ebook img

Running title: LOV photoreceptors in plants and algae Corresponding author PDF

54 Pages·2012·1.46 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Running title: LOV photoreceptors in plants and algae Corresponding author

Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, S p e ZTL/FKF1/LKP2 and Aureochrome c i a l Noriyuki Suetsugu and Masamitsu Wada* F o DepartmentofBiology,FacultyofSciences,KyushuUniversity,6-10-1Hakozaki,Higashi-ku,Fukuoka812-8581,Japan c u *Correspondingauthor:E-mail,[email protected];Fax,+81-92-642-7258 s (Received October 21, 2012; Accepted November 22, 2012) I s s Many organisms, including bacteria, fungi, animal, plants particular, photosynthetic organisms such as land plants and D u o w e and algae, utilize blue light to adapt to a fluctuating light algaehaveaquiredmanylight-sensingsystemsthroughoutthe n lo – environment. Plants and algae, and photosynthetic strame- course of their evolution because they require light energy to a d Re nanodpihleasvientphaurstiecvuolalvre,dreaqurairnegleigohftseonpehrigsyticfoartepdhloigtohsty-snetnhseinsigs pFoerrfeoxrammpphleo,tlaonsydnpthlaenstisshanavdeceovnoslveqeduemnatlnyygdroiffweraenndtcdlaesvseelsoopf. ed fro v m i systems to utilize light information efficiently for growth, photoreceptors: the red/far-red light receptor phytochrome h ew development and physiological responses. LOV (light, (phy) (Chen and Chory 2011), various blue light receptors ttps oxygen or voltage) domain photoreceptors are widely dis- suchascryptochrome(cry)(Liuetal.2011a)andphototropin ://a c tributed among prokaryotic and eukaryotic organisms, and (phot) (Christie 2007), and the UV-B photoreceptor UV a d e thenumberofspecificLOVphotoreceptorsareincreasedin RESISTANCELOCUS8(HeijdeandUlm2012).Althoughphys m certain taxa. In this review, we summarize the molecular and crys were first identified in plants, these photoreceptors ic.o u basis and physiological functions of three different families weresubsequentlyidentifiedinvariousbacteria,fungiandani- p .c of LOV blue light receptors specific to green plants and mals(Rockwelletal.2006,Chavesetal.2011).Incontrast,phots om photosynthetic stramenopiles: phototropin, ZEITLUPE/ havebeenidentifiedonlyinthegreenplantlineage,fromgreen /p c FLAVIN-BINDING, KELCH REPEAT, F-BOX 1/LOV KELCH algaetofloweringplants(Christie2007).photspossessaserine/ p/a PROTEIN 2 (ZTL/FKF1/LKP2) andaureochrome. threoninekinasedomainattheC-terminusandtwo107amino rtic le Keywords: Arabidopsis (cid:2) aureochrome (cid:2) blue light (cid:2) LOV (cid:2) acidrepeatsattheN-terminusoftheprotein(Hualaetal.1997, -ab phototropin (cid:2) ZTL/FKF1/LKP2. Christie2007)(Fig.1).Similarmotifshavebeenfoundinseveral stra proteins that bind a flavin prosthetic cofactor and mediate c Abbreviations: ASK, Arabidopsis SKP1-like protein; AUREO, light, oxygen or voltage sensing and were thus named LOV t/54 AUREOCHROME; bZIP, basic region/leucine zipper; CCA1, domains (Huala et al. 1997) (Fig. 2). Each phot LOV domain /1/8 CIRCADIAN CLOCK ASSOCIATED 1; CDF, CYCLING DOF /1 (LOV1andLOV2)bindsFMNnon-covalentlyata1:1ratioand 9 0 FACTOR; ChIP, chromatin immunoprecipitation; CO, exhibits absorbance and fluorescence properties that overlap 44 CONSTANS; COP1, CONSTITUTIVE PHOTOMORPHOGENIC with the action spectrum for phototropism (Christie et al. 25 b 1;cry,cryptochrome;CUL1,CULLIN1;dsRNA,double-stranded 1999).Severalproteinsfromarchea,eubacteriaandeukaryotes y g RNA; ELF3, EARLY FLOWERING 3; FKF1, FLAVIN-BINDING, u havebeenidentifiedashavingoneLOVdomainthatishighly e KELCH REPEAT, F-BOX 1; FT, FLOWERING LOCUS T; GFP, similartothosepresentinplantphotsandthusareexpectedto st o green fluorescent protein; GI, GIGANTEA; LD, long day; LHY, bind a flavin cofactor and function as blue light receptors n 2 LATEELONGATEDHYPOCOTYL;LKP2,LOVKELCHPROTEIN (Krauss et al. 2009, Herrou and Crosson. 2011). Indeed, the 0 N 2;LLP,LOV/LOVPROTEIN;LOV,light,oxygenorvoltage;RNAi, LOV domain has been identified as a ubiquitous modular ove RNAinterference;phot,phototropin;phy,phytochrome;PRR5, m unit that can be linked to diverse output domains (Krauss b PSEUDO RESPONSE REGULATOR 5; TOC1, TIMING OF CAB etal.2009,HerrouandCrosson2011). er 2 EXPRESSION1;ZTL,ZEITLUPE. 0 Inthisreviewarticle,wediscussresearchprogressregarding 1 8 three families of LOV blue light receptors in green plants and photosynthetic stramenopiles: phototropin, ZEITLUPE/ Introduction FLAVIN-BINDING, KELCH REPEAT, F-BOX 1/LOV KELCH Light is one of the most important environmental signals for PROTEIN 2 (ZTL/FKF1/LKP2) and aureochrome (Fig. 1). organisms to adapt to fluctuating natural conditions. In Although phot is specific to green plants (land plants and PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165,availableonlineatwww.pcp.oxfordjournals.org !TheAuthor2012.PublishedbyOxfordUniversityPressonbehalfofJapaneseSocietyofPlantPhysiologists. Allrightsreserved.Forpermissions,pleaseemail:[email protected] 8 PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. LOVphotoreceptorsinplantsandalgae 198-304 476-582 663-952 phot1 996 1 LOV 134-240 390-496 577-864 phot2 915 Ser/Thr kinase 1 F-box 46-161 280-609 100 aa ZTL 609 Kelch repeats 1 197-241 b-ZIP 55-170 292-619 123-190 D o FKF1 619 AUREO1 348 w n 1 211-255 1 218-324 lo a d e d 46-160 281-611 129-196 fro LKP2 611 AUREO2 343 m h 1 198-242 1 225-331 ttp s Fig.1 SchematicalignmentoftheLOVbluelightreceptorproteinfamilies,phototropin,ZTL/FKF1/LKP2andaureochrome,ingreenplantsand ://a photosynthetic stramenopiles. Phototropins (phot1 and phot2) and ZTL/FKF1/LKP2 (ZTL, FKF1 and LKP2) family members are Arabidopsis ca d thalianaproteins,andtwoaureochromes(AUREO1andAUREO2)areVaucheriafrigidaproteins.Domainsareindicatedintheright-handbox. e m Thefirstandthelastaminoacidnumbersofeachdomainareindicated.Thenumbersontherightindicatetheproteinlength.TheAGInumbers ic .o and accession numbers are as follows: PHOT1, At3g45780; PHOT2, At5g58140, ZTL, At5g57360; FKF1, At1g68050; LKP2, At2g18915; AUREO1, u p AB252504;AUREO2,AB252505. .c o m /p c p /a green algae), ZTL/FKF1/LKP2 is specific to land plants. PHOT genes; for example, the model flowering plant rtic Aureochrome is found only in photosynthetic stramenopiles. ArabidopsisthalianahastwoPHOTgenes,PHOT1andPHOT2 le-a LandplantshaveanotherLOVbluelightreceptorfamily,LOV/ (Christie,2007).Morethan20yearshavepassedsinceWinslow bs LOVPROTEIN(LLP),whichconsists ofonlytwotandemLOV Briggs’grouppublishedthefirstbiochemicaldetectionofphot trac domains (Ogura et al. 2008, Kasahara et al. 2010). However, as a 120kDa plasma membrane-localized phosphoprotein t/5 4 LLP is not reviewed here because its physiological function is (Gallagher et al. 1988). His group subsequently revealed that /1/8 presently unknown (Ogura et al. 2008, Kasahara et al. 2010). the 120kDa phosphoprotein was the blue light receptor /1 9 0 First,wereviewrecentstructure–functionanalysesofphotblue for phototropism in A. thaliana and exhibited blue-light- 4 4 lightreceptors.Formoredetailedinformationontheirphoto- dependent autophosphorylation (Huala et al. 1997, Christie 25 chemical properties and physiological responses mediated etal.1998);theproteinwasthusnamed‘phototropin’. by g by phots, readers should refer to previous comprehensive Sinceitsdiscovery,agreatdealofinformationonphothas u e reviews on the appropriate topics: overall phot research beenobtained,primarilyfrommoleculargeneticresearchusing st o (Christie 2007); photochemical and biochemical properties of Arabidopsis.phot1andphot2redundantlymediatephototrop- n 2 phot(Tokutomietal.2008,Terazima2011);phototropism(Iino ism,chloroplastphotorelocationmovement,stomatalopening, 0 N 2001,SakaiandHaga2012,ChristieandMurphy2013);chloro- leaf flattening, palisade cell elongation and the growth inhib- ov e plast photorelocation movement (Suetsugu and Wada 2007, ition of seedlings (Christie 2007, Kozuka et al. 2011) (Fig. 3). m b Bana´s et al. 2012, Suetsugu and Wada 2012); and stomatal phot1 functions over a wide range of blue light fluence rates, er 2 opening(Shimazakietal.2007,Inoueetal.2010). whilephot2functionisprominentunderhighbluelightfluence 0 1 8 rates(KagawaandWada2000,Kinoshitaetal.2001,Sakaietal. 2001, Inoue etal. 2008b) (Fig. 3). These findings indicate that Recent Structure–Function Characterization phot1 exhibits a higher degree of blue light sensitivity for all phot-mediated responses. Therefore, phot1 and phot2 may of Phototropin Photoreceptor Kinases possess intrinsically different properties. However, the under- Phototropin (phot) is a blue light receptor for various photo- lyingbasisforthesefunctionaldifferencesbetweenphot1and movement responses in green plants such as phototropism, phot2 still remains to be determined. However, as discussed chloroplast photorelocation movement, stomatal opening below, the different photosensitivities between phot1 and and leaf photomorphogenesis (Christie 2007, Kozuka et al. phot2 appear to relate to differences within their N-terminal 2011) (Fig. 3). Many organisms of the green plant lineage photosensory regions. Despite the functional redundancy be- from green algae to flowering plants possess two or more tween phot1 and phot2 for many responses, the chloroplast PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. 9 N.SuetsuguandM.Wada D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c Fig.2 MultiplesequencealignmentoftheLOVdomainsfromfivephotfamilymembers,AUREO1andFKF1.Alignmentisconstructedbasedon om previousstudies(Nakasakoetal.2008,Mitraetal.2012).Forclarity,alignmentwasnotconstructedintheJa-helixregion.IntheLOVdomains /p c p whose crystal structures are resolved, the residues forming a-helices and b-sheets have been highlighted with orange and light green back- /a grounds,respectively.Theresiduesintheregioninwhichthesecondarystructureshavenotyetbeendeterminedareitalicized.Thecysteine rtic residues essential for FMN–cysteinyl adduct formation are highlighted in red. Other FMN-interacting residues are highlighted in blue. The le-a residuesessentialfortherepressionofthekinasedomainintheChlamydomonasreinhardtiiphotLOV2domainaresurroundedbybluelines.The b s ZTL/FKF1/LKP2-specific amino acid insertion is surrounded by green lines. AUREO1 residues that are different from those in AUREO2 are tra c surroundedbyredlines.TheisoleucineresidueassociatedwiththeJa-helixinvolvedintherepressionofphot1kinaseactivityindarknessis t/5 4 surroundedbyblacklines.Cr,Chlamydomonasreinhardtii;At,Arabidopsisthaliana;Ac,Adiantumcapillus-veneris;As,Avenasativa,Vf,Vaucheria /1 frigida.AGInumbersandaccessionnumbersareasfollows:CrPHOT,AJ416557;AtPHOT1,At3g45780;AtPHOT2,At5g58140;AcNEO1,AB012082; /8 /1 AsPHOT1,AF033097;AtFKF1,At1g68050;VfAUREO1,AB252504. 9 0 4 4 2 5 chloroplast leaf photomorphogenesis b photorelocation movement palisade y g u photo- accumulation avoidance stomatal leaf cell es tropism response response opening flattening development t o n 2 0 N o v e m b e r 2 phot1 +++ +++ + +++ +++ + 01 8 phot2 + + +++ ++ + +++ Fig.3 Differentlightsensitivitiesofphot1andphot2invariousphysiologicalresponses.phot1isthemainphotoreceptorforphototropism,the chloroplastaccumulationresponseandleafflattening(indicatedby+++),becausephot2singlemutantsshowednodefectsintheseresponses underthelightconditionsexamined(Sakaietal.2001,Inoueetal.2008b).However,phot1showsnegligiblecontributionstothechloroplast avoidanceresponseandpalisadecelldevelopmentonlyinthephot2singlemutantbackground(indicatedby+)(Luesseetal.2010,Kozukaetal. 2011).Conversely,phot2isthemainphotoreceptorforthechloroplastavoidanceresponseandpalisadecelldevelopment(indicatedby+++) (Jarilloetal.2001b,Kagawaetal.2001,Kozukaetal.2011).However,thecontributionsofphot2tophototropism,thechloroplastaccumulation responseandleafflatteningareonlydetectableunderhighlightconditionsinthephot1singlemutantbackground(indicatedby+)(Kagawaand Wada2000,Sakaietal.2001,Inoueetal.2008b).Bothphot1andphot2singlemutantsshoweddecreasedstomatalopeningunderthelowlight conditions.However,thestomatalopeningdefectismorepronouncedinthephot1mutantcomparedwiththephot2mutant(Kinoshitaetal. 2001),indicatingthatphot1contributesmoretothisresponse(indicatedby+++vs.++). 