RUIN PROBABILITIES Second Edition 7431 tp.indd 1 8/5/10 9:33 AM ADVANCED SERIES ON STATISTICAL SCIENCE & APPLIED PROBABILITY Editor: Ole E. Barndorff-Nielsen Published Vol. 1 Random Walks of Infinitely Many Particles by P. Révész Vol. 2 Ruin Probabilities by S. Asmussen Vol. 3 Essentials of Stochastic Finance: Facts, Models, Theory by Albert N. Shiryaev Vol. 4 Principles of Statistical Inference from a Neo-Fisherian Perspective by L. Pace and A. Salvan Vol. 5 Local Stereology by Eva B. Vedel Jensen Vol. 6 Elementary Stochastic Calculus — With Finance in View by T. Mikosch Vol. 7 Stochastic Methods in Hydrology: Rain, Landforms and Floods eds. O. E. Barndorff-Nielsen et al. Vol. 8 Statistical Experiments and Decisions: Asymptotic Theory by A. N. Shiryaev and V. G. Spokoiny Vol. 9 Non-Gaussian Merton–Black–Scholes Theory by S. I. Boyarchenko and S. Z. Levendorskiĭ Vol. 10 Limit Theorems for Associated Random Fields and Related Systems by A. Bulinski and A. Shashkin Vol. 11 Stochastic Modeling of Electricity and Related Markets . by F. E. Benth, J. Òaltyte Benth and S. Koekebakker Vol. 12 An Elementary Introduction to Stochastic Interest Rate Modeling by N. Privault Vol. 13 Change of Time and Change of Measure by O. E. Barndorff-Nielsen and A. Shiryaev Vol. 14 Ruin Probabilities (2nd Edition) by S. Asmussen and H. Albrecher EH - Ruin Probabilities.pmd 2 7/26/2010, 4:56 PM Advanced Series on Statistical Science & Vol. 14 Applied Probability RUIN PROBABILITIES Second Edition Søren Asmussen Aarhus University, Denmark Hansjörg Albrecher University of Lausanne, Switzerland World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI 7431 tp.indd 2 8/5/10 9:33 AM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Asmussen, Søren. Ruin probabilities / by Søren Asmussen & Hansjörg Albrecher p. cm. -- (Advanced series on statistical science and applied probability ; v. 14) Includes bibliographical references and index. ISBN-13: 978-981-4282-52-9 (hardcover : alk. paper) ISBN-10: 981-4282-52-9 (hardcover : alk. paper) 1. Insurance--Mathematics. 2. Risk. I. Albrecher, Hansjörg. II. Title. HG8781.A83 2010 368'.01--dc22 2010023280 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Printed in Singapore. EH - Ruin Probabilities.pmd 1 7/26/2010, 4:56 PM Contents Preface ix Notation and conventions xiii I Introduction 1 1 The risk process . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Claim size distributions . . . . . . . . . . . . . . . . . . . . . . 6 3 The arrival process . . . . . . . . . . . . . . . . . . . . . . . . 11 4 A summary of main results and methods . . . . . . . . . . . . 13 II Martingales and simple ruin calculations 21 1 Wald martingales . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Gambler’s ruin. Two-sided ruin. Brownian motion . . . . . . 23 3 Further simple martingale calculations . . . . . . . . . . . . . 29 4 More advanced martingales . . . . . . . . . . . . . . . . . . . 30 III Further general tools and results 39 1 Likelihood ratios and change of measure . . . . . . . . . . . . 39 2 Duality with other applied probability models . . . . . . . . . 45 3 Random walks in discrete or continuous time. . . . . . . . . . 48 4 Markov additive processes . . . . . . . . . . . . . . . . . . . . 54 5 The ladder height distribution . . . . . . . . . . . . . . . . . . 62 IV The compound Poisson model 71 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2 The Pollaczeck-Khinchine formula . . . . . . . . . . . . . . . . 75 3 Special cases of the Pollaczeck-Khinchine formula . . . . . . . 77 4 Change of measure via exponential families . . . . . . . . . . . 82 5 Lundberg conjugation. . . . . . . . . . . . . . . . . . . . . . . 84 6 Further topics related to the adjustment coefficient . . . . . . 91 v vi CONTENTS 7 Various approximations for the ruin probability . . . . . . . . 95 8 Comparing the risks of different claim size distributions . . . . 100 9 Sensitivity estimates . . . . . . . . . . . . . . . . . . . . . . . 