ebook img

Running coupling in SU(2) with adjoint fermions PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Running coupling in SU(2) with adjoint fermions

January14,2013 2:21 WSPC-ProceedingsTrimSize:9.75inx6.5in proceedings 1 3 1 Running coupling in SU(2) with adjoint fermions 0 2 JarnoRantaharju∗ n a RikenAdvanced Institute for Computational Science, J 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, Japan 1 1 KariRummukainen† Department of Physics and Helsinki Institute of Physics, ] t P.O.Box 64, FI-00014 University of Helsinki, Finland a l - KimmoTuominen‡ p e Department of Physics, P.O.Box 35 (YFL), h FI-40014 Universityof Jyv¨askyla¨, Finland, [ and Helsinki Institute of Physics, P.O. Box 64, 1 FI-00014 Universityof Helsinki, Finland. v 3 7 WepresentameasurementoftheSchro¨dingerFunctionalrunningcouplinginSU(2)lat- 3 ticegaugetheorywithadjointfermions.WeuseHEXsmearingandcloverimprovement 2 to reduce the discretization effects. We obtain a robust continuum limit for the step . scaling,whichconfirmstheexistenceofanon-trivialfixedpoint. 1 0 Keywords: Latticefieldtheory,Conformalfieldtheory 3 1 1. The Model : v We study the runningof the Schro¨dinger Functional coupling inthe SU(2) lattice field i X theorywith2fermionsintheadjointrepresentation.Themodel,dubbedMinimalWalk- ing Technicolor, has been studied recently as a possible candidate for a walking tech- r a nicolor theory and as a part of the ongoing mapping of the conformal window on the lattice.1–5 Wedefinethelatticemodelbytheaction S=SG+SF, (1) whereSF isthecloverimprovedWilsonfermionactionwithsmearedgaugelinksandSG is a partiallysmeared version of the Wilson plaquette action. We use hypercubic stout smearing, or HEX smearing,6 to reduce the discretization errors and allow simulations atlargercoupling.Thegaugeactionisdefinedas SG=βL (1−cg)Lx,µ(U)+cgLx,µ(V) (2) xX;µ<ν 1 Lx,µ(U)=(cid:18)1− 2Tr[Uµ(x)Uν(x+aµˆ)Uµ†(x+aνˆ)Uν†(x)](cid:19), ∗[email protected] †kari.rummukainen@helsinki.fi ‡kimmo.i.tuominen@jyu.fi January14,2013 2:21 WSPC-ProceedingsTrimSize:9.75inx6.5in proceedings 2 whereV isthesmearedgaugefieldandwechoosecg=0.5. Thefermionactionisgivenby i SF =a4 (cid:20)ψ¯(x)(iDW +m0)ψ(x)+acswψ¯(x)4σµνFµν(x)ψ(x)(cid:21), (3) Xx Weexpectthesmearingtobringthediscretizationerrorsclosetothetree-levelvaluesand choose csw = 1. We have performed a few short measurements of the clover coefficient andfindthemconsistentwiththetree-levelvalue,evenatsmallvaluesofβ. Thesmearedlinksarecalculatedinthreesequentialstoutsmearingsteps,summing overthe directionsthat areorthogonal tothoseintheprevious steps.6 Wehavechosen thesmearingcoefficients foreachsteptobeα1=0.78,α2=0.61andα1=0.35. WemeasuretherunningcouplingusingtheShc¨odingerfunctionalmethod.7,8Weuse boundary conditions to the temporal direction to induce a chromoelectric background fieldandmeasurethecouplingbytheresponsetoachangeinthebackgroundfield.The boundaryconditions are Uµ(x¯,t=0)=e−iησ3a/L, Uµ(x¯,t=L)=e−i(π−η)σ3a/L (4) withσ3 thethirdPaulimatrixandwechooseη=π/4.Thespatialboundaryconditions areperiodicforthegaugefield.Thefermionfieldissettozeroatthetemporalboundaries and have twisted periodic boundary conditions to the spatial directions: ψ(x+Lˆi) = exp(iπ/5)ψ(x). Attheclassicallevelthederivativeoftheactionwithrespecttoη is ∂Scl. k = , ∂η g2 0 wherek isafunctionofN andη. Wedefine thefullrenormalizedcouplingatquantum levelby ∂S k h i= , ∂η g2 Therunningofthecouplingisquantifiedbythestepscalingfunctionσ.Itdescribes thechangeofthemeasuredcouplingwhenthelinearsizeofthesystemischangedfrom LtosLkeepingthebarecouplingg2 constant. 0 Σ(u,s,L/a)=g2(g2,sL/a)|g2(g2,L/a)=u (5) 0 0 Σ(u,s,L/a)=σ(u,s)+c(u,s)a2 (6) We choose s = 2 and obtain the continuum limit from measurements at L/a = 6 and L/a = 8. The measured values of the coupling squared are shown in figure 2. We also show the lattice step scaling function Σ(g2,2,L/a)/g2 = g2(g2,2L/a)/g2(g2,L/a) on 0 0 theleftsideinfigure1. The Schro¨dinger functional boundary conditions reduce the amount of zero modes inthesystemandallowsimulationsatzeroquarkmass.SincetheWilsonfermionaction breaks chiral symmetry and allows additive renormalization of the quark mass, we use the PCAC relation to find the value of κ where the renormalized mass vanishes. The quarkmassM isdefinedby aM(x0)= 1(∂0∗+∂0)fA(x0). (7) 4 fP(x0) Wedefineκc asthevalueoftheparameterκwherethemassaM(L/2)vanishes.Tofind