10 PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. LOVphotoreceptorsinplantsandalgae avoidance response is mediated solely by phot2 (Jarillo et al. the association with the Golgi apparatus and to elicit specific 2001b,Kagawaetal.2001,Luesseetal.2010)(Fig.3). phot-mediatedresponses(Kongetal.2007,Aiharaetal.2008). TheextremeC-terminal42aminoacidsofphot2followingthe Difference in the expression pattern between kinasecoredomainarenecessaryforGolgiassociationandfor phot1 and phot2 efficientplasmamembranelocalization(Kongetal.2013).This shortregionisalsonecessaryforthechloroplastavoidancere- Theproteinlevelofphot1ismuchhigherthanthatofphot2in sponseandpartiallyfortheaccumulationresponse,butisdis- dark-grown (etiolated) seedlings (Sakamoto and Briggs 2002, pensable for both phototropism and leaf flattening (Kagawa Kongetal.2006,Aiharaetal.2008,Kangetal.2008),inaccord- et al. 2004, Kong et al. 2013). These results imply that the ancewiththedominantroleofphot1inphototropism(Huala blue-light-induced Golgi association of phot2 might be essen- etal.1997,Sakaietal.2001).Therefore,themainroleofphot1 tial for the regulation of the chloroplast avoidance response. in phototropism most probably results fromits abundancein However, the domain swap protein P2n/P1cG harboring the D etiolatedseedlings.However,phot1andphot2functionshave o w recently been assessed in more detail by placing their expres- N-terminusofphot2andtheC-terminusofphot1isreported nlo to retain the ability to induce the chloroplast avoidance re- a sionunderthecontrolofthesamepromoter.Whenfunctional d phot–greenfluorescentprotein(GFP)fusionproteins(P1Gfor sapssooncsieat(ioFnig.si4mBil)ardetospPit1eGs(hAoiwhainragentoalb.l2u0e0-l8ig)h(tF-iign.d4uBc)e.dHGenoclgei, ed fro phot1orP2Gforphot2)wereexpressedatasimilarlevelinthe m phot1phot2 double mutant under the control of the PHOT2 ltihgehtc-hinlodruocpeldasGtoalvgoiiadsasnoccieatrieosnpodnoseesnisomtaepdpiaetaerdtoexecxlupslaivinelywhbyy http promoter (i.e. P2–P1G for phot1 or P2–P2G for phot2), only s P1Gcouldrestoreboththephototropicandchloroplastaccu- phot2. ://ac a mulationresponseunderlowbluelightconditions(Aiharaetal. d e m 2008). These results therefore indicate that the higher light Kinase activity and autophosphorylation of ic sensitivityofphot1,ratherthanitshigherexpressionlevelrela- phototropins .ou p tive to that of phot2, accounts for its contribution to low .c The substitution of an aspartate residue for an asparagine o light-induced responses. Furthermore, domain swapping ana- m (D806Nforphot1andD720Nforphot2)(Fig.4A)completely /p lysisoftheN-terminallight-sensingregionandtheC-terminal c kinase domain between phot1 and phot2 (i.e. P2–P1n/P2cG abrogatesauto-andtransphosphorylationactivityinvitroand p/a aPn2d–P2Pn2/–PP12cnG/Pe1xchGib)itesdhoawelidghtthsaetnsiPti2v–itPy1sni/mPi2lacrGtobuthtatnootf ientvailv.o20(C07h,riIsntoieueeteatl.a2l0.0220,0M8aa,tKsuaoiskearlainedt aTlo.k2u0t0o9m, Iin2o0u0e5,eCthaol. rticle-a 2011) and disrupts the ability of phots to mediate all bs P2–P1G(Fig.4B),indicatingthattheN-terminalphotosensory phot-mediated responses in vivo (Christie et al. 2002, Kong tra c region, including the LOV domains, is essential for the higher et al. 2006, Kong et al. 2007, Inoue et al. 2008a, Inoue et al. t/5 light sensitivity of phot1 over phot2 (Aihara et al. 2008). 2011). Therefore, the kinase activity of phot is essential for its 4/1 A recent study suggests that this difference in light sensitivity /8 function. Although ATP-BINDING CASSETTE B19 (Christie /1 between phot1 and phot2 results from the difference in the et al. 2011) and PHYTOCHROME KINASE SUBSTRATE 4 904 lifetimeoftheFMN-C(4a)–cysteinyladductofLOV2(Okajima 4 (Demarsyetal.2012)wereidentifiedrecentlyaspotentialsub- 2 5 etal.2012). stratesforphotkinase,howtheirphosphorylationcontributes by g tospecificphot-mediatedresponsesrequiresfurtherinvestiga- u Difference in blue-light-induced relocalization e pattern between phot1 and phot2 tionandexperimentation.Otherstudieshavecenteredondis- st o secting the importance of receptor autophosphorylation in n 2 Although phot1 and phot2 are localized to the plasma mem- controlling phot-mediated responses. Recent mass spectrom- 0 N brane(SakamotoandBriggs2002,Haradaetal.2003,Kongetal. etry analyses of native phot1 immunoprecipitated from etiol- ov e 2006),their blue-light-inducedrelocalization patternfromthe ated Arabidopsis seedlings using an anti-phot1 antibody m b plasma membrane is quite different. Blue light partly induces revealed nine blue-light-induced autophosphorylation sites er 2 P1Grelocalizationfromtheplasmamembrane tothecytosol, located within the N-terminus (S58, S170 and S185), the 0 1 possibly via clathrin-mediated endocytosis (Sakamoto and hingeregionbetweenLOV1andLOV2(S350,S376andS410), 8 Briggs 2002, Aihara et al. 2008, Han et al. 2008, Wan et al. the kinase activation loop (S849 and S851) and the extreme 2008, Kaiserli et al. 2009). Indeed, a higher amount of phot1 C-terminus(T933)(Inoueetal.2008a)(Fig.4A).Fourofthese wasdetectedbyimmunoblottinginthecytosolicproteinfrac- in vivo phosphorylation sites (S58, S185, S350 and S410) were tion in blue-light-irradiated etiolated seedlings vs. seedlings also identified by an independent mass spectrometry study maintainedindarkness(SakamotoandBriggs2002,Hanetal. (Sullivan et al. 2008). The serine residues of Avena sativa 2008). Although blue light also induces P2G internalization phot1a (Asphot1a), corresponding to Arabidopsis phot1 S185 fromtheplasmamembrane,somefractionofP2Gisassociated andS376,werefoundtobephosphorylatedinvitrobyprotein specifically with the Golgi apparatus (Kong et al. 2006). kinaseA(Salomonetal.2003).Notably,S376ofphot1corres- The C-terminal half, including the entire kinase domain, is pondstoS344ofViciafabaphot1b(Vfphot1b),thephosphor- necessary and sufficient for plasma membrane localization, ylation of which is necessary for binding to 14-3-3 proteins PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. 11 N.SuetsuguandM.Wada S350 S376 S849 A C234 S410 C512 D806 S851 phot1 S747S761 C170 C426 D720 S763 phot2 chloroplast movement phototropism Golgi B Ac Av P2-P1G +++ ++ - - D P2-P1n/P2cG +++ ++ + + o w n lo a P2-P2n/P1cG ++ + + - d e d P2-P2G + + + + from h ttp s kinase activity ://a c C Dark Blue light ad e m phot1 - ++ ic .o u p 2xLOV2 - + .c o m /p LOV2+1 + + c p /a 2xLOV1 ++ ++ rticle -a b s 100 aa tra c Fig.4 Structure–functionanalysesofphot1andphot2.LOV1andLOV2domainsareindicatedbyskyblueandblueboxes,respectively.phot2is t/5 4 coloredinpink.Thekinasedomainsarecoloredinyellowforphot1andorangeforphot2.(A)Thepositionofaminoacidsthatwereexaminedby /1 themutationalanalyses.CysteineresiduesintheLOVdomainsareindicatedinskyblue.Theaspartateresiduesessentialforkinaseactivityare /8 /1 indicatedinblack.The14-3-3-bindingsitesareindicatedingreen.Twoautophosphorylationsiteswithinthekinaseactivationloopareindicated 9 0 4 inred.(B)Summaryofthedomainswappinganalysesbetweenphot1andphot2(Aiharaetal.2008).P1n/P2cG-expressinglines(P2–P1n/P2cG) 4 2 showstrongphototropism(indicatedby+++)andchloroplastaccumulationresponses(Ac)(indicatedby++).P2n/P1cG-expressinglines(P2– 5 b P2n/P1cG)showedweakchloroplastaccumulationresponses(indicatedby+)butslightlystrongerphototropism(indicatedby++)compared y g withP2G-expressinglines(P2–P2G)(indicatedby+).AlthoughP1G-expressinglines(P2–P1G)didnotexhibitachloroplastavoidanceresponse u e (Av)atthefluencerateexamined(indicatedby–),otherlineswerefoundtoshowtheavoidanceresponse(indicatedby+).BothP2GandP1n/ st o P2cG show blue-light-induced Golgi association (indicated by +), unlike P1G and P2n/P1cG (indicated by –). (C) Summary of the domain n 2 swappinganalysesbetweenLOV1andLOV2ofphot1(Kaiserlietal.2009).Kinaseactivityofwild-typephot1isrepressedindarkness(indicated 0 N by –) and is activated by blue light (++). Replacement of LOV1 with LOV2 (2(cid:3)LOV2) results in weak blue-light-induced kinase activation o v (indicated by +). Inversion of LOV1 and LOV2 (LOV2+1) results in constitutive but weak kinase activity. Replacement of LOV2 with LOV1 em (2(cid:3)LOV1)resultsinconstitutivekinaseactivity(indicatedby++). be r 2 0 1 8 (Kinoshita et al. 2003). 14-3-3 binding is also implicated in phot1phot2doublemutant(Sullivanetal.2008).Hence,these phot-mediated activation of the plasma membrane H+- findings indicate that blue-light-induced 14-3-3 binding to ATPaseasaprimarymechanismofblue-light-inducedstomatal autophosphorylated phot1 is dispensable for phot1 function. opening(KinoshitaandShimazaki1999,Kinoshitaetal.2003). Morerecently,Tsengetal.(2012)reportedthatS747withinthe phot1 carrying simultaneous substitutions of S376 and S350 kinase domain of phot2 is essential for binding the 14-3-3(cid:2) with alanines (S350A/S376A) impairs 14-3-3 binding activity isoforminyeastcells(Tsengetal.2012)(Fig.4A).Theauthors (Inoueetal.2008a,Sullivanetal.2009),buthasnoimpacton proposedthatS747ofphot2isautophosphorylatedinvivoand phot1functioninvivo(Inoueetal.2008a).Furthermore,phot1 binds 14-3-3(cid:2) to mediate stomatal opening specifically by lacking its N-terminal 1–447 amino acid region, including the phot2.However,anotherstudyhasshownbyfar-Westernblot- 14-3-3-bindingregion,isstillfunctionalwhenexpressedinthe ting that phot1 and not phot2 specifically binds members of 12 PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. LOVphotoreceptorsinplantsandalgae thenon-epsilon14-3-3familymembers(including14-3-3(cid:2)and and invivo (Matsuokaand Tokutomi 2005,Kong etal.2007), the closely related 14-3-3k), and that mutation of the phot1 indicatingthattheN-terminallight-sensingregionfunctionsto hinge phosphorylation sites (i.e., S350A/S371A/S410A) results repress phot kinase in darkness and that this mode ofrepres- in a loss of binding to these 14-3-3 isoforms (Sullivan et al. sionisrelievedfollowingbluelightexcitation.Truncatedforms 2009). Confirmation of in vivo phosphorylation of S747 and ofthereceptorscomprisingonlytheLOV2-kinaseregionhave its 14-3-3 binding activity thus warrants further examination been shown to retain blue-light-dependent kinase activation to clarify its importance in regulating stomatal opening by in vitro (Matsuoka and Tokutomi 2005, Okajima et al. 2011). phot2. Indeed, phot1 LOV2-kinase has been reported to be able to Moreimportantly,amongtheninephot1autophosphoryla- mediate phot1-mediated responses when expressed in the tion sites identified, only S849 and S851 partially abrogated phot1phot2 double mutant, albeit with weaker activity com- phot1functionswhentheseresiduesweremutatedtoalanine paredwithfull-lengthphot1(Sullivanetal.2008,Kaiserlietal. (Inoue et al. 2008a). In particular, phot1phot2 transgenic lines 2009),suggestingthattheN-terminalregionincludingLOV1is D o w expressing the phot1 S851A substitution exhibited strong notessentialforphotfunction. DomainswappingoftheLOV n lo defects in phototropism, chloroplast accumulation response, domainshasalsoprovidedfurthersupportforamodelofkinase a d stomatal opening and leaf flattening (Inoue et al. 2008a). repressionbyLOV2.Anengineeredformofphot1whoseLOV1 ed Substitution of S851 with alanine also impacted the andLOV2domainswereinverted(LOV2+1)exhibitedconsti- fro m blue-light-induced internalization of phot1 in tobacco epider- tutive weakkinase activity intheabsence orpresence oflight h mal cells (Kaiserli et al. 2009). phot1phot2 transgenic lines (Kaiserlietal.2009)(Fig.4C).ReplacementofLOV1withLOV2 ttp s expressing the phot1 S849A/S851A double mutant showed (2(cid:3)LOV2) was found to maintain blue-light-induced kinase ://a c moreimpairedstomatalopeningandleafflatteningcompared activation but with weak activity. Conversely, the reverse re- a d with lines expressing the phot1 S851A single mutant (Inoue placement(2(cid:3)LOV1)resultedinconstitutivekinaseactivityin em et al. 2008a), suggesting that S849 also contributes to phot1 theabsenceorpresenceoflight(Kaiserlietal.2009)(Fig.4C). ic.o u function. Although mass spectrometry analyses of phot2 Thus, the intrinsic repression activity of LOV2 and its relative p .c immunoprecipitated from Arabidopsis could not detect any positioninrelationtothekinasedomainappeartobenecessary o m equivalentautophosphorylationsiteswithinthekinaseactiva- forlightregulationbytheLOV2-kinasemodule. /p c tionloop(i.e.S761andS763)(Fig.4A),mutationofS761and/ Nuclear magnetic resonance spectroscopy and solution p/a or S763 affected phot2 function in a manner similar to that structureanalysisoftheAsphot1aLOV2domainidentifiedan rtic foundforthemutationalanalysesofphot1(Inoueetal.2011). amphipathic a-helix consisting of approximately 20 residues le-a Ineachofthesestudies,itwasnotedthatthetransgeniclines C-terminal to the LOV2 domain (Harper et al. 2003). This bs expressing phot1 S849A/S851A and phot2 S761A/S763A helix,designatedJa,wasalsodetectedthroughcrystallographic trac still retained a small degree of functionality, as well as analysis of the Asphot1a