RESEARCHARTICLE Rubisco Activase Is Also a Multiple Responder to Abiotic Stresses in Rice YueChen,Xiao-ManWang,LiZhou,YiHe,DunWang,Yan-HuaQi,De-AnJiang* StateKeyLaboratoryofPlantPhysiologyandBiochemistry,CollegeofLifeSciences,ZhejiangUniversity, Hangzhou,310058,China *[email protected] a11111 Abstract Ribulose-1,5-bisphosphatecarboxylase/oxygenaseactivase(RCA)isanucleargenethat encodesachloroplastproteinthatplaysanimportantroleinphotosynthesis.Somereports haveindicatedthatitmayplayaroleinacclimationtodifferentabioticstresses.Inthis paper,weanalyzedthestress-responsiveelementsinthe2.0kb5’-upstreamregionsofthe OPENACCESS RCAgenepromoterandtheprimary,secondaryandtertiarystructureoftheprotein.We Citation:ChenY,WangX-M,ZhouL,HeY,WangD, identifiedsomecis-elementsofmultiplestress-relatedcomponentsintheRCApromoter. QiY-H,etal.(2015)RubiscoActivaseIsAlsoa AminoacidandevolutionanalysesshowedthattheRCAproteinhadconservedregions MultipleRespondertoAbioticStressesinRice.PLoS betweendifferentspecies;however,thesizeandtypevaried.Thesecondarystructures, ONE10(10):e0140934.doi:10.1371/journal. pone.0140934 bindingsitesandtertiarystructuresoftheRCAproteinswerealsodifferent.Thismight reflectthedifferencesinthetranscriptionandtranslationlevelsofthetwoRCAisoformsdur- Editor:NiranjanBaisakh,LouisianaStateUniversity AgriculturalCenter,UNITEDSTATES ingadaptationtodifferentabioticstresses.Althoughboththetranscriptionandtranslation levelsofRCAisoformsinthericeleavesincreasedundervariousstresses,thelargeiso- Received:June1,2015 formwasincreasedmoresignificantlyinthechloroplaststromaandthylakoid.Itcanbecon- Accepted:September30,2015 cludedthatRCA,especiallyRCA ,isalsoamultiplerespondertoabioticstressesinrice, L Published:October19,2015 whichprovidesnewinsightsintoRCAfunctions. Copyright:©2015Chenetal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare Introduction credited. Therearedifferencesinthegenesandbis-phosphatecarboxylase/oxygenaseactivase(RCA) DataAvailabilityStatement:Allrelevantdataare isoformsamongplantspecies.Inmanyplants,therearetwoRCAforms:alarge45–46kDiso- withinthepaperanditsSupportingInformationfiles. formandasmall41–43kDisoform.GenomicanalyseshaveidentifiedoneRCAgeneinspin- Funding:Theauthorshavenosupportorfundingto ach,Arabidopsis,riceandwheat[1–3],inwhichalternativesplicingoftheRCAtranscript report. resultsintwoRCAisoforms[2,4,5].TwoRCAgenesencodetwoRCAisoformsinbarleyand CompetingInterests:Theauthorshavedeclared cotton[5,6].InadditiontoonealternativelysplicedRCAgene(rcaA)thatproducestwoRCA thatnocompetinginterestsexist. isoforms,asecondgene(rcaB)encodesonlythesmallisoformofRCAinbarley[5].Although Abbreviations:AAs,aminoacids;AAA+,ATPase morethanthreeRCAgeneshavebeenfoundintobacco[7]andsoybean[8],theyonlyproduce associatedwithavarietyofcellularactivities;ELISA, thesmallRCAisoform[9].ThelargestdifferencebetweenthetwoRCAformsisatthecarboxyl enzyme-linkedimmunesorbentassay;RCA,Rubisco terminus[9].Comparedwiththesmallisoform,thelargeisoformhasacarboxy-terminal activase;RCA,RCAlargeisoform;RCA ,RCA L S extensionthatcontainsredox-sensitivecysteine(Cys)residues[6,9,10].Boththelargeand smallisoform;Rubisco,RuBPcarboxylase/ oxygenase. smallisoformscanactivateRubisco;however,theyexhibitslightdifferencesintheirmaximal PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 1/16 RubiscoActivaseandAbioticStress activity[11].Notably,lightmodulationofRubiscoinArabidopsisrequiresredoxregulationof