103 10 Estimation of the adjustment coefficient . . . . . . . . . . . . 110 V The probability of ruin within finite time 115 1 Exponential claims . . . . . . . . . . . . . . . . . . . . . . . . 116 2 The ruin probability with no initial reserve . . . . . . . . . . . 121 3 Laplace transforms . . . . . . . . . . . . . . . . . . . . . . . . 126 4 When does ruin occur? . . . . . . . . . . . . . . . . . . . . . . 128 5 Diffusion approximations . . . . . . . . . . . . . . . . . . . . . 136 6 Corrected diffusion approximations . . . . . . . . . . . . . . . 139 7 How does ruin occur? . . . . . . . . . . . . . . . . . . . . . . . 146 VI Renewal arrivals 151 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2 Exponential claims. The compound Poisson model with neg- ative claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 3 Change of measure via exponential families . . . . . . . . . . . 157 4 The duality with queueing theory . . . . . . . . . . . . . . . . 161 VII Risk theory in a Markovian environment 165 1 Model and examples . . . . . . . . . . . . . . . . . . . . . . . 165 2 The ladder height distribution . . . . . . . . . . . . . . . . . . 172 3 Change of measure via exponential families . . . . . . . . . . . 180 4 Comparisons with the compound Poisson model . . . . . . . . 188 5 The Markovian arrival process . . . . . . . . . . . . . . . . . . 194 6 Risk theory in a periodic environment. . . . . . . . . . . . . . 196 7 Dual queueing models. . . . . . . . . . . . . . . . . . . . . . . 205 VIII Level-dependent risk processes 209 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 2 The model with constant interest . . . . . . . . . . . . . . . . 222 3 The local adjustment coefficient. Logarithmic asymptotics . . 227 4 The model with tax . . . . . . . . . . . . . . . . . . . . . . . . 239 5 Discrete-time ruin problems with stochastic investment . . . . 242 6 Continuous-time ruin problems with stochastic investment . . 248 CONTENTS vii IX Matrix-analytic methods 253 1 Definition and basic properties of phase-type distributions . . 253 2 Renewal theory . . . . . . . . . . . . . . . . . . . . . . . . . . 260 3 The compound Poisson model . . . . . . . . . . . . . . . . . . 264 4 The renewal model . . . . . . . . . . . . . . . . . . . . . . . . 266 5 Markov-modulated input . . . . . . . . . . . . . . . . . . . . . 271 6 Matrix-exponential distributions . . . . . . . . . . . . . . . . . 277 7 Reserve-dependent premiums . . . . . . . . . . . . . . . . . . 281 8 Erlangization for the finite horizon case . . . . . . . . . . . . . 287 X Ruin probabilities in the presence of heavy tails 293 1 Subexponential distributions . . . . . . . . . . . . . . . . . . . 293 2 The compound Poisson model . . . . . . . . . . . . . . . . . . 302 3 The renewal model . . . . . . . . . . . . . . . . . . . . . . . . 305 4 Finite-horizon ruin probabilities . . . . . . . . . . . . . . . . . 309 5 Reserve-dependent premiums . . . . . . . . . . . . . . . . . . 318 6 Tail estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 320 XI Ruin probabilities for L´evy processes 329 1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 2 One-sided ruin theory . . . . . . . . . . . . . . . . . . . . . . . 336 3 The scale function and two-sided ruin problems . . . . . . . . 340 4 Further topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 5 The scale function for two-sided phase-type jumps . . . . . . . 353 XII Gerber-Shiu functions 357 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 2 The compound Poisson model . . . . . . . . . . . . . . . . . . 360 3 The renewal model . . . . . . . . . . . . . . . . . . . . . . . . 374 4 L´evy risk models . . . . . . . . . . . . . . . . . . . . . . . . . 384 XIII Further models with dependence 397 1 Large deviations . . . . . . . . . . . . . . . . . . . . . . . . . . 398 2 Heavy-tailed risk models with dependent input . . . . . . . . 410 3 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 4 Risk processes with shot-noise Cox intensities . . . . . . . . . 