LOV2 domain (Halavaty and Moffat t/5 4 blue-light-induced autophosphorytion activity (Inoue et al. 2007)(Fig.2).TheJa-helixinteractswiththeb-scaffoldofthe /1/8 2008a, Inoue et al. 2011). These findings suggest that some LOV2 core in darkness. Following blue light exposure, a con- /1 9 0 otherunidentifiedautophosphorylationsitescontributetoreg- formational change is induced in which the JA-helix–LOV2 4 4 ulatingphotactivityandfunction.Moreover,phot1phot2trans- interaction is disrupted (Harper et al. 2003). A mutation dis- 25 genic lines expressing phosphomimetic mutants of phot1 or rupting the Ja-helix–LOV2 interaction, I608E in Arabidopsis by g phot2(i.e.phot1S849D/S851Dorphot2S761D/S763D,respect- phot1, renders the kinase constitutively active (Harper et al. u e ively) displayed nearly normal responsiveness for all 2004, Jones et al. 2007). P1G-I608E has also been observed to st o phot-mediatedresponsesexaminedandshowednophenotype be constitutively internalized from the plasma membrane in n 2 indicative of constitutive activation (Inoue et al. 2008a, Inoue tobacco epidermal cells regardless of the light condition 0 N et al. 2011). These findings indicate that phosphorylation of (Kaiserlietal.2009)(Fig.2;ablack-boxedresidue),demonstrat- ov e theseserine residues isinsufficient toactivate photintheab- ing again that autophosphorylation impacts phot subcellular m b sence of light. Interestingly, two phot2 null mutant alleles, localization. A recent study using Chlamydomonas phot has er 2 phot2-2 and phot2-6, carry T767I and E769K mutations foundthatasmallregionN-terminaltotheLOV2domainin- 0 1 within the phot2 kinase activation loop, respectively (Kagawa cludes an amphipathic a-helix (Aa-helix) that, in addition to 8 et al. 2001, Suetsugu et al. 2013). Detailed analyses of these the Ja-helix, contributes to kinase repression in darkness mutations may help to clarify the role of the activation loop (Aihara et al. 2012) (Fig. 2; blue-boxed residues). This helical inautophosphorylation, stomatalopeningand 14-3-3binding regioncontributestotheformationofahydrophobiccoreby byphot2. facingtheAbstrandandBbstrandoftheLOV2coreincom- bination with the Ja-helix (Halavaty and Moffat 2007). Thus, Molecular mechanism of blue-light-dependent unfoldingofthishydrophobiccoreappearedtorepresentakey regulation of kinase activation by the LOV mechanismunderlyingthebluelightinductionofphotkinase domains activity. The kinase domains of phots alone without the N-terminal The FMN-C(4a)–cysteinyl adduct formed within the LOV light-sensing region display constitutive activity both in vitro domain (C234 for phot1 LOV1, C512 for phot1 LOV2, C170 PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. 13 N.SuetsuguandM.Wada forphot2LOV1andC426forphot2LOV2)followingbluelight inactivatedbytheC234Amutation.Furtherexperimentationis excitationistheprimarymechanismbywhichthesephotosen- nowneededtorevealtheinvivofunctionofLOV1. sorssenselight(Salomonetal.2000,Christie2007)(Figs.2,4A). Although several studies have demonstrated an oligomer- Substitutionofthishighlyconservedcysteineresiduebyalanine izationactivityforLOV1(mainlydimerization)(Salomonetal. (C234AandC512Aforphot1,andC170AandC426Aforphot2) 2004,KagawaandSuetsugu2007,Nakasakoetal.2008,Kaiserli abrogatesthephotochemicalreactionofeachLOVdomain[i.e. etal.2009,Katsuraetal.2009),theimportanceofoligomeriza- FMN-C(4a)–cysteinyl adduct formation] without affecting tion for phot function remains to be determined. FMN binding activity and early photoproduct generation Crystallographic analyses of LOV1 dimers from both phot1 (Salomon et al. 2000, Swartz et al. 2001). Introduction of the and phot2 have revealed several critical residues for potential C–A substitution into LOV2, but not LOV1, impairs dimerization (Nakasako et al. 2008). Therefore, it is now pos- light-induced auto- and transphosphorylation activity in vivo sibletogeneratetransgeniclinesexpressingphotsthatarepo- andinvitro(Christieetal.2002,MatsuokaandTokutomi2005, tentially defective in dimerization to assess the functional D o w Cho et al. 2007, Jones et al. 2007, Okajima et al. 2011). When significanceofreceptoroligomerization. n lo analyzed in a phot1-5phot2-1 ‘null’ mutant background a d (Suetsugu et al. 2013), the phot1 C512A mutant, but not the ed phot1 C234A mutant, exhibited phototropic and chloroplast The ZTL/FKF1/LKP2 Protein Family Regulates fro m accumulation responses similar to the phot1phot2 mutant Biological Timing Through Interacting with h (Christieetal.2002,Choetal.2007,Hanetal.2013),indicating ttp and/or Degrading Multiple Proteins s that the photochemical reactivity of LOV2 is essential for ://a c phot1-mediated responses. However, equivalent mutations Regulated degradation of key components is essential for a d introduced into phot2 (phot2 C170A and phot2 C426A) re- timekeeping mechanisms in a wide range of eukaryotes, and em sulted in phototropic responses in the phot1phot2 mutant the specific F-box-containing E3 ubiquitin ligases (hereafter ic.o u background that were similar to the phot1 single mutant called simply ‘F-box proteins’) are involved in proteasome- p .c (Choetal.2007).Theauthorsproposedthattheleakynature dependent degradation (Mehra et al. 2009, Ito et al. 2012). o m ofthephot2-1allelecombinedwiththepotentialoftheresidual Although photoreceptors and F-box proteins are physically /p c protein to transphosphorylate the C–A inactivated forms of separated in fungal and animal clock systems (Mehra et al. p/a phot2 might account for this discrepancy. This, however, re- 2009), the land plant-specific LOV photoreceptor family, rtic mainstobeclarifiedsincetwoseparatereportsindicatedthat ZEITLUPE/FLAVIN-BINDING, KELCH REPEAT, F-BOX 1/LOV le-a thephot2-1mutantdoesnotexhibitanyresidualexpressionof KELCHPROTEIN2(ZTL/FKF1/LKP2), hasbothphotoreceptor bs full-length phot2 that is detectable by immunoblotting and F-box protein activities combined within a single protein trac (Sullivanetal.2008,Suetsuguetal.2013).Curiously,transgenic (Ito et al. 2012). ZTL/FKF1/LKP2 proteins consist of an t/5 4 linesexpressingphot1C234A/C512Aandphot2C170A/C426A N-terminal LOV domain, an F-box and the C-terminus with /1/8 double mutant proteins were found to retain attenuated six Kelch repeats (Fig. 1). Recombinant LOV domains of /1 9 0 phototropic responses under high fluence rates of blue light Arabidopsis ZTL, FKF1 and LKP2 display an absorption spec- 4 4 (Choetal.2007).FMNbindingactivityandearlyphotoproduct trum similar to those of phototropin LOV domains, and the 25 generation in LOVC–Amutants (Salomonet al.2000, Swartz LOVdomainofFKF1hasbeenshowntobindFMN(Imaizumi by g etal.2001)mightberesponsibleforinitiatingthesephototropic etal.2003).However,thehalf-liferatefordarkdecayfromthe u e responses. More recently, the phot2 mutant allele, phot2-10, photoexcitedstate[FMN-C(4a)–cysteinyladduct]oftheFKF1 st o wasidentifiedwhichcarriestheR427Qmutationthatdisrupts LOV domain is approximately 62.5h (Zikihara et al. 2006), n 2 FMN binding in LOV2 (Suetsugu et al. 2013). The which is much longer than the decay rates reported for the 0 N phot1-5phot2-10doublemutantsexhibitnochloroplastavoid- LOV1 and LOV2 domains of plant and algal phots (typically ov e ance response but retain subtle light-induced accumulation severaltensofseconds:Kasaharaetal.2002);anineaminoacid m b movementinadditiontoanattenuatedphototropicresponse insertion specific to the ZTL/FKF1/LKP2 LOV domain in the er 2 (Suetsugu et al. 2013). These recent findings provide further loopbetweenEaandFa(Fig.2;green-boxedregion)isinvolved 0 1 8 support for the conclusion that FMN binding by LOV2, and inthisslowdecayproperty(Zikiharaetal.2006).Consequently, thus its photochemical activity, accounts for the majority of ZTL/FKF1/LKP2 proteins should not be able to revert fully to phot2activity,whereasLOV1hassomeresidualphotochemical theirdarkstateundera24hday–nightcycle.However,because functionwithrespecttochloroplastaccumulationandphoto- ZTLandFKF1fluctuateinacircadianphase-andphotoperiod tropicresponsiveness.Kaiserlietal.(2009)havealsoproposed dependent-manner(Imaizumietal.2003,Kimetal.2003,Sawa that photoactivation of LOV1 may act to arrest chloroplast etal.2007)andarequiteunstable (Kimetal.2003,Kim etal. accumulationmovement(Kaiserlietal.2009).Chloroplastac- 2007,Fornaraetal.2009,Kimetal.2011),ahighturnoverrateof cumulation in transgenic lines expressing phot1 in the phot1- ZTL/FKF1/LKP2 would be expected to promote recycling of phot2doublemutantisinhibitedathighfluenceratesofblue thesephotoreceptors. light. This phenomenon was not observed in transgenic lines TheF-boxdomainofZTL/FKF1/LKP2proteinsinteractswith where the LOV1 domain was removed through truncation or severalArabidopsisSKP1-likeproteins(ASKs)(Hanetal.2004, 14 PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. LOVphotoreceptorsinplantsandalgae Yasuhara et al. 2004, Kevei et al. 2006) and are necessary clockandfloweringtime(Fornaraetal.2009,Baudryetal.2010, for their activity in vivo (Han et al. 2004, Kevei et al. 2006), Takaseetal.2011). indicating that ZTL/FKF1/LKP2 proteins function as part of ZTL controls the circadian clock via the the SKP(ASK)–Cullin–Rbx–F-box complex. Indeed, ASK1, degradation of key clock proteins CULLIN1 (CUL1) and AtRBX1 have been shown to co- immunoprecipitate with ZTL (Han et al. 2004). Furthermore, InadditiontoASKproteins,severalinteractingproteinsofZTL/ AtRBX1 RNA interference (RNAi) lines (Han et al. 2004) and FKF1/LKP2 have been identified or verified through various weak cul1 mutant plants (Harmon et al. 2008) are observed methods such as yeast two-hybrid analysis and pull-down to phenocopy the long period phenotype characteristic of ztl assays (Ma´s et al. 2003, Yasuhara et al. 2004, Fukamatsu et al. mutants. The Kelch repeats of ZTL/FKF1/LKP2 serve as 2005,Imaizumietal.2005,Kibaetal.2007,Kimetal.2007,Sawa protein–proteininteractiondomainsandFKF1–ZTL/LKP2het- etal.2007,Fujiwaraetal.2008,Johanssonetal.2011,Kimetal. erodimerizationdomains(Takaseetal.2011). 2011,Takaseetal.2011,Songetal.2012).ZTLspecificallyinter- Do w actswithTIMINGOFCABEXPRESSION1(TOC1)andPSEUDO n lo RESPONSE REGULATOR 5 (PRR5) among five PRR proteins a Functional divergence between ZTL/LKP2 d e (TOC1, PRR3, PRR5, PRR7 and PRR9) through its LOV d and FKF1 domain (Ma´s et al. 2003, Yasuhara et al. 2004, Kiba et al. fro m The lycophyte Selaginella moellendorffii contains one ZTL/ 2007, Fujiwara et al. 2008, Baudry et al. 2010). TOC1 is one h FKF1/LKP2 gene (Banks et al. 2011). The monocot and dicot ofthecorecomponentsofanautoregulatorynegativefeedback ttps ZTL/FKF1/LKP2 genes are phylogenetically classified into two loop that consists of two Myb transcription factors: ://a c groups, ZTL/LKP2 and FKF1 (Boxall et al. 2005, Taylor et al. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ad 2010),suggestingthatZTL/LKP2andFKF1geneshavedifferent ELONGATED HYPOCOTYL (LHY) (Nagel and Kay 2012). em functions.Indeed,Arabidopsisztlmutantsareprimarilydefect- PRR5isalsoessentialforrobustoscillatorfunction(Nageland ic.o iveincircadianclockregulationandslightlydefectiveinflower- Kay2012).TOC1andPRR5proteinsarerhythmicallyexpressed: up .c ing time (Somers et al. 2000, Jarillo et al. 2001a, Somers et al. theirproteinlevelsdecreaserapidlyindarkness(Ma´setal.2003, om 2004,Takaseetal.2011),whereasfkf1mutantsaredefectivein Kibaetal.2007,Fujiwara etal.2008,),and bluelighthasbeen /p c the photoperiodic control of flowering but show only subtle shown to increase the stability of PRR5 (Kiba et al. 2007, p/a defects in circadian clock regulation (Nelson et al. 2000, Fujiwaraetal.2008)(Fig.5A).TOC1andPRR5proteinsaccu- rtic Imaizumi et al. 2003, Baudry et al. 2010). Single lkp2 mutants mulateconstitutivelyathigherlevelsintheztlmutantandare le-a show nearly normal circadian and flowering phenotypes converselyreducedinZTL-overexpressinglines(Ma´setal.2003, bs (Imaizumi et al. 2005, Baudry et al. 2010, Takase et al. 2011), Kibaetal.2007,Fujiwaraetal.2008).Theseresultsindicatethat trac resultingfrommuchlowerexpressionlevelsofLKP2compared ZTL mediates the proteolytic degradation of TOC1 and t/54 with ZTL and FKF1 (approximately 4% of ZTL levels) (Baudry PRR5 and that blue light inhibits ZTL-mediated degradation /1/8 etal.2010). WhenLKP2 orFKF1 wasexpressedin ztlmutants of these proteins (Fig. 5A). Although FKF1 and LKP2 interact /19 underthecontroloftheZTLpromoter,theexpressionofLKP2 with TOC1 and PRR5 (Ma´s et al. 2003, Yasuhara et al. 2004, 04 4 butnotFKF1couldrescuethecircadiandefectsinztlmutants Baudry et al. 2010), these proteins play only minor roles 25 (Baudryetal.2010).Inaddition,theconstitutiveexpressionof in TOC1 and PRR5 proteolysis compared with ZTL (Kiba by g ZTLandLKP2geneswasobservedtoleadtoarrhythmicityand etal.2007,Baudryetal.2010). ue late flowering (Kiyosue and Wada 2000, Schultz et al. 2001, st o Imaizumi et al. 2003, Somers et al. 2004, Takase et al. 2011), n FKF1 controls photoperiodic flowering through 2 whereasconstitutiveexpressionoftheFKF1genehadnoinflu- both degradation and stabilization of 0 N enceonthecircadianclockandfloweringtime(Imaizumietal. ov transcription factors e 2003,Sawaetal.2007).Collectively,theseresultsindicatethat m b ZTL/LKP2primarilyregulatesthecircadianclockandindirectly FKF1 mediates photoperiodic flowering by activating the er 2 regulates flowering time through circadian clock regulation, expressionoftheflorigenFLOWERINGLOCUST(FT).FTexpres- 0 1 and thatFKF1predominantly mediatesphotoperiodic flower- sionunderLDconditionsisbothdependentonandindepend- 8 ingcontrol.However,ztlfkf1,andmorestronglyztlfkf1lkp2,but ent of a key photoperiod pathway transcriptional regulator notztllkp2,showedlongerperioddefectsthanztl(Baudryetal. known as CONSTANS (CO) (Imaizumi et al. 2003, Imaizumi 2010).Underlong-day(LD)conditions,floweringtimeinztlfkf1 et al. 2005, Sawa et al. 2007, Fornara et al. 2009, Salazar et al. lkp2 plants was slightly delayed compared with fkf1 plants 2009,SawaandKay2011,Songetal.2012).FKF1associateswith (Fornara et al. 2009). Curiously, ztl lkp2 double mutants dis- CO and FT promoters (Sawa et al. 2007, Sawa and Kay, 2011, played an early flowering phenotype under short-day condi- Songetal.2012)andregulatestheactivationofthesegenesin tions, and introgression of the fkf1 mutation into ztl lkp2 (i.e. anLD-dependentmanner(Imaizumietal.2003,Imaizumietal. ztl fkf1 lkp2) completely suppressed this phenotype (Takase 2003,Imaizumietal.2005,Sawaetal.2007,Fornaraetal.2009, et al. 2011). Thus, these photoreceptors have partial overlap- Song et al. 2012). Three Dof transcription factors, CYCLING ping functions with respect to the regulation of the circadian DOF FACTOR 1 (CDF1), CDF2 and CDF3, were identified PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. 15 N.SuetsuguandM.Wada A Dark Blue light cry cry COP1 COP1 PRR5 GI Blue light ZTL TOC1 GI ZTL TOC1 PRR5 D o w Clock protein degradation Clock protein stabilization n lo a d e B 1 Blue light Repressor 1 Blue light Repressor d from cry degradation cry degradation http s COP1 2 Blue light COP1 2 Blue light ://ac a FKF1 FKF1 d e CO mRNA FT mRNA m GI CDFs GI CDFs ic CO FT .o CO u 3 FKF1 p.c Activator o Blue light stabilization m/p c Fig.5 Light-regulateddegradationofkeyfactorsintheregulationofthecircadianclockandphotoperiodicfloweringbyZTL/FKF1/LKP2.Figures p/a areconstructedbasedonpreviousstudies(Yuetal.2008,Itoetal.2012,Songetal.2012).Forclarity,theadaptorfunctionofELF3intheGI– rtic COP1interaction(Yuetal.2008),theroleofHSP90inZTLstabilization(Kimetal.2011)andminorfunctionsofFKF1/LKP2orZTL/LKP2inthe le -a regulationofthecircadianclockorphotoperiodicflowering,respectively(Fornaraetal.2009,Baudryetal.2010),areomitted.(A)Bluelight b s regulationofTOC1andPRR5degradationbyZTL.Indarkness,cryptochromes(crys)cannotinhibitCOP1-mediatedubiquitinligation(white tra c ovals)andthesubsequentdegradationbythe26Sproteasome(notindicated)ofGI,resultinginlowlevelsofGI.Furthermore,theZTLLOV–GI t/5 interaction is weak in darkness. Consequently, TOC1 and PRR5 strongly interact with the ZTL LOV domain and are subsequently degraded 4/1 throughZTL-mediatedubiquitinligation.Underbluelight,crysinhibitCOP1-mediatedGIdegradation,resultingintheaccumulationofGI.Blue /8 /1 lightenhancesZTL–GIinteractionviatheZTLLOVdomain,andthustheinteractionofTOC1orPRR5withtheZTLLOVdomainissuppressed. 9 0 Consequently,TOC1andPRR5accumulateinthelight.(B)MultistepregulationbybluelightinFKF1-mediatedregulationofphotoperiodic 44 2 flowering.(1)cryincreasesGIabundancebysuppressingCOP1(circlenumber1inFig.4B).(2)BluelightenhancesFKF1–GIinteractionviathe 5 b FKF1LOVdomain(circlenumber2inFig.4B).FKF1alsointeractswithCDFs,thenegativeregulatorsofCOandFTtranscription,viatheKelch y g repeats(green)andpromotetheubiquitin-mediateddegradationofCDFs.(3)BluelightenhancestheinteractionofCOwiththeFKF1LOV u e domainandstabilizesCOproteins(circlenumber3inFig.4B),resultingintheactivationofFTtranscription. st o n 2 asproteinsthatinteractwithKelchrepeatsofFKF1(Imaizumi CDF2 proteins accumulate constitutively at higher levels in 0 N etal.2005).TheseproteinsalsointeractwithLKP2,butnotwith fkf1 mutants, and CDF2 protein levels exhibit greater stability ov e theKelchrepeatsofZTL,atleastinyeastcells(Imaizumietal. intheztlfkf1lkp2triplemutantcomparedwiththefkf1single m b 2005). Overexpression of CDF genes [CDF1, CDF2, CDF3 and mutant (Imaizumi et al. 2005, Fornara et al. 2009), indicating er 2 relatedgenes(CDF4,CDF5andCOG1)]inducedalateflowering thatFKF1(andminimallyZTLandLKP2)mediatesphotoperi- 0 1 8 phenotyperesultingfromthesuppressionoftheexpressionof odic flowering induction through proteolytic degradation bothCOandFT(Imaizumietal.2005,Fornaraetal.2009).cdf1 of CDFs, negative regulators of CO and FT (Fig. 4B). cdf2 cdf3 cdf5 quadruple mutants displayed a photoperiod- Interestingly, FKF1 not only degrades negative regulators (i.e. insensitiveearlyfloweringphenotypeaswellaselevatedexpres- CDFs)butalsofunctionstostabilizethekeyfloweringregulator sionofbothCOandFT(Fornaraetal.2009,Songetal.2012). CO (Song et al. 2012). It was shown previously that CO accu- CDF1associateswiththeCOandFTpromoters(Imaizumietal. mulates in late afternoon under LD conditions and that blue 2005,Sawaetal.2007,Songetal.2012).Therefore,CDFsfunc- light stabilizes CO proteins (Valverde et al. 2004). Recently, tionasrepressorsofCOandFTtranscription.UnderLDcondi- Song et al. (2012) have shown that FKF1 interacts with CO tions,CDF1andCDF2proteinlevelsrapidlydeclineinthelate through its LOV domain and that blue light enhances the afternoon(Imaizumietal.2005,Fornaraetal.2009),whenFKF1 FKF1–CO interaction to stabilize CO (Song et al. 2012) activates CO transcription (Imaizumi et al. 2003). CDF1 and (Fig. 5B). Previously, it was reported that CO and several 16 PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. LOVphotoreceptorsinplantsandalgae CO-like proteins (COLs) interact with FKF1, ZTL and LKP2 in on the earth. Photosynthetic stramenopiles such as yellow- yeastcells(Fukamatsuetal.2005),implyingthatFKF1andalso green algae (Xanthophyceae), brown algae (Phaeophyceae) ZTL/LKP2 might regulate CO and COL protein stability in a and diatoms (Bacillariophyceae) utilize blue light to regulate similar manner. Collectively, these findings indicate that FKF1 growth and development and organelle movement. For ex- mediates FT-dependent induction of photoperiodic flowering ample, in the xanthophycean algal genus Vaucheria, various in two ways: (i) FKF1 degrades CDFs in a proteasome- responses such as phototropism (Kataoka 1975a, Kataoka dependent manner to activate CO and FT transcription; and 1975b), side branch formation (Takahashi et al. 2001) and (ii)FKF1stabilizesCOproteinstoactivateFTexpression(Song chloroplast movement (Blatt and Briggs 1980) are regulated etal.2012)(Fig.5B). by blue light. Recently, Hironao Kataoka’s group cloned four LOVdomain-encodingcDNAfragmentsfromVaucheriafrigida GIGANTEA is essential for ZTL and FKF1 functions using LOV domain-specific degenerate PCR and obtained the ZTLandFKF1areunstableindarknessbutarestabilizedbyblue full-lengthcDNAoftwoLOVphotoreceptorgenes(Takahashi D o w lightirradiation(Kimetal.2003,Kimetal.2007,Fujiwaraetal. et al. 2007). Proteins encoded by these two genes consist of n lo 2008, Fornara et al. 2009, Kim et al. 2011). It has been shown aputativebasicregion/leucinezipper(bZIP)domaininthemid- a d thatthestabilityofZTLiscontrolledbytheproteasome(Kim dleregionoftheproteinandaLOVdomainattheC-terminus ed etal.2003)andHSP90(Kimetal.2011),andthatZTLandLKP2 (Fig. 1). These bZIP-LOV photoreceptors were named fro m are involved in the degradation of FKF1 (Takase et al. 2011). AUREOCHROMEs (AUREOs) after the typical golden-yellow h GIGANTEA (GI), another important factor in both circadian color of many stramenopile species (Takahashi et al. 2007). ttp s clock regulation and the photoperiodic flowering pathway, AUREOgeneswerealsofoundinotherphotosyntheticstrame- ://a c plays a pivotal role in blue-light-dependent stabilization of nopiles,suchasAureococcusanophagefferens(Pelagophyceae), a d ZTL/FKF1 (Kim et al. 2007, Sawa et al. 2007, Fornara et al. Thalassinosira pseudonana and Phaeodactylum tricornutum em 2009).ZTLandFKF1(andalsoLKP2)interactwithGIthrough (Bacillariophyceae), Chattonella antiqua (Raphidophyceae), ic.o u their LOV domains both in vitro and in vivo, and blue light Ochromonas danica (Chrysophyceae), Fucus distichus ssp. p .c enhances this interaction (Kim et al. 2007, Sawa et al. 2007) Evanescens and Ectocarpus siliculosus (Phaeophyceae) o m (Fig. 5). Indeed, ZTL/FKF1 protein levels and stability are (Armbrust et al. 2004, Takahashi et al. 2007, Bowler et al. /p c decreasedinthegimutantandincreasedinGI-overexpressing 2008,Ishikawaetal.2009,Cocketal.2010,Raykoetal.2010). p/a lines(Kimetal.2007,Sawaetal.2007,Fornaraetal.2009).Asa However, AUREO genes are not found in non-photosynthetic rtic resultofreducedZTLandFKF1levels,TOC1,CDF1andCDF2 stramenopiles, which may have lost plastids secondarily after le-a are constitutively accumulated at higher levels in gi mutant thedivergencefromaphotosyntheticancestorofextantstra- bs plants similar to in the ztl mutant or fkf1 mutant (Kim et al. menopiles (Janouˇskovec et al. 2010), implying that AUREOs trac 2007, Sawa et al. 2007, Fornara et al. 2009). Conversely, CDF2 have arisen as a result of secondary endosymbiosis but have t/54 proteinsaccumulatedatalowerlevelinGI-overexpressinglines beenlostinnon-photosyntheticstramenopiles. /1/8 (Fornaraet al.2009). Interestingly, GIstability is controlled by /1 9 0 an E3 ligase, CONSTITUTIVE PHOTOMORPHOGENIC 1 4 Characteristics of AUREO LOV domains 4 (COP1), and the clock regulator EARLY FLOWERING 3 (ELF3) 25 (Yuetal.2008).BecausecryptochromesrepressCOP1activity Recombinant LOV domains of Vaucheria AUREO1 by g under blue light conditions (Lian et al. 2011, Liu et al. 2011b, (VfAUREO1) display an absorption spectrum similar to that u e Zuo et al. 2011), photoactivated cryptochromes probably sta- of other LOV domains and bind FMN as a chromophore st o bilize GI through COP1 inactivation (Fig. 5). Therefore, blue (Takahashi et al. 2007). The half-life rate for dark decay from n 2 light stabilizes ZTL and FKF1 through the following mechan- thephotoexcitedstateoftheLOVdomainfromVfAUREO1is 0 N isms:(i)CRY-mediatedGIaccumulationbyCOP1inactivation; approximately 5min at room temperature (Takahashi et al. ov e and(ii)theenhancementofZTL/FKF1–GIinteraction(Fig.5). 2007). This rate is slower than those of phot LOV domains m b For a more detailed description of ztl/fkf1/lkp2 mutant (typically several tens of seconds: Kasahara et al. 2002). er 2 phenotypes and ZTL/FKF1/LKP2 functions in circadian clock However, no FMN binding was detected for the recombinant 0 1 andphotoperiodicfloweringregulation,readersshouldreferto LOVdomainsofVfAUREO2(Takahashietal.2007).Ofthe11 8 the cited original papers and a recent comprehensive review residues essential for FMN binding within the LOV domain (Itoetal.2012). (Crosson and Moffat 2001), Ile270 and Phe298 present inVfAUREO1arechangedtoLeu277andVal305,respectively, inVfAUREO2(Takahashietal.2007,Ishikawaetal.2009)(Fig.2; Aureochrome: A LOV Photoreceptor two red-boxed residues). Single I270L and F298V LOV muta- Functioning as a Blue-Light-Regulated tions within the LOV domain of VfAUREO1 did not impair FMN binding and result in several fold increases in light state Transcription Factor in Stramenopiles lifetimesrelativetothewildtype(Mitraetal.2012),suggesting Photosynthetic stramenopiles are secondary endosymbionts that the absence of FMN binding in the LOV domain of and play an important role in aquatic primary productivity VfAUREO2 may be attributable to a combined effect of PlantCellPhysiol.54(1):8–23 (2013) doi:10.1093/pcp/pcs165 !TheAuthor2012. 17

Description:
We thank Dr. John Christie (University of Glasgow) for critical reading of the .. Jones, M.A., Feeney, K.A., Kelly, S.M. and Christie, J.M. (2007) Mutational blue and red light-induced chloroplast movements in Physcomitrella patens.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.