thelargeisoformviathioredoxin-f[10,12,13]. RCAmaybeimportantintheacclimationofphotosynthesis[14]andthedeactivationof Rubisco[15]tohightemperaturebecausetheisolatedspinachRCAisveryheatlabile[16]. Spinach[17]butnotArabidopsis[18]suggestsspeciesspecificityfortheisoformtemperature stability.Inrice,thelargeisoformmayplayanimportantroleinphotosyntheticacclimationto heatstress,whereasthesmallisoformplaysamajorroleinmaintainingtheinitialactivityof Rubisco[19].Recently,atotalof2,171saltresponsiveproteinspotshavebeenidentifiedinpro- teomicsstudiesin34plantspecies[20].RCAisoformshavebeenidentifiedamongthesespots. Proteomicanalysishasalsoidentifiedproteinspotsthataredifferentiallyregulatedinresponse todrought,containingRCAisoformsinbarley[21],mulberry[22]andrice[23,24].Inaddi- tion,RCAmayrespondtoheavymetalstressintobaccoplants[25]. AlthoughadditionalproteomicsresearchhaveshownthattheRCAproteinrespondstovar- iousabioticstresstreatments,itremainsunclearwhetherthatresponseoccursatthepromoter levelandwhetherRCAisoformsareregulatedbyabioticstresses.Therefore,itisimportantto distinguishtheirdifferencesingeneexpressionandproteincontentundervariousconditions. Basedonbioinformaticsanalysis,wepredicttheenvironmentallyresponsiveelementsandpro- teinstructureanddeterminethechangeintranscriptionandtranslocationofthetwoisoforms inriceseedlings.Theresultsshowthatthetranscriptionandtranslationlevelsareactually inducedbyheat,salt,cold,andpolyethyleneglycol(PEG).Thelargeisoforminboththechlo- roplaststromaandthylakoidrespondmoresignificantlytothestressesthandothesmalliso- form.Therefore,weconcludethatRCAinriceisnotonlytheactivatingenzymeofRubiscobut alsoamultiplerespondertostresses. MaterialsandMethods Plantmaterialandstresstreatments AsreportedbyWangetal.[19],thegerminatedrice(Oryzasativa)seedsweregrowninInter- nationalRiceResearchInstitute(IRRI)ricenutrientsolutionandriceseedlingsweregrownin agreenhouseunderaphotosyntheticphotonfluxdensity(PPFD)of500μmolphotonsm-2s−1 controlledataday/nighttemperatureregimenof30/22°C.ThesolutionwasadjustedtopHof 5.0–5.5every2daysandwasrenewedonceinaweek.Whentheseedlingsgrewto5-leafstage, thetreatmentswereconducted.Thenutrientsolutionwasaddedto200mMNaClforsalt[26, 27],20%PEG6000fordroughttreatments[28],respectively.Theseedlingswereincubatedat 10°Cor40°Cforcoldorheattreatments[19,29,30].Theleafbladeswereharvestedaftervari- oustreatmentsfor24h,respectively.Theuntreatedseedlingswereusedascontrols.Aftersam- pling,theleafblades(10seedlingspertreatment)werefrozeninliquidnitrogenandstoredat -80°Cforlateruse.Alltreatmentwereperformedintriplicate. IsolationofRNAandcDNApreparation TotalRNAwasisolatedfrom100mgofstresstreatedanduntreatedriceleafbladesusingthe RNAprepPureplantkit(TransGenBiotech,China).GenomicDNAcontaminationwas removedwithDNaseItreatmentaccordingtothemanufacturer’sinstructions.ThecDNAwas synthesizedusing10μgtotalRNAforeachtemplate.ThefirststrandcDNAwassynthesized from10μgtotalRNAusingthePrimeScriptonestepRT-PCRkit(TAKARA,Japan)usingthe oligo(dT)18primeraccordingtothemanufacturer’sinstructions.Threebiologicalreplicates wereconductedofthestresstreatmentsforRNAandcDNA. PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 2/16 RubiscoActivaseandAbioticStress CloningandsequenceanalysisoftheRCAgenefromrice ThericeRCALandRCASgenewereamplifiedbyPCRusingFS(5’- ATGGCTGCTGCCTTCTCCTCC-3’),R (5’-TCAGCTGGATGGCGCAGAACC-3’),F (5’- S L ATGGCTGCTGCCTTCTCCT-3’),andR (5’-TTAAAAGGTGTAAAGGCAGCTGC-3’).In