419 5 Causal dependency models . . . . . . . . . . . . . . . . . . . . 424 6 Dependent Sparre Andersen models . . . . . . . . . . . . . . . 427 7 Gaussian models. Fractional Brownian motion . . . . . . . . . 428 8 Ordering of ruin probabilities . . . . . . . . . . . . . . . . . . 433 9 Multi-dimensional risk processes . . . . . . . . . . . . . . . . . 435 viii CONTENTS XIV Stochastic control 445 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 2 Stochastic dynamic programming . . . . . . . . . . . . . . . . 447 3 The Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . 448 XV Simulation methodology 461 1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 2 Simulation via the Pollaczeck-Khinchine formula. . . . . . . . 465 3 Static importance sampling via Lundberg conjugation. . . . . 470 4 Static importance sampling for the finite horizon case . . . . . 474 5 Dynamic importance sampling . . . . . . . . . . . . . . . . . . 475 6 Regenerative simulation . . . . . . . . . . . . . . . . . . . . . 482 7 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 484 XVI Miscellaneous topics 487 1 More on discrete-time risk models . . . . . . . . . . . . . . . . 487 2 The distribution of the aggregate claims . . . . . . . . . . . . 493 3 Principles for premium calculation. . . . . . . . . . . . . . . . 510 4 Reinsurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 Appendix 517 A1 Renewal theory . . . . . . . . . . . . . . . . . . . . . . . . . . 517 A2 Wiener-Hopf factorization . . . . . . . . . . . . . . . . . . . . 522 A3 Matrix-exponentials . . . . . . . . . . . . . . . . . . . . . . . . 526 A4 Some linear algebra . . . . . . . . . . . . . . . . . . . . . . . . 530 A5 Complements on phase-type distributions. . . . . . . . . . . . 536 A6 Tauberian theorems . . . . . . . . . . . . . . . . . . . . . . . . 548 Bibliography 549 Index 597 Preface This book is a second edition of the book of the same title by the first author which was published in 2000. The subject of ruin probabilities and related top- icshassincethenundergoneaconsiderabledevelopment,nottosayboom. This much expanded and revised second edition aims at covering a substantial part of these developments as well as the classical topics. Risk theory in general and ruin probabilities in particular are traditionally considered as part of insurance mathematics, and has been an active area of research from the days of Lundberg all the way up to today. One reason for writing this book is a feeling that the area has in recent years achieved a con- siderable mathematical maturity, which has in particular removed one of the standard criticisms of the area, namely that it can only say something about very simple models and questions. Although in insurance practice, usually sim- pler(andcoarser)riskmeasureslikeValue-at-Riskareused,itiswidelybelieved that the thinking advocated by ruin theory is still important for modern risk management. For instance, in times of market-consistent valuation principles, the role of the time diversification effect of insurance portfolios, which is one of the core elements of ruin theory, should not be forgotten. In addition, ruin the- ory has fruitful methodological links and applications to other fields of applied probability, like queueing theory and mathematical finance (pricing of barrier options, credit products etc.). Apart from these remarks, we have deliberately stayed away from discussing the practical relevance of the theory; if the formu- lations occasionally give a different impression, it is not by intention. Thus, the book is basically mathematical in its flavor. The present second edition is more than 50% longer than the first and has more than double the number of references. The longer parts of the new mate- rial,reflectingsubareasthathavebeenparticularlyactiveinthelastdecade,are collected in Chapters XI–XIV, which treat L´evy processes, Gerber-Shiu func- tions,dependenceandstochasticcontrol,respectively. Shorteradditionsinclude ix
Description: