for1807d.o.f)forlight- ulusresolutionimproved6.Thisobjecthasaspectrumwithlow curvesandspectrarespectively),allowingforaclearrejectionof signaltonoiseratioandwasclassifiedasprobableIa.Discarding thisevent. this object from the analysis gives Ω = 0.246±0.032 and a M standarddeviationofresidualsof0.154magnitude. Since the currentmodelsignificantly improvesdistance es- 8.2.Photometricredshifts timates at high redshifts, we obtain a greater improvement on For photometric redshift determination, one can compare the theestimationoftheequationofstateofdarkenergy.Asanex- redshiftestimate based ona simultaneousfit of alllight-curves ample, we may use the figure of merit proposed by the Dark of a givensupernovaand the much moreprecise spectroscopic EnergyTaskForce(Albrechtetal.2006),whichisinverselypro- redshiftderivedfromthespectroscopicobservationofthehostof portionaltotheareaofthe95%confidencelevelcontourinthe theobject.Usingallavailablelight-curves(uptofourforSNLS) plane (w ,w ), where the following parametrization is consid- a p allowsustorelaxassumptionsonthelightcurveshapeparame- eredfortheequationofstateofdarkenergy: ter(x )andthecolor,withoutanyuseoftheabsoluteluminosity, 1 w=wp+(ap−a)wa sothatwedonotrequireanyprioronthecosmologicalparame- ters. a being the scale factor, anda a referencescale factor chosen p WehaveappliedthismethodtoallSNeIafromTable2with so thatthe estimates of w and w are uncorrelatedfor a given p a at least 3 light-curves, using for each SN the model obtained experiment. Using the baryon acoustic oscillations constraints from Eisensteinetal. (2005) (Eq. 4), a = 0.851, and we im- without this SN (always to avoid over-training). A Gaussian p priorforx wasassumedbasedonthestatisticsfromthetraining prove this figure of merit by 35% with respect to the analysis 1 usingSALT(forwhicha isslightlydifferent). procedure,x1 =0±1.Nopriorwasappliedtocolor. p Theresultingphotometricredshiftis comparedto thespec- 6 SNLS-03D1cmis0.6±0.2magdimmerthanexpectedforthebest troscopic one on Figure 11. The RMS of the distribution of fitcosmology,whichcorrespondstoa3σdeviationwhenincludingthe ∆z/(1 + z) is 0.02 with no significant bias. A Gaussian fit of intrinsicdispersion.Thishasa27%probabilitytooccuratleastonceby chanceforoursampleof115SNe,ifSNedistancesarescatteredabout 7 Withthemodelerrors,theaverageχ2perdegreeoffreedomforall theHubblelawfollowingaGaussiandistribution. theSNeofthetrainingsampleisonebydefinition 8 J.Guyetal,SNLSCollaboration:SALT2 thedistributionof∆z/(1+z)givesσ=0.01.Thisisanaccuracy References of the same order of magnitude as the one that can be derived Albrecht,A.,Bernstein,G.,Cahn,R.,etal.2006,ArXivAstrophysicse-prints froma fit of the SN spectrum alone.The onlylow-redshiftSN Aldering,G.2004,inWide-FieldImagingFromSpace for which the photometric redshift is off by more than 0.1 is Aldering,G.,Adam,G.,Antilogus,P.,etal.2002,inSurveyandOtherTelescope SN1999clwhichisahighlyextinctedsupernova. Technologies andDiscoveries.EditedbyTyson,J.Anthony;Wolff,Sidney. ProceedingsoftheSPIE,Volume4836,pp.61-72(2002).,61–72 Altavilla,G.etal.2004,Mon.Not.Roy.Astron.Soc.,349,1344 9. Conclusion Anupama,G.C.,Sahu,D.K.,&Jose,J.2005,A&A,429,667 Astier,P.,Guy,J.,Regnault,N.,etal.2006,A&A,447,31 We have proposed a new empirical model of Type Ia super- Barbon,R.,Buond´ı,V.,Cappellaro,E.,&Turatto,M.1999,A&AS,139,531 Basa,S.,Astier,P.,&Aubourg,E.2007,inpreparation novae spectro-photometric evolution with time, based on ob- Baumont,S.2007,PhDthesis,Inprep. served nearby and distant supernovae light-curvesand spectra. Benetti,S.,Meikle,P.,Stehle,M.,etal.2004,MNRAS,348,261 The method uses available spectra, regardless of their wave- Blondin, S. 2006, CfA Supernova Archive, Website, http://cfa- lengthrangeorcalibrationaccuracy,sincetheyarere-calibrated www.harvard.edu/oir/Research/supernova/SNarchive.html Branch,D.,Lacy,C.H.,McCall,M.L.,etal.1983,ApJ,270,123 using the photometricinformationin the trainingprocess. This Buta,R.J.&Turner,A.1983,PASP,95,72 modelprovidesan averagespectralsequenceof TypeIa super- Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.1989,APJ,345,245 novaeandtheirprincipalvariabilitycomponents8. Eisenstein,D.J.,Zehavi,I.,Hogg,D.W.,etal.2005,astro-ph/0501171 Thanks to an evaluation of the modeling errors (for photo- Filippenko,A.V.,Richmond,M.W.,Matheson,T.,etal.1992,ApJ,384,L15 metricpoints,spectra,andbroad-bandcolors),oncansafelyuse Garavini,G.,Folatelli,G.,Goobar,A.,etal.2004,AJ,128,387 Goldhaber,G.,Groom,D.E.,Kim,A.,etal.2001,ApJ,558,359 most of the information on a given supernova for comparison Guy,J.,Astier,P.,Nobili,S.,Regnault,N.,&Pain,R.2005,A&A,443,781 with the model.Thisis veryhelpfulfordistance estimates, but Hamuy,M.,Folatelli,G.,Morrell,N.I.,etal.2006,PASP,118,2 alsophotometricredshiftevaluationandSNidentification. Hamuy,M.,Maza,J.,Pinto,P.A.,etal.2002,AJ,124,2339 AppliedtothesupernovaesampleofA06,weimprovedthe Hamuy,M.,Phillips,M.M.,Suntzeff,N.B.,etal.1996a,AJ,112,2408 Hamuy,M.,Phillips,M.M.,Suntzeff,N.B.,etal.1996b,AstrophysicalJournal, distanceestimates,especiallyatredshiftslargerthan0.8,thanks 112,2391+ tothemodelingoftheultravioletemissionandthepropagation Howell,D.A.,Sullivan,M.,Perret,K.,etal.2005,tobepublishedApJ of modelerrors.When a flat ΛCDM cosmologyis fitted to the INES. 2006, IUE Newly Extracted Spectra, Website, Hubble diagram, the gain in statistical resolution on Ω is of http://ines.vilspa.esa.es/ines/ M 10% comparedto the previous analysis using SALT; it is 35% Jha,S.,Kirshner,R.P.,Challis,P.,etal.2006,AJ,131,527 Krisciunas,K.,Hastings,N.C.,Loomis,K.,etal.2000,ApJ,539,658 betteronthetwoparameterconstraintoftheequationofstateof Krisciunas,K.,Phillips,M.M.,Stubbs,C.,etal.2001,AJ,122,1616 darkenergy. Krisciunas,K.,Phillips,M.M.,Suntzeff,N.B.,etal.2004a,AJ,127,1664 Themodelaccuracyiscurrentlylimitedbythesizeandqual- Krisciunas,K.,Suntzeff,N.B.,Candia,P.,etal.2003,AJ,125,166 ityofthecurrentdatasample.Alargersamplewouldbeneeded Krisciunas,K.,Suntzeff,N.B.,Phillips,M.M.,etal.2004b,AJ,128,3034 Leibundgut,B.,Kirshner,R.P.,Filippenko,A.V.,etal.1991,ApJ,371,L23 tolookforanothervariabilitycomponent. Lira,P.,Suntzeff,N.B.,Phillips,M.M.,etal.1998,AJ,116,1006 This empirical modeling technique is well suited for Meikle,W.P.S.,Cumming,R.J.,Geballe,T.R.,etal.1996,MNRAS,281,263 the analysis of very large samples of supernovae photo- Nugent,P.,Kim,A.,&Perlmutter,S.2002,PASP,114,803 metric data such as the ones expected from future projects Nugent,P.,Phillips,M.,Baron,E.,Branch,D.,&Hauschildt,P.1995,ApJ,455, like DUNE (Re´fre´gieretal. 2006), JDEM (Aldering 2004) or L147+ Patat,F.,Benetti,S.,Cappellaro,E.,etal.1996,MNRAS,278,111 LSST 9. Indeed, with large statistics of high precision photo- Perlmutter,S.,Gabi,S.,Goldhaber,G.,etal.1997,ApJ,483,565 metric data spread on a large redshift range, we may expectto Phillips,M.M.1993,AstrophysicalJournalLetters,413,L105 deconvolvetheSED sequenceoftheaveragesupernovaandits Phillips,M.M.,Phillips,A.C.,Heathcote,S.R.,etal.1987,PASP,99,592 principalvariations.Suchananalysiswouldpermitonetolook Pignata,G.,Patat,F.,Benetti,S.,etal.2004,MNRAS,355,178 Re´fre´gier, A., Boulade, O., Mellier, Y., et al. 2006, in Space Telescopes and forvariabilitycorrelatedwithredshift,andhenceprovideanon- InstrumentationI:Optical,Infrared,andMillimeter.EditedbyMather,John parametricapproachtotestforsupernovaevolution. C.;MacEwen,HowardA.;deGraauw,MattheusW.M..Proceedingsofthe SPIE,Volume6265,pp.(2006). Acknowledgements. We gratefully acknowledge the assistance of the CFHT Richmond,M.W.,Treffers,R.R.,Filippenko,A.V.,etal.1995,AJ,109,2121 QueuedServiceObservingTeam,ledbyP.Martin(CFHT).Weheavilyrelyon Riess,A.G.,Kirshner,R.P.,Schmidt,B.P.,etal.1999,AJ,117,707 thededicationoftheCFHTstaffandparticularlyJ.-C.Cuillandreforcontinuous Riess,A.G.,Li,W.,Stetson,P.B.,etal.2005,ApJ,627,579 improvementoftheinstrumentperformance.Thereal-timepipelinesforsuper- Riess,A.G.,Press,W.H.,&Kirshner,R.P.1995,ApJ,438,L17 novae detection runoncomputers integrated intheCFHTcomputing system, Riess,A.G.,Press,W.H.,&Kirshner,R.P.1996,ApJ,473,588 andareveryefficiently installed, maintainedandmonitoredbyK.Withington Stritzinger,M.,Hamuy,M.,Suntzeff,N.B.,etal.2002,AJ,124,2100 (CFHT).Wealsoheavilyrelyonthereal-timeElixirpipelinewhichisoperated Strolger,L.-G.,Smith,R.C.,Suntzeff,N.B.,etal.2002,AJ,124,2905 andmonitoredbyJ-C.Cuillandre,E.MagnierandK.Withington.Wearegrate- Suntzeff, N. 1992, IAU Colloq., ed. R. McCray (Cambridge:Cambridge fultoL.Simard(CADC)forsettinguptheimagedeliverysystemandhiskind UniversityPress),145 andefficient responses tooursuggestions forimprovements. TheFrench col- Suntzeff,N.B.,Phillips,M.M.,Covarrubias,R.,etal.1999,AJ,117,1175 laborationmemberscarryoutthedatareductionsusingtheCCIN2P3.Canadian Tripp,R.1998,A&A,331,815 collaboration membersacknowledge supportfromNSERCandCIAR;French Tsvetkov,D.Y.2006,astro-ph/0606051 collaborationmembersfromCNRS/IN2P3,CNRS/INSU,PNCandCEA. Valentini,G.,DiCarlo,E.,Massi,F.,etal.2003,ApJ,595,779 Vinko´,J.,B´ıro´,I.B.,Csa´k,B.,etal.2003,A&A,397,115 Wang,L.,Baade,D.,Ho¨flich,P.,etal.2003a,ApJ,591,1110 Wang,L.,Goldhaber,G.,Aldering,G.,&Perlmutter,S.2003b,ApJ,590,944 Wang,X.,Wang,L.,Zhou,X.,Lou,Y.,&Li,Z.2005,ApJ,620,L87 Wells,L.A.,Phillips,M.M.,Suntzeff,B.,etal.1994,AJ,108,2233 Zapata, A.A., Candia, P.,Krisciunas, K., Phillips, M. M.,& Suntzeff, N.B. 2003,AmericanAstronomicalSocietyMeetingAbstracts,203, 8 available together with the fitter source code at http://supernovae.in2p3.fr/∼guy/salt 9 LSST:www.lsst.org J.Guyetal,SNLSCollaboration:SALT2 9 -19 0.2 B V * -18 U -17 0.1 -16 B -10 0 10 20 30 40 A phase - 0 λ A -20 -19 -0.1 U -18 -0.2 -17 4000 6000 8000 -16 λ (Å) -10 0 10 20 30 40 phase Fig.3 Thecolorlaw c×CL(λ) asa functionofwavelengthfor -19 avalueofcof0.1(solidline).Thedashedcurverepresentsthe extinctionwithrespecttoBband,(A −A ),fromCardellietal. -18 λ B B (1989) with RV = 3.1and E(B−V) = 0.1,and the dottedline -17 is the color law obtained with SALT (very close to the result -16 obtainedhere). -10 0 10 20 30 40 phase -19 -18 V -17 -16 -10 0 10 20 30 40 phase -19 R -18 -17 -16 -10 0 10 20 30 40 phase -19 -18 I -17 -16 -10 0 10 20 30 40 phase Fig.2 The U∗UBVRI template light curves obtained after the training phase for values of x of -2, 0, 2 (corresponding to 1 stretches of 0.8, 1.0,and 1.2;darkto light curves)and null B V colorexcess. U∗ is a synthetictop hatfilter in the range2500– 3500Å.Theshadedareascorrespondtotheonestandarddevia- tionestimateasdescribedinsection6.1. 10 J.Guyetal,SNLSCollaboration:SALT2 0.6 ) Si II 0.4 ( R 2000 3000 4000 5000 6000 7000 8000 Wavelength (Å); phase=-10 0.2 1 1.5 2 ∆ m 15 Fig.5 The solid curve presents the relation of R(Si II) (Nugentetal. 1995) as a function of ∆m along 2000 3000 4000 5000 6000 7000 8000 15 Wavelength (Å); phase=0 withmeasurementsfromBenettietal.(2004). 2000 3000 4000 5000 6000 7000 8000 Wavelength (Å); phase=15 2000 3000 4000 5000 6000 7000 8000 Wavelength (Å); phase=30 Fig.4 Spectra at -10, 0, +15 and +35 days aboutB-band max- imum for values of x of -2, 0, 2 (corresponding to stretches 1 of 0.8,1.0, 1.2;lightgray,blackcurve,darkgray) andnull B V color excess. The shaded areas correspond to the one standard deviationestimateasdescribedinsection6.1.Thedashedcurves representsthespectraofN02(version1.2).Allspectraarearbi- trarilynormalized.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.