L thePCRreactions,weusedthefirststrandcDNAsfromNipponbarericeasatemplateto amplifytheDNA.ThefulllengthriceRCAgeneswereclonedintothepMD19Tsimplevector (TAKARA).TheputativerecombinantcoloniesofE.coliDH5αwiththedesiredamplification wereusedtoisolatetheplasmidDNAusingaplasmidkit(TianGen).TheplasmidDNAwas verifiedforgeneinsertionbyrestrictiondigestionusingtheKpnIandXbaIenzymes.Restric- tiondigestionconfirmedthattheputativepositiveclonecontainedtheRCAinsert,anditwas thensubjectedtonucleotidesequencing. AnalysisofpromotersandgenesequenceofRCA andRCA L S ABLASTsearchofthericegenomeannotationprojectdatabase(http://rice.plantbiology.msu. edu/)wasusedtoidentifyRCAgenomicDNAsequences,includingthe5’and3’-UTR,exon andintronsequences[31].Toidentifytheputativecis-regulatoryelementsinthepromoter regionsofRCA,weuseda2.0kbgenomicsequenceupstreamofthetranslationinitiation codonoftheRCAgeneusingthePLACEandPlantCAREcis-elementdatabase(http:// bioinformatics.psb.ugent.be/webtools/plantcare/html/)[32]. TertiarystructurepredictionofriceRCA Anonlineservicesystem,I-TASSERserver,wasusedtodeterminethestructureandfunction predictionsoftheRCAprotein.ThethreedimensionalstructureofRCAwaspredictedbyan onlineservicesystemiterativethreadingassemblyrefinementalgorithm(I-TASSER)stand- alonepackage(version1.1).Atertiarymodelwasbuiltbasedonmultiplethreadingalignments byLOMETSanditerativeTASSERassemblysimulations[33].Finally,theywereadjusted usingthePyMOLsoftwarepackage. Validationsandstructuralmotifanalysis ThebackboneconformationsofthepredictedmodelswereinspectedbythePhi/PsiRama- chandranplotobtainedfromPROCHECKserver(http://www.ebi.ac.uk/thornton-srv/ databases/pdbsum/Generate.html).ThequalityofthepredictedproteinmodelofRCAwas estimatedusingthequalitativemodelenergyanalysis(QMEAN)server(http:// swissmodelexpasy.org/qmean/cgi/index.cgi)[34].ThePDBfilesofthemodeledRCAprotein weresubjectedtothePDBsumserver(http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/ Generate.html)forstructuralmotifanalysis. AnalysisofRCAproteinsandphylogenetictree ThededucedaminoacidsequenceofRCAwascomparedwiththerespectivesubunitsof monocots,suchasJaponicarice,maize,barley,sorghum,andwheat,usingmultipleaminoacid sequencealignmentwiththeClustalWmegaprogram(http://www.ebi.ac.uk/).Thepairwise aminoacidsequenceidentityofRCAamongdifferentspeciesandtherespectivesubunitsof theplantsnotedabovewerecalculatedusingtheDNAstarsoftware.TheDNAstaraligned aminoacidsequencesoftheRCAisoformswereusedtoinfertheevolutionaryrelationship usingtheneighbor-joiningmethod.TheevolutionarydistanceswerecomputedusingthePois- soncorrectionmethodandareintheunitsofthenumberofaminoacidsubstitutionspersite. ThesephylogeneticanalyseswereperformedwiththeMEGA5software[35]andiTOLonline PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 3/16 RubiscoActivaseandAbioticStress service[36].IntheparametersusedforanalysisofMEGA5,pairwisealignmentaregapopen- ingpenaltywith10andgapextensionpenaltywith0.1.Andmultiplealignmentaregapopen- ingpenaltywith10andgapextensionpenaltywith0.2.Besides,thetestofphylogenyis accordingtobootstrapmethodwith1000ofbootstrapreplications.Thefunctionalmotifs,pat- ternsandbiologicallysignificantsitesintheRCAaminoacidsequencewerelocatedwiththe ExPASyProteomicsServerScanProsite(http://www.expasy.org/tools/scanprosite/). Quantitativereal-timePCR ThetranscriptprofileofRCAintheleafbladesunderdifferentstressconditionswasdeter- minedusingquantitativerealtimePCR.TheqRT-PCRreactionswereperformedasdescribed