ebook img

Safe Navigation of a Tele-operated Unmanned Aerial Vehicle PDF

191 Pages·2017·24.79 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Safe Navigation of a Tele-operated Unmanned Aerial Vehicle

EXAMENSARBETE INOM DATALOGI OCH DATATEKNIK, AVANCERAD NIVÅ, 30 HP STOCKHOLM, SVERIGE 2018 Safe Navigation of a Tele- operated Unmanned Aerial Vehicle DANIEL DUBERG KTH SKOLAN FÖR DATAVETENSKAP OCH KOMMUNIKATION Safe Navigation of a Tele-operated Unmanned Aerial Vehicle DANIEL DUBERG Master in Computer Science Date: January 22, 2018 Supervisor: Patric Jensfelt Examiner: Joakim Gustafson Swedish title: Säker teleoperativ navigering av en obemannad luftfarkost School of Computer Science and Communication iii Abstract Unmanned Aerial Vehicles (UAVs) can navigate in indoor environ- ments and through environments that are hazardous or hard to reach for humans. This makes them suitable for use in search and rescue missionsandbyemergencyresponseandlawenforcementtoincrease situational awareness. However, even for an experienced UAV tele- operatorcontrollingtheUAVinthesesituationswithoutcollidinginto obstaclesisademandinganddifficulttask. This thesis presents a human-UAV interface along with a collision avoidancemethod,bothoptimizedforahumantele-operator. Theob- jective is to simplify the task of navigating a UAV in indoor environ- ments. Evaluationofthesystemisdonebytestingitagainstanumber of use cases and a user study. The results of this thesis is a collision avoidance method that is successful in protecting the UAV from ob- stacleswhileatthesametimeacknowledgestheoperator’sintentions. iv Sammanfattning Obemannadluftfarkoster(UAV:er)kannavigeraiinomhusmiljöeroch genom miljöer som är farliga eller svåra att nå för människor. Detta gör dem lämpliga för användning i sök- och räddningsuppdrag och av akutmottagning och rättsväsende genom ökad situationsmedve- tenhet. Dock är det även för en erfaren UAV-teleoperatör krävande och svårt att kontrollera en UAV i dessa situationer utan att kollidera medhinder. Denna avhandling presenterar ett människa-UAV-gränssnitt till- sammans med en kollisionsundvikande metod, båda optimerade för en mänsklig teleoperatör. Målet är att förenkla uppgiften att navigera enUAViinomhusmiljöer.Utvärderingavsystemetgörsgenomatttes- tadetmotettantalanvändningsfallochenanvändarstudie.Resultatet av denna avhandling är en kollisionsundvikande metod som lyckas skydda UAV från hinder och samtidigt tar hänsyn till operatörens av- sikter. Contents 1 Introduction 1 1.1 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ScopeandLimitations . . . . . . . . . . . . . . . . . . . . 2 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 RelatedWork 4 2.1 CollisionAvoidance . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 PotentialFieldMethods . . . . . . . . . . . . . . . 4 2.1.2 VectorFieldHistogram . . . . . . . . . . . . . . . 7 2.1.3 NearnessDiagram . . . . . . . . . . . . . . . . . . 8 2.1.4 Obstacle-RestrictionMethod . . . . . . . . . . . . 10 2.1.5 KinematicandDynamicConstraints . . . . . . . . 13 2.2 Human-RobotInterface . . . . . . . . . . . . . . . . . . . 15 2.2.1 UseofCameras . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 MapandOrientation . . . . . . . . . . . . . . . . . 20 2.2.4 CombiningCameraandMapView . . . . . . . . . 21 2.2.5 HapticFeedback . . . . . . . . . . . . . . . . . . . 22 3 Method 24 3.1 CollisionAvoidanceMethod . . . . . . . . . . . . . . . . . 24 3.1.1 SensorDataProcessing . . . . . . . . . . . . . . . 25 3.1.2 Obstacle-Restriction Method for Tele-operation inThePlane . . . . . . . . . . . . . . . . . . . . . . 27 3.1.3 SituationsWithNoInput . . . . . . . . . . . . . . 30 3.1.4 KinematicandDynamicConstraints . . . . . . . . 31 3.2 Human-UAVInterface . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Cameras . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 MapandCompass . . . . . . . . . . . . . . . . . . 33 v vi CONTENTS 3.2.3 HapticFeedback . . . . . . . . . . . . . . . . . . . 34 3.2.4 LatencyandProcessing . . . . . . . . . . . . . . . 34 3.2.5 DesignofUAV . . . . . . . . . . . . . . . . . . . . 35 4 ExperimentalSetup 37 4.1 TestingEnvironment . . . . . . . . . . . . . . . . . . . . . 37 4.1.1 SensorSimulation . . . . . . . . . . . . . . . . . . 37 4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 UseCases . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 UserStudy . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 ImplementationDetails . . . . . . . . . . . . . . . . . . . . 48 4.3.1 ControlsandHapticFeedback . . . . . . . . . . . 48 4.3.2 DefaultHyperparameters . . . . . . . . . . . . . . 49 5 Results 51 5.1 UseCases . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1.1 UseCase1 . . . . . . . . . . . . . . . . . . . . . . . 51 5.1.2 UseCase2 . . . . . . . . . . . . . . . . . . . . . . . 52 5.1.3 UseCase3 . . . . . . . . . . . . . . . . . . . . . . . 54 5.1.4 UseCase4 . . . . . . . . . . . . . . . . . . . . . . . 58 5.1.5 UseCase5 . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 UserStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6 Discussion 67 6.1 ErrorSources . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 UseCases . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.1 UseCase1 . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.2 UseCase2 . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.3 UseCase3 . . . . . . . . . . . . . . . . . . . . . . . 69 6.2.4 UseCase4 . . . . . . . . . . . . . . . . . . . . . . . 69 6.2.5 UseCase5 . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 UserStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7 Conclusion 72 7.1 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Bibliography 75 CONTENTS vii A AdditionalUserStudyResults 83 A.1 Operator1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A.2 Operator2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.3 Operator3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 A.4 Operator4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 A.5 Operator5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 A.6 Operator6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 A.7 Operator7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 A.8 Operator8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 B SocialAspects 180 B.1 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . 180 B.2 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 B.3 SocialImpact . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Chapter 1 Introduction Unmannedaerialvehicles(UAVs)aregettingincreasinglymorepopu- larinthecivil,military,andcommercialsector. Theyarebeingusedfor a range of different applications, such as precision farming [72], pro- tecting wildlife [58], mapping [53], road traffic monitoring [30], and environmentalmonitoring[26]. Withtheirhighmanoeuvrabilityandpotentialforasmallformfac- tor, UAVs can navigate in indoor environments and through environ- ments that are hazardous or hard to reach for humans. These abil- ities make UAVs suitable for use in search and rescue missions and by emergency response and law enforcement to increase situational awareness [67, 23, 33]. However, even for an experienced UAV tele- operator, which is someone who remotely controls the UAV from a distancewithoutnecessaryhavingdirectlineofsightoftheUAV,con- trolling the UAV in these situations without colliding into obstacles is a demanding and difficult task. Tele-operation in these situations is difficult even for, simpler to control, ground vehicles as demonstrated fromthesearchandrescuemissionattheWorldTradeCenter[11]. Tele-operating a UAV in an indoor environment, such as a col- lapsedbuilding,ischallengingforseveralreasons. Thereareobstacles close in all directions, which means that the operator needs to pay at- tention to not collide into any of the obstacles. Situational awareness is another challenge for the operator, since the operator usually only sees through a forward looking camera. This makes it difficult for the operatortoknowwhatistothesidesoftheUAVandhowtomovethe UAV to be able to go from one place to another. It would be advanta- geousiftheoperatoronlyhadtofocusongoingfrompointAtopoint 1

Description:
Safe Navigation of a Tele- operated Unmanned Aerial. Vehicle. DANIEL DUBERG. KTH. SKOLAN FÖR DATAVETENSKAP OCH KOMMUNIKATION This makes them suitable for use in search and rescue missions and by the performance of the autonomous navigation without and with EDT.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.