ebook img

S L Loney statics Dynamics with Solutions PDF

396 Pages·17.92 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview S L Loney statics Dynamics with Solutions

SOLUTIONS OF THE EXAMPLES THE ELEMENTS OF STATICS AND DYNAMICS BY LONEY S. L. CAMBRIDGE: AT THE UNIVERSITY PRESS . Published July 1893 , Second Edition, 3899 Third Edition with additions 1902 , , Fourth Edition additions 1906 , , Bepiinted 1910, 1913, 1917, 1923, 1927, 193J 1940 PRINTED IN GREAT BRITAIN PREFACE. For the following Solutions of the Examples in my Elements of Statics and Dynamics I am almost entirely indebted to a friend, to whom my best thanks are due Ho has also carefully revised the whole of the proof- sheets. I hope these solutions will be found usoful to teachers and private students. LONEY. S. L. Royal Holloway College, Egham Surrey. July 3, 18(J3. The Fourth Edition has been altered so that the solutions correspond with the Tenth Edition of the Elements of Statics and Dynamics. October 15, 1906. . ELEMENTS OF STATICS.—SOLUTIONS. EXAMPLES. I. (Pages 15, 16.) 1. (i) R=,v/(24)a+7J=n/C26=25. (ii) Q=J(14)2-(13)s=^27=8^3. (iii) ii=,/7»+82+277.8cos60°=^169=13. (iv) R=js>+‘>+2.5.9cos'120"=Jbl. 2. (v) 7a=3a+5,+2.3.5cosa, whence cosa=g, i.e. a=60°. 3, (vi) COBa=Jl^aWa= \~(i|)*=±^‘. " (13)2+(14)S±12-13-14-^=-v/sOS; or 15. (vii) 72=5,+Qa+2(5.<J)cos60°, whence Qa+5Q-24=0, and so Q=3. The resultant of two forces is greatest or least according as theyactinthe same straightlinein thesame direction orin opposite directions. Hence [cf. Art. 23], the greatest resultant of forces of r1e2sulblst.anwtt.=a(n12d-88l)bsl.bsw.tw.t=.=(142+lbs8.)wltb.s. wt.=20lbs. wt.; andtheleast TheforcesofSlbs. wt. and4lbs.wt. actin thesamestraight lineinoppositedirections,andare, therefore, equivalent toaforceof 1 lb.wt. in the direction of the foroe of 4lbs.wt., i.e south. The forcesof6lbs. wt.and6 lbs. wt. also actinthe samestraightlinein opposite directions, andare, therefore, equivalent to a force of 1lb. wt. in the direction of the force of 6lbs. wt., i.e. west. Hence the fourforcesareequivalenttotwoforcesof 1lb.wt.each, actingatright angles; therefore the resultants*yiHl*=^2lb. wt., and evidently actsalongalinebiseotingtheanglebetween thelinesofaotionofthe forcesof4lbs. wt.and6lbs. wt.,i.e. inadirectionsouth-west. L. S. K, 1 V P , 2 ELEMENTS OF STATICS Exs. 4. The resultant= =s/4'2025=206lbs. wt. 6. Here R=JP>+(PJ2—)»+2.P.Pj2eos135°=P lbs. wt. at an angle tan-1P+P^oos135°, i.e. tan-loo, i.e. at right angles to the direction of the first component. 0. IfQbetherequiredforce, wehave 8. ( 3)*=2a4 Qa4-2.2. Qcos60°, whence Qfl+2Q-8=0, and therefore Q=21bs. wt. 79.. If tana=1o2 then cosa lo. P=/v/(13)’+(ll)J+2.13,ll.A=N/400=201bs. wt. Iftana=^, then cosa=?. o 5 R=eJ(10)2+9J+2.10.9 *= V289=171bs.wt. Ifthe forces be each equal to P, a be the angle between them, andRbe theirresultant, we have i22=3P8, so that 3P2= 2(2+2cosa) whence cosa=(j, i.e. a=60°. 10. IfPand Qbe therequiredforces, we have U/10)»=P*+Q», and (n/13)j=P4+Q2+2P(i)cob60o, i.e. P»+g3=10, and Fi+Q‘*+PQ=13. Solvingthese equations, wehave P=3lbs. wt., and <2=1 lb. wt. 11. (i) p=pV*u+cosa), i.e. 1=2+2cosa; whence cosa=-i, i.e. a=120°. (2) ^=P*J2(1+cosa), i.e. ^=2+2cosa; whence cosa=- ue. a=cos-1f-x)=151°3'. £ ~ I SOLUTIONS 3 12. Here, ifabetherequiredangle, wehave ( + 2)a=[A+1])*+{A-13)*+2(1+B)(.A-B)coso, swohetnhcaet ooso=da+A2*B(+aA=1&2-(Bdya+iB.es.)