previously,usingRCAprimers(F5'-CGTGACGGGCGTATGGAGAAG-3';R5'-GCACGAA GAGCGCCGAAGAAATC-3')andRCASspecificprimers(F5'-TTCTGCGCCATCCAGCTG AA-3';R5'-CCTCCTCCTCCTATGCAGG-3').RiceactinandEF-1αgeneswereusedasthe internalreferences.TheqRT-PCRexperimentwasrepeatedthreetimesindependently,andin eachexperiment,threetechnicalreplicateswereperformedforeachtreatmenttimepoint. Semi-quantitativeRT-PCR Actinwasusedasaninternalstandard(F5'–TCCATCTTGGCATCTCTCAG–3';R5'–GTA CCCGCATCAGGCATCTG–3').TheRCAgene-specificprimers(F5'–AGCTCGTCGTCCAC ATCTCCA–3';R5'–CTTGATGATGTCTGCCGCCTC–3')weredesignedforaregionthat includesthesharedregionoftheRCAsmallisoform(RCAS)andlargeisoform(RCAL)mRNA. Thethreebiologicalamplificationconditionswereusedforallgenes:95°Cfor5min;followed by30cycles(95°Cfor30s,60°Cfor30s,72°Cfor60s),andfollowedbyafinalextensionat 72°Cfor10min,andeachbiologicalreplicatewasconductedwiththreetechnicalreplicates. RubiscoandRCAproteinquantificationbyELISA ThesampleswerepreparedasdescribedbyWangetal.[19].ThepresenceoftheRubiscosub- unitandtwoRCAisoformsinthesupernatantandthylakoidweredeterminedbydirectELISA usingantibodiesproducedbyourlaboratoryagainsttheRubiscolargesubunit(RLS)or Rubiscosmallsubunit(RSS)andagainstdifferentisoformsofRCA.TheELISAwasmeasured accordingtothemethoddescribedbyWangetal.[19]. Statisticalanalysis Thedataabovewereanalyzedbyonewayanalysisofvariance(ANOVA),andsignificantdif- ferencesbetweentheindividualmeansweredeterminedusingDuncan’spairwisecomparison testatthe5%and1%(P<0.05andP<0.01)confidencelevels. Co-IPandSDS-PAGEanalyses ToinvestigatetheeffectsofabioticstressesontheinteractionbetweenRCA anditsbinding L protein,thecomplexwasisolatedfromleafextractswithProFound™Co-Immunoprecipitation Kit(Pierce,Rockford,IL,USA)accordingtothemanufacturer’sinstructions.Antibodiesto RCA wereimmobilizedonacouplinggeltopulldownthecomplex.Toexcludenon-specific L bindingbetweentheproteinandthecouplinggelorbetweentheproteinandtheantibodies,a non-relevantantibodyagainstthe6×Histagwascoupledtotheantibody-couplinggelinapar- allelassay.Theantibody-coupledgelswereincubatedintheproteinextractionsupernatant andwashedfivetimeswithwashingbuffer(80mMNaCl,8mMsodiumphosphate,2mM potassiumphosphateand10mMKCl,pH7.4),andthenthecomplexeswereelutedfromthe PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 4/16 RubiscoActivaseandAbioticStress couplinggel.Theresultingcomplexeswereseparatedon12%SDS—PAGEgelandstained withsilver. Ingeldigestionandmassspectrometry In-geltrypticdigestionofselectedspotswasperformedaccordingtothemethoddescribedby Wangetal.(2010)[19]withslightmodifications.Selectedproteinspotswereexcisedmanually fromcolloidalCoomassiestainedgelsanddestainedwith50%acetonitrile(ACN)in25mM ammoniumbicarbonate(NH HCO )fivetimes.Gelpieceswerethentreatedwith10mM 4 3 DTTin25mMNH HCO andincubatedat56°Cfor1h.Aftercooling,theDTTsolutionwas 4 3 immediatelyreplacedwith55mMiodoacetamidein25mMNH HCO andincubatedfor45 4 3 minatroomtemperature(25±2°C),thenwashedwith25mMNH HCO andACN,driedin 4 3 aspeedvacandrehydratedin20μLof25mMNH HCO solutioncontaining12.5ngμL–1 4 3 trypsin(sequencinggrade,Promega,WI,USA).Aftera10minincubationonice,samples werekeptat37°Cforovernightdigestion.Afterdigestion,thesupernatantwascollectedin fresheppendorftubesandthegelpieceswerere-extractedbycontinuousvortexingwith50μL solutionof1%trifluoroaceticacid(TFA)andACN(1:1v/v)for15min.Supernatantswere pooledtogether,vacuumdriedusingaspeedvacandthenre-suspendedin5μLof50%ACN and1%TFA(1:1v/v)solution.Amatrix-assistedlaserdesorption/ionizationtimeofflight massspectrometry(MALDI-TOFMS)analysiswasconductedwithaMALDI-TOF-TOFmass spectrometer(BrukerAutoflexIIImartbeam,BrukerDaltonics,Germany).Fromtheabove preparedsample,2μLwasmixedwithequalvolumesoffreshlyprepareda-cyano-4-hydroxy- cinnamicacid(CHCA)matrixin50%ACNand1%TFA(1:1v/v),andfinally,1μLofthesam- plewasspottedonthetargetplate. MS/MSanalysis ProteinswereidentifiedfromtheobtainedmonoisotropicpeptidemassesusingtheMASCOT searchengine(MatrixScience,London,UK;http://www.matrixscience.com)employingBio- toolssoftware(BrukerDaltonics,Germany).Thefollowingparameterswerefixedfordatabase searches:taxonomiccategorywassettoViridiplantae(greenplants),modificationsofcarbami- domethyl(CS),variablemodificationofoxidation(M),enzymetrypsin,peptidechargeof1 +andmonoisotropic.Thesimilaritysearchformassvalueswasperformedwithexistingdigests andsequenceinformationfromNCBInrandSwissProtdatabase.BasedontheMASCOT probabilityanalysis(p<0.05),onlysignificanthitswereacceptedforproteinidentification. Results PredictionanalysisofRCA andRCA promoters L S TounderstandwhetherthepromoterlevelofRCAisregulatedbyabioticstresses,weanalyzed thedistributionofregulatorycis-elementsinthe2.0kbupstreampromoterregionofRCAL andRCASusingstress-responsiveelements(TC-rich),salt-inducedresponsiveelements(GT-1 motif),heatstress-responsiveelements(HSRE),lowtemperature-responsiveelements(LTR) anddehydration-responsiveelements(MBS,ACGT).TheresultsinFig1Ashowhighfrequent distributionofstressresponsiveelementsintheRCApromoterregion,including3fordehy- drationand2fortemperature(Table1).ThisindicatesthatRCAmightberegulatedbyabiotic stresses.Inaddition,5lightresponseelementswerealsofoundintheregulatorycis-elements inthe2.0kbupstreampromoterregionofRCA(Table1),whichconfirmsthatRCAisalight- regulatedgeneandastress-regulatedgene. PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 5/16 RubiscoActivaseandAbioticStress Fig1.AnalysisofRCA’spromoterandgenome.(A)Analysisofstress-responsivecis-regulatoryelements inthe2.0kb5’-upstreamregionsoftheRCAgene.(B)Theschematicrepresentationofgenomicorganization (exon-intronorganization)ofthegenomicsequenceofRCAgenesanditsalternativesplicing.Theelements locatedinthe(+)strandareabovethelines,whereasthoseinthe(-)strandareindicatedbelowtheline. doi:10.1371/journal.pone.0140934.g001 DifferenceingenomicorganizationandproteinstructureofRCA and L RCA S ThecompletecodingsequencesofRCALandRCASwereamplifiedusingPCRwithfirst-strand cDNAtemplatespreparedfromtotalRNA.Similartoapreviousreport[2],thealignmentof thegenomicsequencesofRCALandRCASwiththeirrespectivecDNAsequencesidentifiedsix exons(36,303,187,473,283and119bp)andfiveintrons(99,113,85,92and1032bp)in RCALandsixexons(36,303,187,473283and19bp)andfiveintrons(99,113,85,92and347 bp)inRCAS.ThenumberofexonsandintronswassimilarbetweenRCALandRCAS,butthe sizeofRCALwaslarger.(Fig1B) Theanalysisshowedthattherewere5differentconsecutiveAAs(aminoacids)between RCA andRCA ,exceptthatRCA hadanadditional33AAsattheC-terminalcomparedwith S L L theRCA inrice(Fig2Aand2B).Therefore,RCA had2additionalstrands(436–438,462– S L 465)and3additionalexposedregionscomparedwithRCA basedontheREPROFrecand S PROFAccserverwebsites.ThequantificationofthesedifferencesisshowninFig2C.RCAL hasmorestrands,intermediateandloopregions,andhasfewerhelixandexposedregions.In addition,therearemoredisorderregions(22of38AA)inRCA becauseofthedifferentAAs L accordingtothePROFbval,UconandMDservers.MoredisorderregionsmeanthatRCA L Table1. ThecisregulatoryelementsfoundinthepromoterregionofRCA. Function Totalnumber Elementsname Copynumber Light 5 GT1CONSENSUS 3 INRNTPSADB 1 TBOXATGAPB 1 Dehydration 3 MYCATERD1 1 MYBCORE 1 MBS 1 Temperature 2 MYCCONSENSUSAT 2 hightranscriptionlevels 1 5UTRPY-richstretch 1 doi:10.1371/journal.pone.0140934.t001 PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 6/16 RubiscoActivaseandAbioticStress Fig2.ThedifferencesinsecondarystructurebetweenRCA andRCA .(A)ThesecondarystructureanddisorderconfidenceofRCA .(B)The L S S secondarystructureanddisorderconfidenceofRCA .(C)The(B)ThequantitativeanalysisofthesecondarystructureofRCA. L doi:10.1371/journal.pone.0140934.g002 hasmoreregionsthatarepartiallyorwhollyunstructuredanddonotfoldintoastablestatein three-dimensionstructure. ThestructureofvarioushomogeneousdomainswassearchedfromthePDBbank,andthe tertiarystructureofRCAwasidentifiedandanalyzedusingthePhyre2server(http://www.sbg. PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 7/16 RubiscoActivaseandAbioticStress bio.ic.ac.uk/phyre2/html/page.cgi?id=index)andPyMOLsoftware(Fig3).Thetertiarystruc- tureofRCA wasdifferentfromRCA becauseofthe38additionalAAsattheC-terminal. L S WithinRCA andRCA ,theAAA+domain(labela)wasconserved.However,theC-terminal L S (labelb)inRCA wasdifferentfromthatinRCA .Thisdifferenceresultedinanadditional L S gap(labeld).Furthermore,thedomainneartheC-terminal(labelc)wasalsodifferent.Thedif- ferencebetweenbothisoformsimpliedthattheyhaddifferentfunctions.Inparticular,the additionalgapinRCA meansthatitmighthavemorefunctionsassociatedwithprotein- L binding. PredictionofactivesitesandinteractionwithRCA andRCA structure L S ThebindingsitesofthetargetproteinwerepredictedusingtheISISmethods[37]andthe “ImprovementofDNA-andRNA-ProteinBindingPrediction”method.Atotalof21active bindingsiteswerepredictedinRCA .Amongthem,only4DNA/RNA-bindingsitesare S showninFig4A.InRCA ,theactivebindingsiteswerereducedto20(Fig4B),whichweresig- L nificantlyalteredneartheC-terminus(Fig4).TheseresultssuggestedthatthetwoRCAiso- formsbondedtodifferentproteinsandhaddifferentfunctionsundervaryingconditions. RCA andRCA phylogenetictree L S ThephylogenetictreeconstructedforRCAclusteredallplantstogether(Fig5)attheamino acidlevel.Thehypotheticalproteinswithinthefirst100similarproteinsbyblastPofRCA L proteinwerealsoconsideredinthisstudy.Thisfigureismadeusingthecompletesequence,in whichtheconservativebetweentwoenzymesishigherthaninthediversitysequence,sothe RCA ofdifferentspeciesisdispersedinthefigure.Theaminoacidsequencealignmentsofthe L RCAisoformswiththeircorrespondingsubunitsfromOryzasativa,Brachypodiumdistachyo, Deschampsiaantarctica,Triticumuartu,andArabidopsisarelistedinFig6andTable2.The RCA andRCA ofriceshared99%identitywitheachother,andtheC-terminalAAsinRCA L S L werealsoconservedaccordingtotheredboxRCA -specificdifferentialfragmentsofacid L sequencealignmentresult(Fig6).Moreover,theobservedphylogeneticrelatednesssuggested thattheevolutionofRCAinricewassimilartocloselyrelatedgrassfamilymembers,suchas BrachypodiumandDeschampsia.TheseresultsindicatedthatthestructureofRCAwasconser- vative,whereasthedifferentaminoacidsbetweenRCA andRCA werealsoconservative L S withinmanyspecies.ItsuggeststhatthedifferentfunctionofRCA