ebook img

RSL Rover PDF

203 Pages·2017·4.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview RSL Rover

Santa Clara University Scholar Commons Interdisciplinary Design Senior Theses Engineering Senior Theses 6-10-2016 RSL Rover Patrick Barone Santa Clara University Giovanni Briggs Santa Clara University Aaron Burns Santa Clara University Hesham Naja Santa Clara University Zoe Demertzis Santa Clara University Follow this and additional works at:https://scholarcommons.scu.edu/idp_senior Part of theComputer Engineering Commons, and theMechanical Engineering Commons Recommended Citation Barone, Patrick; Briggs, Giovanni; Burns, Aaron; Naja, Hesham; and Demertzis, Zoe, "RSL Rover" (2016).Interdisciplinary Design Senior Theses. 24. https://scholarcommons.scu.edu/idp_senior/24 This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in Interdisciplinary Design Senior Theses by an authorized administrator of Scholar Commons. For more information, please [email protected]. RSL ROVER By Patrick Barone, Giovanni Briggs, Aaron Burns, Zoe Demertzis, Hesham Naja SENIOR DESIGN PROJECT REPORT Submitted to the Departments of Computer Science and Engineering and Mechanical Engineering of SANTA CLARA UNIVERSITY in Partial Fulfillment of the Requirements for the degree of Bachelor of Science in Computer Science and Engineering and Mechanical Engineering Santa Clara, California Spring 2016 RSL Rover Patrick Barone, Giovanni Briggs, Aaron Burns, Hesham Naja, Zoe Demertzis Departments of Computer and Mechanical Engineering Santa Clara University 2016 ABSTRACT The goal of this project was to design and implement an unmanned vehicle that can assess the air quality and general state of a post-fire environment. To do this, we equipped Santa Clara University’s Po- laris 6x6 Ranger with appropriate sensors and cameras to determine how safe the environment is for humans to enter. We also used GPS and laser scans to generate a 3D map that operators can use to de- fine certain zones as particularly dangerous. Finally, we incorporated partially-autonomous sensing capabilities that will allow the operator to easily drive the vehicle. The result was a rugged, advanced, and intuitive vehicle that can be used to protect fire responders from any lingering hazards during the investigation of a post-fire environment. This vehicle is accompanied by a powerful operating system and local- ization techniques that will allow any future research groups to help this vehicle evolve into a fully autonomous system. iii Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Vehicle Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Systems Level Design 8 2.1 Customer Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Key Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 System Level Sketch and Use Cases . . . . . . . . . . . . . . . . . . . 10 2.4 Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Benchmarking Results . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 System Level Issues, Trade-off Analysis . . . . . . . . . . . . . . . . . 17 2.6.1 LIDAR Physical Configuration . . . . . . . . . . . . . . . . . 17 2.6.2 Sensor Physical Configuration . . . . . . . . . . . . . . . . . . 18 2.7 System Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . 19 2.8 Team and Project Management . . . . . . . . . . . . . . . . . . . . . 20 3 Subsystem: Environmental Sensing 23 3.1 Air Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 Payload Requirements . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 Component Selection . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.3 PCB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Sensor and Camera Layout . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Subsystem: Sensor Housing 30 4.1 Need for Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 iv 4.2 Materials Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Initial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4 CFD Analysis and Iterative Work . . . . . . . . . . . . . . . . . . . . 33 4.5 Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 Subsystem: Operator Control and User Interface 38 5.1 User-Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 RobotWebTools and the ROS Control Center . . . . . . . . . . . . . 39 5.3 Improving the ROS Control Center . . . . . . . . . . . . . . . . . . . 41 5.3.1 Rendering the LIDAR Point Cloud . . . . . . . . . . . . . . . 43 5.4 Network for Internet Communication . . . . . . . . . . . . . . . . . . 44 6 Subsystem: Communications 46 7 Subsystem: Power 48 8 Subsystem: Localization/Mapping 49 8.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.2 Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.4 Hector SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.5 3D Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 9 Construction Plan 58 10 System Integration Testing and Results 59 10.1 Range Requirement Testing . . . . . . . . . . . . . . . . . . . . . . . 59 10.2 Latency Requirement Verification . . . . . . . . . . . . . . . . . . . . 60 10.3 GPS Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.4 Localization and Mapping Testing . . . . . . . . . . . . . . . . . . . . 62 10.5 Environmental Sensor Package Testing . . . . . . . . . . . . . . . . . 63 v 10.6 Blind-spot Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11 Costing Analysis 68 12 Commercialization Plan 69 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 12.2 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 12.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 12.4 Potential Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 12.5 Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 12.6 Sales and Marketing Strategy . . . . . . . . . . . . . . . . . . . . . . 75 12.7 Manufacturing Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 12.8 Product Cost and Price . . . . . . . . . . . . . . . . . . . . . . . . . 77 12.9 Service and Warranties . . . . . . . . . . . . . . . . . . . . . . . . . . 79 12.10Financial Plan and ROI . . . . . . . . . . . . . . . . . . . . . . . . . 80 13 Engineering Standards and Realistic Constraints 81 13.1 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 13.2 Health and Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 13.3 Manufacturability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 13.4 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 13.5 Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 14 Summary and Conclusions 85 Appendix A Design Requirement Flowdown A-1 References A-1 Appendix B Market Survey B-1 Appendix C Tradeoff Analysis C-1 vi Appendix D Budget D-1 Appendix E Gantt Chart E-1 Appendix F Power Budget F-1 Appendix G Drawings G-1 Appendix H Code H-1 H.1 Cameras Launch File . . . . . . . . . . . . . . . . . . . . . . . . . . . H-1 Appendix I Safety Protocol I-1 Appendix J Conference Slides J-1 vii List of Figures 1.1 Polaris 6x6 Ranger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Fire Investigation Flowchart [?] . . . . . . . . . . . . . . . . . . . . . 4 2.1 Use Case Scenario Illustration . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Software Component Block Diagram . . . . . . . . . . . . . . . . . . 12 2.3 Mech/Elen Component Block Diagram . . . . . . . . . . . . . . . . . 13 2.4 Argo J5 Mobility Platform . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Northrop Grumman’s Andros F6 . . . . . . . . . . . . . . . . . . . . 15 2.6 Northrop Grumman’s Remotec Wheelbarrow Mk9 . . . . . . . . . . . 15 2.7 Elimco UAV-E300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.8 Sensefly’s UAV EBee . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.9 LIDAR Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.10 Sample Sensor Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.11 System Layout Architecture . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 MQ-Series gas sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Sharp air particulate sensor with air flow . . . . . . . . . . . . . . . . 25 3.3 Air quality PCB schematic . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Printed circuit board layout . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Logitech c615 camera . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Example of OpenCV People Detection Application . . . . . . . . . . 29 4.1 For the gas sensors to work, air must flow over the sensor . . . . . . . 32 4.2 For the air particulate sensor to work, air must flow through the sensor 32 4.3 The solid designed for the initial CFD analysis that shows the initial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 CFD streamline analysis for our first design . . . . . . . . . . . . . . 34 4.5 CFD streamline analysis for our second design . . . . . . . . . . . . . 35 4.6 CFD streamline analysis for our final design . . . . . . . . . . . . . . 36 viii

Description:
carbureted gasoline engine which produces approximately 40 horsepower. The two rear axles have fixed differentials, forcing the four wheels to always The project is called the ROS Control Center and is an AngularJS project which provides a template for how to build a web-based user-interface to
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.