+a=2c(o4ss-B8)cl2osdAa*a,+-Biiaa\)‘ thi.r1d3.gi_veFninfdortch^e;rtehseulgtraenatte(sRt)roefsutlhteanttwoRgainvden8focracnesh;al\eot Sisbiei+thSe mwuhsetnatchteyinacttheinditrheectsiaonmeofdiRr.ection in thesame straightline; i.t, S 14. Takethe figureof Art. 27. (i) Make CM =5 ins., lA0B~%1°, and cut off 0B=7| ins.; complete the parallelogram OACB; then OC is Ji. [2unitsofforce=oneinch.] (ii) Make 0A=4^ ins., lAOB 133° and cut off 0B=3^ ins.; complete the parallelogram OACB; then OC=ll. radi(iii5i)anMda2k^eiOnsA.=to3imeients.i;nwCi;thcocemnptlreetse0thaendpaAradlelseclroigbreamciOrcAleCsBof then zAOB=a. ; (iv) Make 0A=3-05 ins. and zdOB=65°; draw AG parallel to OB; with centre 0and radius 4*35 describe acircle tocutACin C; complete the parallelogram OACB then OB is Q. ; 1—8 P , ELEMENTS OF STATICS Exb. EXAMPLES. II. (Pages 19, 20.) 1. Theresolvedpartsare 10oos80° and 10sin30°, respectively i.e. 5^/3lbs. wt. and 6 lbs. wt. 2. (1) Pcos45°, i.e. ^P^/2. (2) Pcos^cos— i.e. 1|p. 3. Therequired force=100cos60°=50lbs. wt. 4. Iftherequired forcesbeeachequal toP, wehave (100)2= 2(2+2cos60°); whence 8P2=(100)a and P=i5|V?=67-785lbs. wt. , 5. If*an<Jy be the required forcesrespectively, wehave ainx45°_“siny60°"sin51005°^"'cob6016°“_cos(465°0-30°) =^x=60 8-1>- Hence *=60(iv/3-l)=36‘603lbs. wt., and y=25(-t/18-^6)=44*83 lbs. wt., nearly. 6. If*andybethe requiredcomponentsrespectively, wehave sin*45°_"siny80°"_EtPT0”_sin(45P°+80°).“-^P/jX+V12 ^n f- Hence x=P(*y3-l), and (^6-^/2). 7. Therequired forced 8. IfPand Qbetherequiredforcesrespectively, wehave P=Ptan60°-P,y3, and Q=Pseo60°=2P. = ’ . ; n SOLUTIONS 5 and9,P bIefaatfroirgchetFanbgelesrestoolFvedanidnteoqutawlotcooimtpionnmeangtniftourcdees,PthaenndtQh,e otheranglesareeach45°,andQ=Pyf2 F,J2. Alsotheanglebetween thecomponentforcesis135°. '10. Draw OB vertical and equal to 20 units of length, and OA horizontal and equal to 10 units of length. Completetheparallelo- gram OABC. Then OCrepresents theotherforce. ClearlyOC=AB=J(20)1+(10)a=10*/5=22*86lbs. wt. AlsotanCOB=tanOBA=|, sothat the inclination tothe vertical =tan-i|=26°84'. 11. InFig.Art. 84make OC=3Jins., LCOA=98° and LCOB=iO°. EXAMPLES. ILL (Pages 25, 26.) 1. IfP, QandRbe the forces, wehare, by Lami’s Theorem, P=Q=B. (i) 1 ' sin150° sin150°“sin60° hence P :Q: J2=1 : 1 : 2. IfP, Q andR be theforoes, wehave, by Lami’sTheorem, P Q R Bin120° sin150°“sin90°,* hence P: Q : R=tJ‘d : 1 : 2. 3. Since 7Pisequaltqtheresultantof 6Pand 8P, wehave, if a be therequiredangle, (7P)2=(5P)a+(8P)a+2 5P . 8Pcosa, whence cosa=-~> i*e, a=120°. for4R.. DTrhaewsaidfeisguOrLe,asLNinaArntd.3N8O,woiftht1he2PtrfioarnPgl,e5OPLfoNraQr,eapnrdop1o3rP- atinognlael OtoLN12,is5tahenrdef1o8rereaspreicgthitvealnyg;lea.nd, since (13)a-(12)a+5a, the Again,tanLOAT=^=•4166667; thereforetheangleLON=22°87'. Hencetheanglebetweenthedirectionsof the forces 5Pand 12P =MOL=OLN=90° betweenthedirectionsoftheforces 12Pand 13Ptheangle =180°-22°&7'=157°23', and, therefore, between the directions of the forces 18P and 5P the angle«112°87'.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.