κcwemeasurethemassat3to7valuesofκonlatticesofsizeL/a=16andinterpolate tofindwherethemassiszero.InpracticeweachieveaM <0.003. Weusereweightingtocorrectfortheresidualeffectofthenonzeromass.Thediffer- ence can beseen infigure1,wherewe show the lattice step scalingfunction calculated fromboththeoriginalandthereweightedmeasurements. January14,2013 2:21 WSPC-ProceedingsTrimSize:9.75inx6.5in proceedings 3 Table1. Thevaluesofχ2 anddegreesoffreedomintheinterpolationineq.8. L/a=4 L/a=6 L/a=8 L/a=12 L/a=16 combined χ2 32.77 38.02 23.71 19.27 11.48 125.2 d.o.f 4 5 5 5 5 24 The continuum limitσ(g2,2) is taken keeping the coupling g2 equal, but the mea- surementshavebeencalculatedatconstantg2,anddonotcorrespondtothesamevalue 0 ofg2atdifferentlatticesizes.Themeasurements,therefore,needtobeshiftedtomatch- ingvaluesofg2.Themosteconomicalandconvenientwaytoachievethisistointerpolate the measurements ateach latticesizeL/abyfitting toafunction ofg2.Thisresults in 0 avalueofg2(g2,L/a)overacontinuous rangeofg2. 0 0 Weusetheinterpolatingfunction 1 = 1 1+ ni=1aig02 , (8) g2(g02,L/a) g02 (cid:20)1+Pmi=1big02(cid:21) withn=4andm=2.ThesevalueswerechosenPtomaximizethecombinedP valuefor thefit,calculatedfromthesumofχ2anddegreesoffreedomforeachfit.Theinterpolating functions are then used to calculate Σ(u,2,L/a) at a continuous range of u, and the continuum limit is calculated by fitting to the quadratic function in equation 6. The resultisshowninfigure3. 1.1 1.1 L=4 L=4 L=6 L=6 L=8 L=8 1 1 22σ(g,2)/g0.9 22σ(g,2)/g0.9 0.8 0.8 0.7 0.7 0 2 4 6 8 0 2 4 6 8 g2 g2 Fig. 1. The scaled lattice step scaling function Σ(g2,2,L/a)/g2 = g2(g2,2L/a)/g2(g2,L/a). 0 0 The plot on the left shows the result using the original measurements and the plot on the right usingreweightedvalues.Theblackdashedlinegivesthecontinuum 2-loopperturbativeresultfor σ(g2,2)/g2. 2. Conclusions Both the lattice results and the estimated continuum limit show a non-trivial infrared fixed point between g2 = 2 and 4. This is in agreement with previous studies. Fur- thermore, a large part of the discretization errors in the interesting region seems to be removed by the clover improvement and the HEX smearing.Smearing alsoreduces the computation time required to generate lattices and enables simulations at larger cou- pling. We plan to verify this further by repeating the measurement with an increased latticesize. January14,2013 2:21 WSPC-ProceedingsTrimSize:9.75inx6.5in proceedings 4 8 β=0.98 β=1 1.05 β=1.05 β=1.1 6 β=1.2 β=1.3 2g4 ββββ====1248.5 22σ(g,2)/g0.98 0.91 8-16 2 extrapolation 2-loop 0.84 0 0 1 2 3 4 5 6 0 4 8 12L 16 20 24 g2 Fig.2. Ontheleft,themeasuredvaluesofg2(g2,L/a)againsta/L.Theblackdashedlinegives 0 an exampleof the runningin2-loopperturbation theory at modestcoupling, normalizedsothat it matches the measurement at L/a=6. The measurements have been reweighted to zero mass. Ontheright,thescaledstepscalingfunctionσ(g2,2)/g2 usingreweightedmeasurements.Thered line with the hashed band correspond to the continuum extrapolation using lattice sizes L = 6 and8andtheblacklinewiththegreenbandcorrespondtothelatticeresultatthelargestlattice sizeL=8.Theblackdashedlinegivesthe2-loopperturbativeresult. References 1. F. Bursa, L. Del Debbio, D. Henty, E. Kerrane, B. Lucini, A. Patella, C. Pica and T. Pickup et al.,Phys. Rev.D 84, 034506 (2011) [arXiv:1104.4301 [hep-lat]]. 2. A.J.Hietanen,J.Rantaharju,K.RummukainenandK.Tuominen,JHEP0905,025 (2009) [arXiv:0812.1467 [hep-lat]]. 3. F. Bursa et. al. PoS LAT 2009, 056 (2009) [arXiv:0910.2562 [hep-ph]]. 4. A.J.Hietanen,K.RummukainenandK.Tuominen,Phys.Rev.D80,094504(2009) [arXiv:0904.0864 [hep-lat]]. 5. T. DeGrand, Y. Shamir and B. Svetitsky, Phys. Rev. D 83, 074507 (2011) [arXiv:1102.2843 [hep-lat]]. 6. S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T. Kurth, L. Lellouch and T. Lippert et al.,JHEP 1108 (2011) 148 [arXiv:1011.2711 [hep-lat]]. 7. M. Luscher, R. Narayanan, R. Sommer, U. Wolff, P. Weisz, Determination of the running coupling in the SU(2) Yang-Mills theory from first principles, Nucl. Phys. Proc. Suppl.30 (1993) 139-148. 8. M. Luscher, R. Narayanan, P. Weisz and U. Wolff, The Schrodinger functional: A Renormalizable probe for nonAbelian gauge theories, Nucl. Phys. B 384, 168 (1992) [arXiv:hep-lat/9207009]. 9. M. Hasenbusch and K. Jansen, Nucl. Phys. Proc. Suppl. 106, 1076 (2002) [hep-lat/0110180].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.