maybetheresultof L evolution. ExpressionofRCAisoformsundervariousabioticstresses ThechangesinthetwoRCAisoformproteinsinriceleavesundervariousabioticstresseswere assessedusingwesternblotandELISAbasedonspecificmonoclonalantibodiesagainstboth isoformsandRCA only.TheELISAresultsshowedthatforsolubleRCAinthechloroplast L stromainrice,RCA was4~5timeshigherthanRCA ,andthetwoRCAisoformsweresignifi- S L cantlyup-regulatedfor24hoursofstress(Fig7A).AstheboundRCAseparatedfromthethy- lakoidmembrane,bothisoformswereup-regulatedunderallstressedconditions,andRCA L increasedmorethanRCA ,particularlyfortheheatandNaCltreatments(Fig7B).Western S blottingalsoconfirmedthesameresults(Fig7C).TheseindicatedthatRCA wasmorehighly L inducedunderabioticstresses. TodeterminewhethertheproteinisoformsofRCAwererelevanttomRNAaccumulation, thequantitativechangesinthetwoRCAisoformmRNAsinriceleavesduringthesameabiotic stressesweredeterminedusingsemi-RT-PCR(Fig7D)andqRT-PCR(Fig7E).Allofthe stressessignificantlyincreasedthetotalRCAmRNA(RCAL+S)(Fig7Dand7E).Becausethe PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 8/16 RubiscoActivaseandAbioticStress Fig3.ThedifferencesintertiarystructurebetweenRCA andRCA .(A)and(B)Predictionofthe3D L S structureofRCA andRCA basedonthePDBstructure.(C)and(D)Predictionofthe3DstructureofRCA S L S andRCA basedonthePDBstructure.Thelabels(a,b,c,d)indicatethedifferentdomainsbetweenRCA L L andRCA . S doi:10.1371/journal.pone.0140934.g003 quantificationofRCALexpressionwasimpossibleinourexperiment,wededucedthatthelev- elsofRCALmRNAwereincreasedbyseveralfoldunderallofthetreatmentconditionsbecause theincreaseintheRCASmRNAwasnotasmuchasthatoftotalRCAmRNA(RCAL+S)(Fig 7E).ThesefindingswereconsistentwiththeRCAproteininresponsetoabioticstressesand indicatedthattheincreasedRCAproteinlevelswereattributedtothepromotedtranscription ofRCALmRNAunderabioticstresses. Fig4.ThepredictedDNA/RNA-bindingsitesandproteinbindingsitesofRCA andRCA .(A)The L S predictedRCA sites.(B)ThepredictedRCA sites.DotsindicatetheDNA/RNA-bindingsites,andthe S L rhombusindicatestheproteinbindingsites. doi:10.1371/journal.pone.0140934.g004 PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 9/16 RubiscoActivaseandAbioticStress Fig5.ArootedphylogenetictreeconstructedusingMeGa5andiTOLshowingevolutionaryrelatednessofRCAinplants.ReddotsindicateRCA L withconservativedifferentaminoacidsbetweenRCA andRCA .Thebootstrapvaluesfrom1000replicatesareshownforselectedbranches. L S doi:10.1371/journal.pone.0140934.g005 Discussion RCAmaybeinvolvedintheresponsetomanyabioticstresses RCA,anuclear-encodedchloroplastprotein,catalyzesRubiscoactivationduringphotosynthe- sisbyremovinginhibitorsfromthecatalyticsitesofRubiscoinvivo[9,38,39].However,some studieshavereportedthatRCAquicklyrespondstostressconditionsandtreatmentwithplant hormone,whichisquitedifferentfromthefunctionsofRubiscoactivationofRCAacceptedby mostresearchers.Komatsuetal.[40]reportedthatagibberellin-bindingproteininriceis homologoustoRCA,andSharmaandKomatsu[41]suggestedthatRCAisassociatedwith Ca2+-dependentproteinkinasesingibberellinsignaling.Dejimenezetal.[42]firstreported that45kDRCA isinducedathightemperature(45°C)anddisappearsatnormaltemperature. L TheysuggestedthatRCAisapossiblenewmemberofthemolecularchaperonefamily.These studiessuggestedadditionalrolesforRCAbeyondRubiscoregulation[9].Furthermore,RCA PLOSONE|DOI:10.1371/journal.pone.0140934 October19,2015 10/16
Description: