ScienceoftheTotalEnvironment631–632(2018)1342–1349 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Salinity is a key factor driving the nitrogen cycling in the mangrove sediment HaitaoWanga,b,c,d,JackA.Gilbertd,YongguanZhua,b,XiaoruYanga,b,⁎ aInstituteofUrbanEnvironment,ChineseAcademyofSciences,Xiamen,FujianProvince361024,China bCenterforExcellenceinRegionalAtmosphericEnvironment,InstituteofUrbanEnvironment,ChineseAcademyofSciences,China cSchoolofLifeSciences,XiamenUniversity,Xiamen,FujianProvince361102,China dTheMicrobiomeCenter,DepartmentofSurgery,UniversityofChicago,Chicago,IL60637,USA H I G H L I G H T S G R A P H I C A L A B S T R A C T • Salinityelevationdecreasedboththeac- tivityandabundanceofdenitrifiers. • Thenitrifiers(AOB)weremostabun- dant under the intermediate salinity conditions. • Salinitysignificantlyshapedthenitrify- inganddenitrifyingcommunitystruc- tures. • Thesefindingsmayincreaseconcernre- gardingthreatsofsalinityintrusion. a r t i c l e i n f o a b s t r a c t Articlehistory: Coastalecosystemsarehotspotsfornitrogencycling,andspecificallyfornitrogenremovalfromwaterandsed- Received9January2018 imentthroughthecouplednitrification-denitrificationprocess.Salinityisgloballyimportantinstructuringbac- Receivedinrevisedform5March2018 terialandarchaealcommunities,buttheassociationbetweensalinityandmicrobially-mediatednitrificationand Accepted9March2018 denitrificationremainsunclear.Thedenitrificationactivityandcompositionandstructureofmicrobialnitrifiers Availableonlinexxxx anddenitrifierswerecharacterizedacrossagradientofmanipulatedsalinity(0,10,20and30ppt)inamangrove sediment.SalinitynegativelycorrelatedwithbothdenitrifyingactivityandtheabundanceofnirKandnosZ Editor:JayGan denitrifyinggenes.Ammonia-oxidizingbacteria(AOB),whichdominatednitrification,hadsignificantlygreater Keywords: abundanceatintermediatesalinity(10and20ppt).However,apositivecorrelationbetweenammoniaconcen- Salinity trationandsalinitysuggestedthatnitrifyingactivitymightalsobeinhibitedathighersalinity.Thecommunity Nitrification structureofammonia-oxidizingarchaea(AOA)andbacteria(AOB),aswellasnirK,nirSandnosZdenitrifying Denitrification communities,wereallsignificantlycorrelatedwithsalinity.Thesechangeswerealsoassociatedwithstructural Abundance shiftsinphylogeny.Thesefindingsprovideastrongevidencethatsalinityisakeyfactorthatinfluencesthenitro- Communitystructure gentransformationsincoastalwetlands,indicatingthatsalinityintrusioncausedbyclimatechangemighthavea broaderimpactonthecoastalbiospheres. ©2018ElsevierB.V.Allrightsreserved. 1.Introduction Coastalwetlandssuchasmangrovesdominatethetropicalandsub- tropicalcoastlines,butaregloballydisappearing(Dukeetal.,2007). Theseecosystemsare hotspotsof nutrientcyclingandplaypivotal ⁎ Correspondingauthorat:InstituteofUrbanEnvironment,ChineseAcademyof rolesinnutrienttransformationandavailability(FisherandAcreman, Sciences,Xiamen,FujianProvince361024,China. E-mailaddress:[email protected](X.Yang). 2004).Recenteffortshavebeenfocusedondetermininghowclimate https://doi.org/10.1016/j.scitotenv.2018.03.102 0048-9697/©2018ElsevierB.V.Allrightsreserved. H.Wangetal./ScienceoftheTotalEnvironment631–632(2018)1342–1349 1343 change may influence these cycling processes (Duke et al., 2007; nirSandnosZ)wereestimatedbyreal-timequantitativePCR(qPCR). Gallowayetal.,2008;GruberandGalloway,2008),includingtheconse- Thenitrifyingcommunitycompositionandstructure(AOAandAOB) quencesofsalinityintrusionresultingfromgroundwaterabstraction, wasassessedbyclonelibrary,whilehigh-throughputsequencingwas declining sediment loads and rising sea level, on nitrogen cycling performed for denitrifying communities (nirK, nirS and nosZ). This (Bernhardetal.,2005;Bernhardetal.,2007;Franklinetal.,2017;Liu study aims to reveal the impact of salinity on both nitrifying and etal.,2017;Shengetal.,2015;Zhouetal.,2017).Nitrificationanddeni- denitrifying processes and the potential influences of changes in trificationareresponsibleforammoniaoxidationandnitratereduction, couplednitrification-denitrificationonthenitrogentransformations respectively.Thecouplednitrification-denitrificationprocessdrivesthe andecosystemfunctions. nitrogenremovalinwetlands,thuspreventingeutrophication(Fisher andAcreman,2004;Vymazal,2007). Manyeffortshavefocusedonhownitrifyinganddenitrifyingcom- 2.Materialsandmethods munities respond to the salinity elevation in coastal wetlands (Bernhardetal.,2005;Bernhardetal.,2010;Bernhardetal.,2007; 2.1.Incubationexperiment Martonetal.,2012;Shengetal.,2015;Xieetal.,2014;Zhangetal., 2015),yettheanswerremainsambiguous.Ammoniaoxidation,which Thesurfacesediment(0–50cm)fromanunvegetatedareainthe isthefirststepofnitrificationconductedbytheammonia-oxidizingar- mangrovewetlandlocatedinthemudflatofJiulongRiverestuary(24° chaea(AOA)andammonia-oxidizingbacteria(AOB)showsvaryingre- 27′N;117°54′E)wascollectedaspreviouslydescribed(Wangetal., sponses to salinity in different environments. Moderate salinity 2014).Theoriginalsalinityofthesedimentwasaround15ppt(parts- (10–20ppt)isassociatedwithanincreasedabundanceofAOAandpo- per-thousand).Toaccuratelymanipulatetheincubations,sediment tentialnitrificationrates,whileAOBeithershownoornegativecorrela- wasair-dried,groundandsieved(b2mm)beforeexperimentalsetup. tionwithincreasesalinity(Bernhardetal.,2005;Bernhardetal.,2010; ThepHandsalinityofthetreatedsedimentmeasuredassedimentto Bernhardetal.,2007;Zhangetal.,2015).AstudyintheDouroRiveres- waterratioof1:5(g/mL)were7.06and3pptrespectively.Theconcen- tuaryobservedincreasednitrificationratewithasalinityincreasefrom trationsofammonium(NH+)andnitrateandnitrite(NO−)were12.9 4 x 0to15ppt(Magalhaesetal.,2005).Estuarinenitrifiersappeartogrow and1.94μgg−1drysediment,respectively.Thedriedsedimentwas optimallyat5–10ppt,andareinhibitedifsoilsalinityexceeds10ppt keptforthreemonthsbeforethestartoftheincubationexperiment. (Zhouetal.,2017).Thesestudiessuggestthatoptimumnitrification Analiquotof10gdrysedimentwasplacedin120-mLserumbottles rateornitrifierabundancenormallyoccursinmiddlesalinityrangesal- and then 10 mL distilled water was added to each bottle. All the thoughsomevaryingresultsexisted.Increasingsalinitycanimpactni- serumbottlesweresealedwiththewrapswithtinyholestolettheair trification directly by constraining the fitness of nitrifiers and gothroughbutpreventthewaterrunningoff.Thenthesebottleswere indirectlybyinfluencingtheavailabilityofoxygenwhichcanfurther incubatedat25°Cinadarkandaerobicenvironmentforonemonth impactthesoilrespiration(Zhouetal.,2017).However,ammoniaad- torecoverthemicroorganisms.Afterthat,thedifferentsalinitieswere sorptioninsedimentisalsodecreasedwithanincreaseinsalinity,po- manipulated by adding solutions with different concentrations of tentially contributing to increased ammonia efflux, which further NaCl.Theincubationswerecategorizedinto4groupsrepresenting4sa- stimulatesnitrification(Seitzingeretal.,1991;Rysgaardetal.,1999). linitygradients.Eachgroupreceivedcorresponding5-mLNaClsolu- Denitrification,whichreturnsnitrogenbacktotheatmosphereas tions.Thefinalsalinitygradientswere0ppt,10ppt,20pptand30ppt N OandN , also showsdifferent relationships with salinity. Ithas ascalculatedbytheaddedNaCltotheaddedwater(15mLintotalfor 2 2 beenshowntobenegativelyassociatedwithsedimentsalinityinthe eachbottle).InadditiontoNaCl,300μMKNO wasalsoaddedtoeach 3 range of 0–36 ppt in certain estuaries (Giblin et al., 2010; Santoro incubationtostimulatethenitrogenprocess.Afteraddingthesolutions, etal.,2008),butalsotohavenoassociationwithsalinitiesbetween2 allthebottleswereincubatedat25°Cinadarkandaerobicenviron- and24pptinotherplaces(Fearetal.,2005).Denitrifierabundance mentforanotheronemonth.Sedimentsamplesweretakenat0,7,14, andpotentialhavebeenassociatedwithlowsalinitiesaround5ppt 21and28days.Foreachsampling,twoofthreeincubationsofeachsa- (Franklinetal.,2017;Martonetal.,2012).Salinitycaninfluencedenitri- linitygradientweretakenforDNAextractionandnutrientmeasure- ficationbyalteringtheaccessibilityoforganicsubstrateswhicharees- ment,andfordeterminingdenitrifyingactivity.Theusedincubations sentialforheterotrophicbacteria(Franklinetal.,2017).Theinfluence wereexcludedfromfuturesamplingtoavoidtheunbalanceofsample ofincreasedsalinityonnitrificationcanchangethenitrateavailability, quantities.Intotal,120incubationswereprocessed,including60each whichcanalsoaffectthedenitrification(Giblinetal.,2010).Moreover, (4salinitygradients×5timepoints×3replicates)forDNAextraction dissimilatorynitratereductiontoammonium(DNRA)cancompetefor anddenitrifyingactivitydetermination. nitratewithdenitrificationsinceDNRAisfavoredoverdenitrification withhighstorageofsulfideswhichisalwaysassociatedwithhighsalin- ityconditionssuchascoastalandmarineecosystems(Giblinetal., 2.2.Denitrifyingactivityandnutrientmeasurement 2013;Marchantetal.,2014).Salinityalsoexhibitsasignificantimpact onsoilbacterialandfungalcommunitystructure(Asgharetal.,2012; Thepotentialdenitrifyingactivitywasmeasuredaccordingtothe Beheraetal.,2017;Chenetal.,2017;MohamedandMartiny,2011). C H inhibitionmethod.Ateachtimepoint,threeincubationsofeach 2 2 However,onlyseveralstudieshaveexploredtheassociationbetween salinitygradientweresealedwithrubberstoppersandthenevacuated salinityandnitrifyingordenitrifyingcommunitystructure(Bañeras andflushedwith99.999%heliumthreetimes.C H wasinjectedtoa 2 2 etal.,2012;Bernhardetal., 2007;Franklin etal.,2017;Sahanand finalcompositionof10%(vol/vol).Thesedimentswerethenincubated Muyzer,2008;Xieetal.,2014). at25°Conamagneticstirringapparatusfor12days.Theheadspace Thedifferencesoftheresponsetosalinityinnitrogencyclingpro- gaseswereanalyzedatevery2,4or12hforthefirsttwodays,and cessesandthestructureoftheresponsiblemicroorganismsaretobeex- thenevery24or48hforthenext10dayswithagaschromatographer pected because of the influence of un-measured environmental equippedwithanECDdetectoraspreviouslydescribed(Molstadetal., variables.Itishenceessentialtocontrolenvironmentalsystemsas 2007).Thedenitrifyingactivitywascalculatedbylinearregressionof muchaspossible.Inthisstudy,alaboratoryincubationexperiment accumulatedN Opergramdrysedimentversustime.Theconcentra- 2 wasconductedtoinvestigatetheresponseofmangrovesedimentnitri- tionsofNH+andNO−weredeterminedusing2MKClextractswitha 4 x fyinganddenitrifyingcommunitiestodifferentsalinities(0,10,20and 1:10ratiooffreshsedimenttoKClsolution(g/mL).Theextractswere 30ppt).DenitrifyingactivitywasmeasuredasstimulatedN Oemission, furtheranalyzedbyFIAQC8500continuousflowinjectionanalyzer 2 andtheabundanceofnitrifiers(AOAandAOB)anddenitrifiers(nirK, (LACHAT,USA). 1344 H.Wangetal./ScienceoftheTotalEnvironment631–632(2018)1342–1349 2.3.DNAextractionandgenequantification deduced to amino acid to build the neighbor-joining phylogenetic treeswith1000timesbootstrapusingMEGAv7.0(Kumaretal.,2016). TotalDNAwasextractedfrom0.5gfreshsedimentwiththeFastDNA All the sequences of AOA and AOB clones were submitted to SPINKitforsoil(MPBiomedicals,SantaAna,CA,USA)accordingtothe GenBank with the accession numbers MF566141-MF566739 and manufacturer'sinstructions.Thepurityandconcentrationoftheex- MF566740-MF567338,respectively.AllthesequencesofnirK,nirSand tracted DNA were measured using UV–vis spectrophotometer ND- nosZ were submitted to the European Nucleotide Archive of EMBL 1000(NanoDrop,USA).TheextractedDNAwasthenstoredat−20°C withtheaccessionnumberPRJEB21903. formolecularexperiments. Theprimerpairsusedforamplifyingandquantifyingthearchaeal 2.5.Statisticalanalysis andtheβ-proteobacteriaamoAgenes,nirS,nirKandnosZgeneswere describedinpreviousstudies(Wangetal.,2014;Wangetal.,2015). Analysisofvariance(ANOVA)wasemployedtoobservethesignifi- Theconditionsusedforreal-timequantitativePCR(qPCR)ofthese5 canceofthesalinityimpactonthedenitrifyingactivity,nutrientconcen- geneswerealsodescribedinthetwopreviousstudies,withtheexcep- trations,geneabundancesandOTUrelativeabundances.Datafailedto tionthatreactionswereconductedonaLightCycler480IIReal-TimePCR meettheassumptionsofANOVAwerelogtransformedoranalyzedby System(Roche,IN,USA).Toevaluatetherelativeabundanceofeach thenon-parametricKruskal-Wallistest.TheTukeyposthocmultiple gene,theabundancesofbacterialandarchaeal16SrRNAgeneswere comparisons were conducted to compare the differences between alsoquantified.Theprimerpairsandconditionsusedfor16SrRNA eachtwoofthesalinitygradients.Nonmetricmultidimensionalscaling genesweredescribedinapreviousstudy(Wangetal.,2017).Thecon- (nMDS)basedontheBray-Curtisdissimilaritymatrixwasperformedto ditionsofqPCRandprimersforallgenesusedinthisstudyweresum- determinetheinfluenceofsalinityonthenitrifyinganddenitrifying marized in Table S1. Standard curves of qPCR were obtained by communitycompositions.Analysisofsimilarities(ANOSIM)andper- seriallydilutingstandardplasmidscontainingthetargetgeneswith mutationalmultivariateanalysisofvariance(PERMANOVA)wereused knowncopynumbers.NegativecontrolswithoutDNAtemplatewere totestthesignificanceofthesalinityimpactonthemicrobialcommu- includedineachamplification.Inhibitionwaseliminatedbyhighlydi- nitystructures.PairwisePearsoncorrelationswereconductedbetween lutingtheDNAextracts.PCRefficiencyabove90%wasaccepted. denitrifyingactivity,NH+concentration,NO−concentrationandabun- 4 x dancesofnitrifyinganddenitrifyinggenes.AlltheP-valuesweread- justedbyfalsediscoveryrate(FDR)methodformultiplecomparisons 2.4.Clonelibraries,high-throughputsequencingandphylogeneticanalysis andthenullhypothesiswasrejectedwhileP-valueswasb0.05.Allthe statistical analyses were processed in R with vegan, car and Hmisc TheDNAsamplesfromday28wereusedformicrobialcommunity packages. compositionanalysis.ThecommunitycompositionsofAOAandAOB wereanalyzedbycloningwhilethecommunitycompositionsofnirK, 3.Results nirSandnosZweretestedusinghigh-throughputsequencing.ThePCR mixtureandreactionofAOAandAOBweredescribedintheprevious 3.1.Denitrifyingactivityandnutrientconcentrations study(Wangetal.,2015).ThePCRproductsofthe12sampleswere usedtoconstructtheclonelibraries and50clones foreachlibrary TheactivityofdenitrificationwascalculatedastheaverageN O 2 wereselectedforsequencing.Intotal,599cleansequenceswereused emissionperdayduringa12-dayincubationaftersampling(Fig.S1). forclusteringforbothAOAandAOB.Similarityof97%wasusedasthe Theemissionrateinsedimentwithgreatersalinity(20–30ppt)wassig- thresholdforpickingoperationaltaxonomicunit(OTU)usingMothur nificantlylowercomparedtothelowersalinity(0–10ppt).Oneexcep- v1.19(Schlossetal.,2009). tion to this trend was on day 7 and 14 of the incubations, when Fordenitrifyinggenes,eachreverseprimercorrespondingtoacer- emissionsweresignificantlyreducedin10-ppt,whencomparedtothe tain sample was tagged with a six-base barcode. Amplifications of 0-pptcontrol(Fig.1a).Duringthe28-dayincubation,theammonia nirK, nirS and nosZ were processed as previously described (Wang wasdepletedin0-and10-pptsedimentsonday21and28,respectively etal.,2014),butwiththebarcodedprimers.PCRproductswerepurified (Fig.1b).Ammoniaconcentrationswerealsosignificantlylowerthan withtheUniversalDNAPurificationKit(TIANGEN,China).Thepurified thatin30-pptsamplesonday7and14.Althoughammoniaconcentra- productconcentrationswerethenconfirmedusingtheQuantiFluor tionin20-pptsedimentsshowedanincreaseonday14and21,itde- dsDNASystem(Promega,CA,USA).ThebarcodedPCRproductswere creaseddramaticallyonday28.Theseresultssuggesttheinhibitionof equallypooled,whichwerethenprecipitatedbyethanolwithsodium ammoniaconsumptionbyhighsalinity.However,theNO−concentra- x acetateanddissolvedinsterilizedMilli-Qwater.ThefinalDNApool tionexhibitedanoppositepattern.Theconcentrationwassignificantly wassequencedonanIlluminaMiSeqPE300platform.Thesequencing lowerinboththe20-and30-pptsamplesonday14,whilethelowest datawereanalyzedusingQIIMEv1.9.1(Caporasoetal.,2010).Rawse- NO−concentrationoccurredin20-and30-pptsamplesonday21and x quencesweredemultiplexedandlowqualityorambiguousreadswere day28,respectively(Fig.1c).Despitethat,theoverallNO−concentra- x removed.Theframe-shifterrorswerecheckedusingtheHMM-FRAME tionswerenotsignificantlydifferentfromday0today28.Correlation algorithm(ZhangandSun,2011)togetherwithHiddenMarkovModels analysisdemonstratedthattheNH+andNO−concentrationswereneg- 4 x ofdifferentgenesfromtheFunGenedatabase(Fishetal.,2013).Se- ativelyandpositivelyassociatedwiththeaverageN Oemissionrate,re- 2 quenceswithframe-shiterrorswerediscarded.Intotal,therewere spectively(Pb0.05,Fig.S2). 401,963,729,176and508,882cleansequencesfornirK,nirSandnosZ, respectively.FilteredsequenceswerethenclusteredintoOTUsbased 3.2.Theabundancesofnitrifyinganddenitrifyinggenes on 97% similarity using the “pick_otu.py” function with USEARCH method.Thesingletonsandchimericsequenceswereremovedduring Theabundances of amoAgenesforbothAOA(Fig.2a)andAOB theOTUpicking.Afterthat,eachsamplewasrarefiedtoequalsequence (Fig.2b)increasedfromday0today28.ForAOA,thedifferenceonlyoc- depth(thesmallestnumberofthesequencesamongallsamples)for curredonday7thatamoAgeneabundancewassignificantlylowerin downstreamanalyses. highsalinitysamples(20and30ppt)thaninthelowsalinitysamples TherepresentativesequencesofOTUswitharelativeabundance (0 and 10 ppt) (Fig. 2a). Interestingly, the abundance of bacterial above1%wereblastedagainsttheGenBanknucleotidedatabaseand amoAgenewassignificantlyhigherintheintermediatesalinitysamples referencesequenceswerechosenasthehighlysimilarsequencesto (10or20ppt)comparedtothoseinthelow(0ppt)orhigh(30ppt)sa- eachOTU.Thenboththerepresentativeandreferencesequenceswere linity samples (Fig. 2b), suggesting a different response to salinity H.Wangetal./ScienceoftheTotalEnvironment631–632(2018)1342–1349 1345 Fig.1.ChangesintheaverageN2Oemissionrate(a),ammoniaconcentration(b),andnitrateandnitriteconcentration(c)onday0,day7,day14andday28.Thedifferentlettersamong samplesateachtimepointindicatethesignificantdifference(Pb0.05).Thevaluesaregivenasmean±standarddeviation(n=3).*,undetected. impactbetweenAOBandAOA.Moreover,theAOBabundancewassev- eralordersofmagnitudegreaterthanAOAabundance,despitecompa- rable abundance on day 0, suggesting that AOB dominated nitrification.Therelativeabundancecalculatedasthecopynumber ratiooffunctionalgenetocorresponding16SrRNAgenewasinvesti- gated(Fig.S3).TheresultsofrelativeabundancesofAOAandAOB showedasimilartrend,withtheexceptionthatdifferenceofAOArela- tiveabundancealsooccurredonday21whentheabundancewassig- nificantlylowerinhighsalinitysamples(20and30ppt)compared with0-pptsamples(Fig.S3). Salinityhadalimitedinfluenceondenitrifyinggeneabundance. Onlyonday28thelowestandhighestnirKabundancewasdetected in30-pptand0-pptsamples,respectively(Fig.3a).Whiletherewas nosignificantchangeinnirSabundance(Fig.3b),thenosZabundance wassignificantlylowerin30-pptsamplescomparedtotheothersam- plesonday28(Fig.3c).Onday28,thenirK/nirSratiowassignificantly greaterin0-pptsamplescomparedtotheothersamples(Fig.3d),while thenir/nosZratiowasgreatestin30-pptsamples(Fig.3e).Thenir/nosZ ratiowaspositivelyandsignificantlycorrelatedwithdenitrifyingactiv- ityandNO−concentration(Pb0.05,Fig.S2).Therelativeabundancesof x nirK,nirSandnosZallshowedasimilartrendtotheabsoluteabun- dances(Fig.S3). 3.3.Thecommunitycompositionsofnitrifiersanddenitrifiers Intotal,53and26OTUswereobtainedforAOAandAOBcommuni- ties,respectively.nMDSplotsshowedthatbothAOAandAOBcommu- nitiesweregroupedaccordingtodifferentsalinitygradients(Fig.4aand b).BoththeANOSIMandPERMANOVAindicatedthatsalinitysignifi- cantly impacted AOA and AOB community composition (P b 0.01, Table 1). For denitrifying communities, 1607, 7259 and 6148 OTU wereobservedfornirK,nirSandnosZcommunities,respectively.The nirKandnosZcommunitiesofsamplesassociatedwithdifferentsalinity gradientswerewellgroupedwhilethenirScommunitieswerelessdis- tinctlydistributed(Fig.4c,dande).However,thenirK,nirSandnosZ communitycompositionswereallsignificantlyinfluencedbysalinity asdemonstratedbytheANOSIMandPERMANOVAresults(Pb0.05, Table1). 3.4.Phylogeneticanalysis ToreducetheeffectofrareOTUsonphylogenetictreeconstruction, wechosetheOTUswitharelativeabundanceN1%.Thedistributionof abundantOTUsfordifferentgenesaredisplayedinFig.S4.According tothephylogenetictreeforAOA(Fig.S5)andAOB(Fig.S6),theabun- dantOTUscouldbegroupedinto4and3clusters,respectively.The Fig.2.ChangesintheamoAgeneabundanceofAOA(a)andAOB(b)onday0,day7,day AOA cluster I, which was associated with Nitrososphaera (Fig. S5), 14 and day 28. The different letters among samples at each time point indicate thesignificantdifference(Pb0.05).Thevaluesaregivenasmean±standarddeviation accountedforthelargestproportion(74.0%)ofAOAsequences.Therel- (n=3). ativeabundanceofAOAclusterIwasslightlygreaterinthe0-and10- 1346 H.Wangetal./ScienceoftheTotalEnvironment631–632(2018)1342–1349 Fig.3.Changesintheabundancesofdenitrifyinggenes,nirK(a),nirS(b)andnosZ(c),aswellasthenirK/nirS(d)andnir/nosZ(e)ratiosonday0,day7,day14andday28.Thedifferent lettersamongsamplesateachtimepointindicatethesignificantdifference(Pb0.05).Thevaluesaregivenasmean±standarddeviation(n=3). pptsamplescomparedtothosein20-and30-pptsamples(Fig.5a).The Thesefindingssuggestthatsalinityintrusionincoastalareasmightin- AOBclusterIIwhichwasaffiliatedwithNitrosomonas(Fig.S6)occupied terruptthebalanceofnutrientcycles,andcouldnegativelycontribute 76.4%ofthetotalAOBmembers.BothAOBclusterIandIIdominated0- toecosystemfunctions. and10-pptsampleswhileonlyclusterIIflourishedin20-and30-ppt SalinityexhibitedalimitedinfluenceonAOAabundanceinthis samples(Fig.5b),whichsuggestedthathighsalinityinhibitedtheclus- study,whichisdifferentfrompreviousstudiesshowingthatAOAwas terIofAOBwhichwasassociatedwithNitrosospira(Fig.S6). themostabundantatintermediate salinity(10–30ppt)(Bernhard Basedonthephylogeneticanalysesofdenitrifyingcommunities,the etal.,2010;Zhangetal.,2015).However,AOBplayedadominantrole nirK(Fig.S7),nirS(Fig.S8)andnosZ(Fig.S9)sequencescanbegrouped innitrificationinthisstudysincetheAOBabundanceoutcompeted into3,10and7clusters,respectively.FornirK,clusterIwasthedomi- AOAabundance.TherelativeimportanceofAOAandAOBfornitrifica- nantclusteraccountingfor58.4%ofthetotalsequences.Thiscluster tion in salineenvironments remains controversial. Consistentwith wassignificantlygreaterinthehighsalinity(20and30ppt)samples thisstudy,theAOBabundancewasgreaterthanAOAinsediments thaninthelowsalinity(0and10ppt)samples(Fig.5c,TukeyHSDPb fromDouroRiverestuarydespiteofthevariedsalinitiesrangingfrom 0.05),suggestingpreferenceofhighsalinityconditionofthiscluster. 1.5 to 26.8 ppt (Magalhães et al., 2009). In some estuaries, it was However,nirKclusterIcannotbeassignedtoaknowntaxon(Fig.S7). foundthatAOApredominatedthenitrificationintheregionswithlow FornirS,onlyclusterVandVIIshowedaslightlydifferentabundance salinitywhileAOBweremoreabundantthanAOAinhighersalinityre- amongdifferentsalinitygradients(Fig.5d).FornosZ,clusterIandclus- gions(MosierandFrancis,2008;Santoroetal.,2008).Incontrast,AOA terIIIwerethedominantclusters,withaproportionof10.8%and20.2%, abundancewasgreaterthanAOBatallthesalinitylevelsinPlumIsland respectively.TheabundanceofclusterIIIwhichmightbeassociated Soundestuary(Bernhardetal.,2010).Thesedivergentresultsindicate withThiobacillus(Fig.S9)wassignificantlylowerin30-pptsamples thatotherfactorsinfluencetheabundanceofAOAandAOB.Itissug- comparedto0-pptsamples(Fig.5e,TukeyHSDPb0.05). gestedthatthedominanceofAOBoverAOAnormallyoccursinman- grovesedimentsastheslightlyacidic or neutral conditionandthe 4.Discussion availableammoniamightfavorthegrowthofAOB(Lietal.,2011;Li andGu,2013;Wangetal.,2015).Moreover,wefoundthatAOBabun- Thedenitrifyingactivity,abundanceofnitrifiersanddenitrifiers,and dancewasgreaterinthe10-or20-pptsedimentsduringthe28-dayin- theircommunitystructureswereinvestigatedinmangrovesediments cubation.Thisfindingsupportsapreviousmeta-analysisshowingthat treatedwithdifferentsalinities.Salinityexhibitedasignificantinfluence nitrificationcanbepromotedwithinacertainrangeofthesalinityand onthenitrogencyclingprocesses.Increaseofsalinityfrom0to30ppt inhibitedwhensalinityexceedsthisrange(Zhouetal.,2017).Forthis decreasedbothdenitrificationactivityandtheabundanceofdenitri- study,theintermediatesalinities(10and20ppt)wereconsideredas fiers,whilethenitrifiersweremostabundantundertheintermediate theoptimalconditionfortheammoniaoxidizers,whichmightalsore- salinityconditions.Thecommunitycompositionofnitrifiersanddeni- sultfromthelong-termadaptionofthemicrobestothelocalhabitats trifierswassignificantlyinfluencedbysalinity.Althoughthisstudyis wherethesedimentsalinitynormallyshiftedbetween10and20ppt basedonthemanipulatedsedimentrecoveredfromthedriedsediment, (Wangetal.,2016).WeobservedthatNH+concentrationwassignifi- 4 therecoveredmicrobialcommunitieswereoriginallyfromthesedi- cantlyhigherinthe20-and30-pptsamples,suggestingthelesscon- mentinthefield,andthuspartlyrepresentingthein-situcondition. sumption of NH+ which might be caused by the reduction of 4 H.Wangetal./ScienceoftheTotalEnvironment631–632(2018)1342–1349 1347 Fig.4.Nonmetricmultidimensionalscaling(nMDS)plotsofAOA(a),AOB(b),nirK(c),nirS(d)andnosZ(e)basedontheBray-Curtisdissimilarities. nitrificationactivity.However,nosignificantcorrelationwasfoundbe- 2005;SahanandMuyzer,2008).Thecontrastingresultsonthedistribu- tweenNH+concentrationandAOBabundance.Thismaybeduetothe tionofNitrosospiramightresultfromtheothercovaryingfactors,such 4 enhancedDNRAactivityasDNRAisfavoredunderthehighersalinity astemperatureandammoniaconcentration;however,salinitywas condition(Giblinetal.,2013;Marchantetal.,2014),whichmightfur- theonlyfactorthatdrovechangesinourstudy.Ourresultsalsoindicate theroffsettheconsumedNH+. thatNitrosomonasmightpossessabroaderadaptiontothesalinity 4 Inadditiontotheabundanceofnitrifiers,salinityexhibitedasignif- levels compared to Nitrosospira. However, the mechanism on how icantimpactonbothAOAandAOBcommunitystructure.Theseresults theytoleratethesalinitystressremainsunknown. supportpreviousstudiesshowingthatsedimentsalinitywasthemain Itissuggestedthatdenitrificationisconsistentlydecreasedbysoil factor controlling the distribution of AOA or/and AOB (Sahan and salinizationacrosscoastalecosystems(Zhouetal.,2017).Insupportof Muyzer,2008;Zhangetal.,2015).ThegenusNitrososphaeradominated this,denitrifyingactivitydeclinedwithincreasedsalinityfrom0to AOAcommunityinallsamples,butwasslightlyrestrictedathighsalin- 30pptinthisstudy.Therearemanymechanismsthatmaycontribute itylevelsinthisstudy.However,asonlyoneNitrososphaeraisolatehas tothisphenomenon.Foralaboratoryincubation,salinityelevation beenidentified(Tournaetal.,2011),littlecanbesaidaboutitspotential mightdirectlyconstrainthefitnessofmicrobesandatthesametimere- interaction.ForAOB,wefoundthatboththehighandlowsalinitiesfa- ducethesoilrespiration(Wongetal.,2008)whichcoulddecreasethe voredNitrosomonaswhileNitrosospiraexistedonlyatlowsalinitylevels. oxygenconsumptionthusinhibitingtheanaerobicdenitrifyingprocess. Twoformerstudiesshowedthatalongasalinitygradient,Nitrosospira Thereductionofnitrificationbysalinityelevationcanreducethenitrate wasenrichedatthehighsalinitysiteswhilethegenusNitrosomonas availability,whichcanalsolimitthedenitrification(Giblinetal.,2010). tendedtoassociatewithlowormiddlesalinitysites(Bernhardetal., Inthisstudy,theenhancedconsumptionofNO−bysalinity,whichin- x creasedduringtheincubation,couldbeduetothepromotedDNRA Table1 under high salinity conditions (Giblin et al.,2013; Marchant et al., TheANOSIMandPERMANOVAresultsshowingtheinfluenceofsalinityonnitrifyingand 2014).Hence, ourresultspotentially indicate thepredominanceof denitrifyingcommunitycompositions. DNRAoverdenitrificationinsedimentsthataresubjecttohighsalin- ANOSIM PERMANOVA ities.Ontheotherhand,theabundanceofdenitrifiers(nirKandnosZ) R Significance R2 Significance wasalsoimpactedbysalinization,butinhibitiononlyoccurredatday 28,suggestingthetoleranceofdenitrifierstosedimentsalinizationat AOA 0.397 0.002** 0.409 0.010** thebeginningoftheincubation.ThedecreaseofthenirK/nirSratio AOB 0.559 0.005** 0.556 0.002** nirK 0.491 0.002** 0.479 0.003** withincreasingsalinityindicatedthattherelativeimportanceofnirK nirS 0.361 0.016* 0.355 0.025* andnirSforreducingthenitritemightshiftaccordingtosalinitylevels nosZ 0.361 0.005** 0.378 0.002** andthatnirS-bearingdenitrifiersmightbemoretoleranttosalinityele- Significancelevelisshownas*,Pb0.05;**,Pb0.01. vationcomparedtothosenirK.Moreover,theenhancednir/nosZratioin 1348 H.Wangetal./ScienceoftheTotalEnvironment631–632(2018)1342–1349 Fig.5.Thedistributionoftheclustersobtainedfromphylogeneticanalysisandtheirrelativeabundances.Thevaluesaregivenasmean±standarddeviation(n=3).Significancelevelis shownas●,Pb0.1;*,Pb0.05;***,Pb0.001. 30-pptsamplesatday28illustratedthatsalinityelevationmightrise Insummary,wefoundtheinhibitingeffectofsalinityelevationon thegeneticpotentialforN Oemissionssincethehighernir/nosZratio thedenitrifyingactivityandabundancesofnirKandnosZ,whilethe 2 canleadtoanincreasedN O/(N O+N )end-productratio(García- nirSabundanceremainedstable.TheabundanceofAOBincreasedatin- 2 2 2 Lledóetal.,2011). termediatesalinitylevelswhileAOAwerelessaffected.However,are- Apreviousstudyfoundthatsalinity,inadditiontoothermajorfac- ductionintheconsumptionofNH+athighsalinitylevelsmightsuggest 4 tors,wasassociatedwiththedynamicsofnirK,nirSandnosZcommunity theinhibitionofnitrificationbysalinization.Therefore,thereductionof compositioninwetlandsediments(Bañerasetal.,2012).Thesalinity couplednitrification-denitrificationprocessmightdecreasethenitro- wasalsofoundtocorrelatewithnosZcommunitystructuresacross genremoval,whichmightfurtherleadtoeutrophicationanddisturb eighttidalwetlands(Franklinetal.,2017).However,astudyinthe thenitrogenbalanceintheenvironment.Whilethereislimitedinfor- SanFranciscoBayestuaryrevealedsignificantcorrelationsbetweensa- mationaboutthesalinityandmicrobialcommunitycomposition,this linityandabundancesofnirKandnirSbutnottheircommunitystruc- studyprovidesstrongevidencethatsalinitycansignificantlyshape tures(MosierandFrancis,2010).Sincethesestudieswereconducted thecommunitystructureofbothnitrifiersanddenitrifiers.Theseresults withsamplesinsitu,theimpactofsalinitywascoupledwithother illustratethatsalinityplaysavitalroleinregulatingthenitrogencycling majorfactorssuchasvegetation,carbonsourceandmetals.Henceour incoastalareas,whichmayincreaseconcernregardingthreatsofsalin- study does provide strong evidence that salinity can significantly ityintrusionassociatedwithclimatechangeandarisingsealevel. shapethecommunitystructuresofdenitrifiersintheabsenceofother factors.AlthoughweobservedthatthedominantnirKclusterIwassig- Acknowledgments nificantlyinfluencedbythesalinity,littleisknownaboutthiscluster. Similarly,theclusterVandVIIofnirSwereslightlyinfluencedbythesa- ThisworkwassupportedbytheStrategicPriorityResearchProgram linity,buttheyarealsounknowntaxa.ThedominantclusterIIIofnosZ ofChineseAcademyofSciences(XDB15020402),theNationalNatural which might be associated with Thiobacillus was decreased by the ScienceFoundationofChina(41430858,41771285,41571130063), highsalinity(30ppt).Mangrovecontainshighlevelofsulfidesgener- andtheInternationalScience&TechnologyCooperationProgramof atedbysulfatereduction(Ferreiraetal.,2007),andsomespeciesbe- China(2011DFB91710).WethankProf.TianlingZheng(deceased)from longing to Thiobacillus can use the sulfur and oxidize sulfide to XiamenUniversityforhishelpwithdesigningandanalyzingthedata. supporttheirautotrophicgrowth(Friedrichetal.,2001).Ithasbeenrec- Theauthorsdeclarenoconflictofinterests. ognizedthatsulfuroxidationcanbecoupledwithnitratereduction (BurginandHamilton,2007);thusreductionofsulfidebyoxidation AppendixA.Supplementarydata mightleadtothedecreaseofsulfur-drivennitratereduction.Therefore, theinhibitionofThiobacillusbysalinizationmightleadtothereduction Supplementarydatatothisarticlecanbefoundonlineathttps://doi. ofdenitrificationasweobservedinthisstudy. org/10.1016/j.scitotenv.2018.03.102. H.Wangetal./ScienceoftheTotalEnvironment631–632(2018)1342–1349 1349 References Magalhaes,C.M.,Joye,S.B.,Moreira,R.M.,Wiebe,W.J.,Bordalo,A.A.,2005.Effectofsalinity andinorganicnitrogenconcentrationsonnitrificationanddenitrificationratesinin- Asghar,H.N.,Setia,R.,Marschner,P.,2012.Communitycompositionandactivityofmi- tertidalsedimentsandrockybiofilmsoftheDouroRiverestuary,Portugal.WaterRes. crobesfromsalinesoilsandnon-salinesoilsrespondsimilarlytochangesinsalinity. 39,1783–1794. SoilBiol.Biochem.47,175–178. Magalhães,C.M.,Machado,A.,Bordalo,A.A.,2009.Temporalvariabilityintheabundance Bañeras,L.,Ruiz-Rueda,O.,López-Flores,R.,Quintana,X.,Hallin,S.,2012.Theroleofplant ofammonia-oxidizingbacteriavs.archaeainsandysedimentsoftheDouroRiveres- typeandsalinityintheselectionforthedenitrifyingcommunitystructureintherhi- tuary,Portugal.Aquat.Microb.Ecol.56,13–23. zosphereofwetlandvegetation.Int.Microbiol.15,89–99. Marchant,H.K.,Lavik,G.,Holtappels,M.,Kuypers,M.M.,2014.Thefateofnitrateininter- Behera,P.,Mahapatra,S.,Mohapatra,M.,Kim,J.Y.,Adhya,T.K.,Raina,V.,etal.,2017.Salin- tidalpermeablesediments.PLoSOne9,e104517. ityandmacrophytedrivethebiogeographyofthesedimentarybacterialcommuni- Marton,J.M.,Herbert,E.R.,Craft,C.B.,2012.Effectsofsalinityondenitrificationandgreen- tiesinabrackishwatertropicalcoastallagoon.Sci.TotalEnviron.595,472–485. housegasproductionfromlaboratory-incubatedtidalforestsoils.Wetlands32, Bernhard,A.E.,Donn,T.,Giblin,A.E.,Stahl,D.A.,2005.Lossofdiversityofammonia- 347–357. oxidizingbacteriacorrelateswithincreasingsalinityinanestuarysystem.Environ. Mohamed,D.J.,Martiny,J.B.,2011.Patternsoffungaldiversityandcompositionalonga Microbiol.7,1289–1297. salinitygradient.ISMEJ.5,379–388. Bernhard,A.E.,Tucker,J.,Giblin,A.E.,Stahl,D.A.,2007.Functionallydistinctcommunities Molstad,L.,Dörsch,P.,Bakken,L.R.,2007.Robotizedincubationsystemformonitoring of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ. gases(O2,NO,N2ON2)indenitrifyingcultures.J.Microbiol.Methods71,202–211. Microbiol.9,1439–1447. Mosier,A.C.,Francis,C.A.,2008.Relativeabundanceanddiversityofammonia-oxidizing Bernhard,A.E.,Landry,Z.C.,Blevins,A.,delaTorre,J.R.,Giblin,A.E.,Stahl,D.A.,2010.Abun- archaeaandbacteriaintheSanFranciscoBayestuary.Environ.Microbiol.10, danceofammonia-oxidizingarchaeaandbacteriaalonganestuarinesalinitygradi- 3002–3016. ent in relation to potential nitrification rates. Appl. Environ. Microbiol. 76, Mosier,A.C.,Francis,C.A.,2010.DenitrifierabundanceandactivityacrosstheSan 1285–1289. FranciscoBayestuary.Environ.Microbiol.Rep.2,667–676. Burgin,A.J.,Hamilton,S.K.,2007.Haveweoveremphasizedtheroleofdenitrificationin Rysgaard,S.,Thastum,P.,Dalsgaard,T.,Christensen,P.B.,Sloth,N.P.,1999.Effectsofsalin- aquaticecosystems?Areviewofnitrateremovalpathways.Front.Ecol.Environ.5, ityonNH4+adsorptioncapacity,nitrification,anddenitrificationinDanishestuarine 89–96. sediments.Estuar.Coasts22,21–30. Caporaso,J.G.,Kuczynski,J.,Stombaugh,J.,Bittinger,K.,Bushman,F.D.,Costello,E.K.,etal., Sahan,E.,Muyzer,G.,2008.Diversityandspatio-temporaldistributionofammonia- 2010.QIIMEallowsanalysisofhigh-throughputcommunitysequencingdata.Nat. oxidizingArchaeaandBacteriainsedimentsoftheWesterscheldeestuary.FEMS Methods7,335–336. Microbiol.Ecol.64,175–186. Chen,L.,Li,C.,Feng,Q.,Wei,Y.,Zheng,H.,Zhao,Y.,etal.,2017.Shiftsinsoilmicrobialmet- Santoro,A.E.,Francis,C.A.,deSieyes,N.R.,Boehm,A.B.,2008.Shiftsintherelativeabun- abolicactivitiesandcommunitystructuresalongasalinitygradientofirrigation danceofammonia-oxidizingbacteriaandarchaeaacrossphysicochemicalgradients waterinatypicalaridregionofChina.Sci.TotalEnviron.598,64–70. inasubterraneanestuary.Environ.Microbiol.10,1068–1079. Duke,N.C.,Meynecke,J.-O.,Dittmann,S.,Ellison,A.M.,Anger,K.,Berger,U.,etal.,2007.A Schloss,P.D.,Westcott,S.L.,Ryabin,T.,Hall,J.R.,Hartmann,M.,Hollister,E.B.,etal.,2009. worldwithoutmangroves?Science317,41–42. Introducingmothur:open-source,platform-independent,community-supported Fear,J.M.,Thompson,S.P.,Gallo,T.E.,Paerl,H.W.,2005.Denitrificationratesmeasured softwarefordescribingandcomparingmicrobialcommunities.Appl.Environ. alongasalinitygradientintheeutrophicNeuseRiverEstuary,NorthCarolina,USA. Microbiol.75,7537–7541. Estuar.Coasts28,608–619. Seitzinger,S.P.,Gardner,W.S.,Spratt,A.K.,1991.Theeffectofsalinityonammoniumsorp- Ferreira,T.O.,Otero,X.L.,Vidal-Torrado,P.,Macías,F.,2007.Effectsofbioturbationbyroot tioninaquaticsediments:implicationsforbenthicnutrientrecycling.Estuaries14, and crab activity on iron and sulfur biogeochemistry in mangrove substrate. 167–174. Geoderma142,36–46. Sheng,Q.,Wang,L.,Wu,J.,2015.Vegetationalterstheeffectsofsalinityongreenhouse Fish,J.A.,Chai,B.,Wang,Q.,Sun,Y.,Brown,C.T.,Tiedje,J.M.,etal.,2013.FunGene:the gasemissionsandcarbonsequestrationinanewlycreatedwetland.Ecol.Eng.84, functionalgenepipelineandrepository.Front.Microbiol.4,291. 542–550. Fisher,J.,Acreman,M.,2004.Wetlandnutrientremoval:areviewoftheevidence.Hydrol. Tourna,M.,Stieglmeier,M.,Spang,A.,Könneke,M.,Schintlmeister,A.,Urich,T.,etal., EarthSyst.Sci.8,673–685. 2011.Nitrososphaeraviennensis,anammoniaoxidizingarchaeonfromsoil.P.Natl. Franklin,R.B.,Morrissey,E.M.,Morina,J.C.,2017.Changesinabundanceandcommunity Acad.Sci.USA108,8420–8425. structureofnitrate-reducingbacteriaalongasalinitygradientintidalwetlands. Vymazal,J.,2007.Removalofnutrientsinvarioustypesofconstructedwetlands.Sci.Total Pedobiologia60,21–26. Environ.380,48–65. Friedrich,C.G.,Rother,D.,Bardischewsky,F.,Quentmeier,A.,Fischer,J.,2001.Oxidationof Wang,H.T.,Su,J.Q.,Zheng,T.L.,Yang,X.R.,2014.Impactsofvegetation,tidalprocess,and reducedinorganicsulfurcompoundsbybacteria:emergenceofacommonmecha- depthontheactivities,abundances,andcommunitycompositionsofdenitrifiersin nism?Appl.Environ.Microbiol.67,2873–2882. mangrovesediment.Appl.Microbiol.Biotechnol.98,9375–9387. Galloway,J.N.,Townsend,A.R.,Erisman,J.W.,Bekunda,M.,Cai,Z.,Freney,J.R.,etal.,2008. Wang,H.T.,Su,J.Q.,Zheng,T.L.,Yang,X.R.,2015.Insightsintotheroleofplanton Transformationofthenitrogencycle:recenttrends,questions,andpotentialsolu- ammonia-oxidizingbacteriaandarchaeainthemangroveecosystem.J.SoilsSedi- tions.Science320,889–892. ments15,1212–1223. García-Lledó,A.,Vilar-Sanz,A.,Trias,R.,Hallin,S.,Bañeras,L.,2011.Geneticpotentialfor Wang,H.,Liao,G.,D'Souza,M.,Yu,X.,Yang,J.,Yang,X.,etal.,2016.Temporalandspatial NW2aOteermReisss.i4o5n,s5f6r2o1m–5t6h3e2s.edimentofafreewatersurfaceconstructedwetland. Cvahriniaat.ioEnnsviorofng.rSecein.Phooluluste.Rgaess.flInutx.e2s3,fr1o8m73a–1ti8d8a5l.mangrovewetlandinSoutheast Giblin,A.E.,Weston,N.B.,Banta,G.T.,Tucker,J.,Hopkinson,C.S.,2010.Theeffectsofsalin- Wang,H.T.,Marshall,C.W.,Cheng,M.Y.,Xu,H.J.,Li,H.,Yang,X.R.,etal.,2017.Changesin ityonnitrogenlossesfromanoligohalineestuarinesediment.Estuar.Coasts33, landusedrivenbyurbanizationimpactnitrogencyclingandthemicrobialcommu- 1054–1068. nitycompositioninsoils.Sci.Rep.7,44049. Giblin,A.E.,Tobias,C.R.,Song,B.,Weston,N.,Banta,G.T.,Rivera-Monroy,V.H.,2013.The Wong,V.N.L.,Dalal,R.C.,Greene,R.S.B.,2008.Salinityandsodicityeffectsonrespiration importanceofdissimilatorynitratereductiontoammonium(DNRA)inthenitrogen andmicrobialbiomassofsoil.Biol.Fertil.Soils44,943–953. cycleofcoastalecosystems.Oceanography26,124–131. Xie,W.,Zhang,C.,Zhou,X.,Wang,P.,2014.Salinity-dominatedchangeincommunity Gruber,N.,Galloway,J.N.,2008.AnEarth-systemperspectiveoftheglobalnitrogencycle. structureandecologicalfunctionofArchaeafromthelowerPearlRivertocoastal Nature451,293–296. SouthChinaSea.Appl.Microbiol.Biotechnol.98,7971–7982. Kumar,S.,Stecher,G.,Tamura,K.,2016.MEGA7:molecularevolutionarygeneticsanalysis Zhang, Y., Sun, Y., 2011. HMM-FRAME: accurate protein domain classification for version7.0forbiggerdatasets.Mol.Biol.Evol.33,1870–1874. metagenomicsequencescontainingframeshifterrors.BMCBioinformatics12,198. Li,M.,Gu,J.-D.,2013.Communitystructureandtranscriptresponsesofanammoxbacte- Zhang,Y.,Chen,L.,Dai,T.,Tian,J.,Wen,D.,2015.Theinfluenceofsalinityontheabun- ria,AOA,andAOBinmangrovesedimentmicrocosmsamendedwithammoniumand dance,transcriptionalactivity,anddiversityofAOAandAOBinanestuarinesedi- nitrite.Appl.Microbiol.Biotechnol.97,9859–9874. ment:amicrocosmstudy.Appl.Microbiol.Biotechnol.99,9825–9833. Li,M.,Cao,H.,Hong,Y.,Gu,J.-D.,2011.Spatialdistributionandabundancesofammonia- Zhou,M.,Butterbach-Bahl,K.,Vereecken,H.,Bruggemann,N.,2017.Ameta-analysisof oxidizingarchaea(AOA)andammonia-oxidizingbacteria(AOB)inmangrovesedi- soilsalinizationeffectsonnitrogenpools,cyclesandfluxesincoastalecosystems. ments.Appl.Microbiol.Biotechnol.89,1243–1254. Glob.Chang.Biol.23,1338–1352. Liu,X.,Ruecker,A.,Song,B.,Xing,J.,Conner,W.H.,Chow,A.T.,2017.Effectsofsalinityand wet–drytreatmentsonCandNdynamicsincoastal-forestedwetlandsoils:implica- tionsofsealevelrise.SoilBiol.Biochem.112,56–67.