Rule-Based System Architecting of Earth Observation Satellite Systems by Daniel Selva Valero Diplôme d’Ingénieur, ENSAE Supaero, Toulouse, France (2004) Enginyer Superior de Telecomunicacions, Universitat Politècnica de Catalunya, Barcelona, Spain (2004) SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2012 © 2012 Massachusetts Institute of Technology. All rights reserved. Signature of Author…………………………………………………………………..………….. Daniel Selva Valero Department of Aeronautics and Astronautics June 2012 Certified by…………………………………………………………………………..………….. Prof. Edward F. Crawley Ford Professor of Aeronautics and Astronautics and Engineering Systems Thesis Supervisor Certified by…………………………………………………………………………..………….. Prof. David W. Miller Full Professor of Aeronautics and Astronautics Committee Member Certified by…………………………………………………………………………..………….. Prof. Ronald G. Prinn TEPCO Professor of Atmospheric Science; Director, Center for Global Change Science Committee Member Certified by…………………………………………………………………………..………….. Dr. Christopher J. Scolese Director, NASA Goddard Space Flight Center Committee Member Accepted by…………………………………………………………………………..………….. Prof. Eytan H. Modiano Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 1 2 Rule-Based System Architecting of Earth Observation Satellite Systems by Daniel Selva Valero Submitted to the Department of Aeronautics and Astronautics on May 21st, 2012 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Abstract System architecting is concerned with exploring the tradespace of early, high-level, system design decisions with a holistic, value-centric view. In the last few years, several tools and methods have been developed to support the system architecting process, focusing on the representation of an architecture as a set of interrelated decisions. These tools are best suited for applications that focus on breadth – i.e., enumerating a large and representative part of the architectural tradespace –as opposed to depth – modeling fidelity. However, some problems in system architecting require good modeling depth in order to provide useful results. In some cases, a very large body of expert knowledge is required. Current tools are not designed to handle such large bodies of knowledge because they lack scalability and traceability. As the size of the knowledge base increases, it becomes harder: a) to modify existing knowledge or add new knowledge; b) to trace the results of the tool to the model assumptions or knowledge base. This thesis proposes a holistic framework for architecture tradespace exploration of large complex systems that require a large body of expert knowledge. It physically separates the different bodies of knowledge required to solve a system architecting problem (i.e., knowledge about the domain, knowledge about the class of optimization or search problem, knowledge about the particular instance of problem) by using a rule-based expert system. It provides a generic population-based heuristic algorithm for search, which can be augmented with rules that encode knowledge about the domain, or about the optimization problem or class of problems. It identifies five major classes of system architecting problems from the perspective of optimization and search, and provides rules to enumerate architectures and search through the architectural tradespace of each class. A methodology is also defined to assess the value of an architecture using a rule-based approach. This methodology is based on a decomposition of stakeholder needs into requirements and a systematic comparison between system requirements and system capabilities using the rules engine. The framework is applied to the domain of Earth observing satellite systems (EOSS). Three EOSS are studied in depth: the NASA Earth Observing System, the NRC Earth Science Decadal Survey, and the Iridium GEOscan program. The ability of the framework to produce useful results is shown, and specific insights and recommendations are drawn. Thesis Supervisor: Edward F. Crawley Title: Ford Professor of Engineering 3 4 Acknowledgements First and foremost, I would like to thank my advisor Prof. Ed Crawley for introducing me to the field of systems architecture, and for teaching me almost everything I know about how to architect a system. I am a much better engineer as a result of my exposure to his way of thinking about systems. I am also grateful for all the weekends of ski, flying, soaring, golf, and fun with the dudes in Vermont. The other members of my doctoral committee also deserve a special mention. Prof. Dave Miller taught me how to design and build a satellite starting from a blank sheet, and always had insightful comments about my theoretical systems framework. Prof. Ron Prinn taught me the ABC of atmospheric chemistry and climate change science, and provided me with very useful first-hand information about several Earth observing missions. I was privileged to have the former NASA associate administrator Chris Scolese, now director of the Goddard Space Flight Center, as a member of the committee. This thesis is so much better thanks to Chris’ insightful remarks all along the way. His encyclopedic knowledge of Earth observing missions combined with his outstanding engineering skills was an extremely useful resource. Many other professors and researchers have been very helpful during my four years at MIT. Prof. Kerri Cahoy and Dr. Bill Blackwell provided very useful feedback about my dissertation, in addition to valuable expert knowledge in their own fields of remote sensing. Prof. Sara Seager taught me the physics of atmospheric radiation, my favorite subject at MIT, and her support and encouragement meant so much to me. Prof. Oli De Weck taught me the fundamentals of systems engineering, and introduced me to the field of multidisciplinary design optimization, that has inspired so much of my research. Prof. Jay Sussman taught me how to make beautiful computer programs that reason like humans. Finally, Prof. Dave Staelin, who sadly passed away before I could complete my thesis, was my minor advisor and taught me so much about remote sensing. Prof. Staelin was a remarkable teacher and mentor, and it was truly an honor to be one of his last students. Thanks also to Kathi Brazil, Amy Shea, and Beth Marois for their help and eternal kindness. This research was done thanks to the financial support of la Caixa foundation, NASA Goddard Space Flight Center, Draper Laboratory, and NASA Headquarters. Thanks in particular to Emilia Jordi, Bob Connerton, Bernie Seery, and Shawn Murphy for believing and investing in me. My colleagues have been a continuous source of inspiration, motivation, guidance, and support. Alessandro Golkar read most of this document and provided insightful feedback about most of my research ideas. Matt Smith, Wilfried Hofstetter, Theo Seher, Maokai Lin, Tim Sutherland, Richard Rhodes, Paul Grogan, Wen Feng, Matt Silver, Anthony Wicht, Brandon Suarez, Jonathan Battat, Emily Calandrelli, Alexander Rudat, and Morgan Dwyer, and the rest of 33-409ers made these 10,000+ hours of research in my cubicle an extraordinary personal experience. I would totally do another PhD with you guys. I might do it at some point. When I look back at the last four years of my life, I just cannot believe how blessed I was to meet my Bostonian family: Carlos Pardo, Jorge Cañizales, Maite Balda, Alessandro Golkar, Maria Jose Nieves, Ada Yeste, Maria De Soria, and Fernando de Sisternes. What an amazing group of individuals. I was humbled by all of you almost every day of these four years. I simply cannot conceive what my PhD would have been without you. 5 Last, I would like to thank my family for their unconditional and eternal support. My mom gave me everything I needed between the ages of 0 and 22 without even asking for anything in return. I took from my dad the penchant for aerospace engineering, and the ambition to go further and further. My sister has helped me in so many ways, and she means everything to me. “La Tata” simply was my second mom, and I am so grateful to her. And most of all, I would like to thank Ana, my future wife, for her unconditional support in this adventure, and for bearing with me during these four years. It is only because of your love and support that we made it. 6 Contents Abstract ......................................................................................................................................................... 3 Acknowledgements ....................................................................................................................................... 5 Table of Figures .......................................................................................................................................... 13 1 Introduction ......................................................................................................................................... 17 1.1 Overview ..................................................................................................................................... 17 1.2 System Architecture and System Architecting ........................................................................... 20 1.3 System architecting, decision analysis, and combinatorial optimization .................................... 21 1.3.1 System Architecting Problems ............................................................................................ 21 1.3.2 System Architecting Tools .................................................................................................. 22 1.4 Needs of the system architects vis-à-vis SATs ........................................................................... 28 1.5 General problem statement ......................................................................................................... 33 1.5.1 Knowledge-intensive SAPs ................................................................................................. 33 1.5.2 Identification of Research Gaps and General Research Goals ............................................ 35 1.6 Rule-based Expert systems ......................................................................................................... 37 1.6.1 Definitions ........................................................................................................................... 37 1.6.2 A short history of rule-based systems ................................................................................. 38 1.6.3 Structure of RBES ............................................................................................................... 39 1.6.4 Critique of RBES ................................................................................................................ 40 1.6.5 The CLIPS language for developing rule-based systems.................................................... 41 1.7 Thesis Statement ......................................................................................................................... 43 1.8 Structure of the thesis .................................................................................................................. 43 2 Rule-based system architecting ........................................................................................................... 45 2.1 Overview of the framework ........................................................................................................ 46 2.2 Classes of System Architecting Problems .................................................................................. 49 2.2.1 Overview ............................................................................................................................. 49 2.2.2 Assigning Problems ............................................................................................................ 54 7 2.2.3 Partitioning and Covering Problems ................................................................................... 57 2.2.4 Down-selecting Problems ................................................................................................... 60 2.2.5 Permuting Problems ............................................................................................................ 63 2.2.6 Connecting Problems .......................................................................................................... 65 2.2.7 Summary and discussion ..................................................................................................... 67 2.3 A knowledge-intensive heuristic algorithm for searching the architectural tradespace .............. 68 2.3.1 Overview ............................................................................................................................. 68 2.3.2 Description of the generic search algorithm ....................................................................... 70 2.3.3 Grammars: rules for synthesis of feasible architectures...................................................... 73 2.3.4 Approximate evaluation rules ............................................................................................. 77 2.3.5 Search heuristics: rules to constrain and guide tradespace search ...................................... 78 2.3.6 Selection rules: rules for architecture down-selection ........................................................ 80 2.3.7 Summary and discussion ..................................................................................................... 85 2.4 A library with heuristics for the different classes of SAPs ......................................................... 86 2.4.1 Assigning Problems ............................................................................................................ 87 2.4.2 Partitioning and Covering Problems ................................................................................... 89 2.4.3 Down-selecting Problems ................................................................................................... 97 2.4.4 Permuting Problems .......................................................................................................... 102 2.5 Summary and discussion ........................................................................................................... 106 3 VASSAR: A methodology for Value Assessment in System Architecting using Rules .................. 109 3.1 Introduction ............................................................................................................................... 109 3.2 Requirement satisfaction rules .................................................................................................. 114 3.3 Value aggregation rules ............................................................................................................ 116 3.4 Capability rules ......................................................................................................................... 118 3.5 Attribute inheritance rules ......................................................................................................... 119 3.6 Emergence rules ........................................................................................................................ 121 3.7 Fuzzy Attribute rules ................................................................................................................. 123 8 3.8 Explanation rules ...................................................................................................................... 125 3.9 Summary ................................................................................................................................... 126 4 Rule-based system architecting of Earth Observation Satellite Systems .......................................... 129 4.1 Architecture of Earth Observation Satellite Systems (EOSS) .................................................. 129 4.1.1 Overview of the architectural framework ......................................................................... 129 4.1.2 Architectural decisions and architectural views for EOSS ............................................... 131 4.2 Domain-specific rules for architecting EOSS ........................................................................... 143 4.2.1 Overview ........................................................................................................................... 143 4.2.2 Approximate evaluation rules for Earth Observing Mission Analysis ............................. 144 4.3 Application of the VASSAR methodology to EOSS ................................................................ 159 4.3.1 A language for architecting EOSS .................................................................................... 160 4.3.2 Attribute Inheritance Rules ............................................................................................... 161 4.3.3 Instrument capability rules ................................................................................................ 162 4.3.4 Synergy rules .................................................................................................................... 165 4.3.5 Requirement rules ............................................................................................................. 166 4.3.6 Value aggregation rules .................................................................................................... 168 4.3.7 Fuzzy attribute rules .......................................................................................................... 168 4.3.8 Fact databases ................................................................................................................... 169 4.3.9 Explanation rules............................................................................................................... 170 4.3.10 Summary ........................................................................................................................... 171 4.4 Figures of Merit for EOSS ........................................................................................................ 172 4.4.1 Scientific and societal benefit ........................................................................................... 174 4.4.2 Lifecycle cost .................................................................................................................... 177 4.4.3 Programmatic risk ............................................................................................................. 183 4.4.4 Launch risk ........................................................................................................................ 184 4.4.5 Discounted benefit ............................................................................................................ 185 4.4.6 Fairness ............................................................................................................................. 186 9 4.4.7 Data continuity .................................................................................................................. 187 4.4.8 Discussion ......................................................................................................................... 188 4.5 Case studies and methodology applied to the case studies ....................................................... 189 5 Case Study 1: The NASA Earth Observing System (EOS) .............................................................. 193 5.1 Context and goals for the case study ......................................................................................... 193 5.2 Case study specific rules ........................................................................................................... 195 5.2.1 Aggregation rules .............................................................................................................. 195 5.2.2 Requirement satisfaction rules .......................................................................................... 197 5.2.3 Instrument capability rules ................................................................................................ 199 5.3 Results ....................................................................................................................................... 200 5.3.1 Preliminaries ..................................................................................................................... 200 5.3.2 Instrument selection .......................................................................................................... 209 5.3.3 Instrument packaging ........................................................................................................ 216 5.3.4 Mission scheduling ........................................................................................................... 229 5.4 Conclusion of the EOS case study ............................................................................................ 234 6 Case Study 2: NASA Decadal Survey .............................................................................................. 237 6.1 Context and goals for the case study ......................................................................................... 237 6.2 Case study specific rules ........................................................................................................... 238 6.2.1 Aggregation rules .............................................................................................................. 238 6.2.2 Requirement satisfaction rules .......................................................................................... 240 6.2.3 Instrument capability rules ................................................................................................ 241 6.3 Results ....................................................................................................................................... 242 6.3.1 Preliminaries ..................................................................................................................... 242 6.3.2 Instrument selection .......................................................................................................... 257 6.3.3 Instrument packaging ........................................................................................................ 263 6.3.4 Mission scheduling ........................................................................................................... 271 6.4 Conclusion ................................................................................................................................ 276 10
Description: