RRH based Massive MIMO with “on the Fly” Pilot Contamination Control Ozgun Y. Bursalioglu, Chenwei Wang, Haralabos Papadopoulos Giuseppe Caire Wireless Systems Project, MNTG Communications and Information Theory Group, Docomo Innovations Inc. Palo Alto, CA, 94304, USA Technische Universita¨t Berlin, 10587 Berlin, Germany obursalioglu, cwang, [email protected] [email protected] Abstract— Dense large-scale antenna deployments are one Although from the point of view of training a massive 6 of the most promising technologies for delivering very large array at a single site the pilot efficiency of reciprocity-based throughputs per unit area in the downlink (DL) of cellular 1 training is very attractive, to enable operation in a dense networks. We consider such a dense deployment involving a 0 antenna-site environment the uplink pilot dimensions need to distributed system formed by multi-antenna remote radio head 2 (RRH)unitsconnectedtothesamefronthaulservingageograph- beaggressivelyreused.However,havingnearbyuserstransmit n icalarea.KnowledgeoftheDLchannelbetweeneachactiveuser the same pilots can lead to significant pilot contamination at a and its nearby RRH antennas is most efficiently obtained at the nearby sites and can greatly impact performance. J RRHs via reciprocity based training, that is, by estimating a In [2], for example, a macro-cellular network is considered 8 user’s channel using uplink (UL) pilots transmitted by the user, and spatial pilot-reuse of 7 is advocated to alleviate pilot and exploiting the UL/DL channel reciprocity. ] We consider aggressive pilot reuse across an RRH system, contamination. Such a large pilot-reuse distance, however, T whereby a single pilot dimension is simultaneously assigned to is equivalent to a very poor spatial reuse of resources. In I multipleactiveusers.Weintroduceanovelcodedpilotapproach, [3] geographical scheduling across the cellular network is . s which allows each RRH unit to detect pilot collisions, i.e., exploited to optimize the spatial reuse and the MIMO method c when more than a single user in its proximity uses the same [ pilot dimensions. Thanks to the proposed coded pilot approach, separatelyatcell-centerandcell-edgelocationsthroughoutthe pilot contamination can be substantially avoided. As shown, cellular layout. As a result, high spectral efficiencies can be 1 such strategy can yield densification benefits in the form of achievedwithreuse-onepilotassignmentstocell-centerusers, v increasedmultiplexinggainperULpilotdimensionwithrespect while reuse-3 can be exploited at the cell-edge. Another line 3 to conventional reuse schemes and some recent approaches 8 of work to avoid pilot contamination includes exploiting the assigning pseudorandom pilot vectors to the active users. 9 knowledge of covariance matrices to allocate pilot resources Index Terms—Multiuser MIMO, massive MIMO, small cells, 1 to users based on their support of angle of arrival [6]. Unlike channel reciprocity, pilot contamination, interference mitigation, 0 channel estimation. [6], we schedule users randomly. . 1 Pilotassignmentindenseantenna-sitedeploymentsismuch 0 I. INTRODUCTION morechallenging.First,duetothetypicallyirregularantenna- 6 Dense large-scale MIMO deployments are an attractive site layouts different user terminals may train different num- 1 : optionforprovidingthevastthroughputsperunitareaneeded bersofnearbyantennas.Unlikethesymmetricmacroscenario v to cope with the explosive growth in wireless traffic. Small considered in [3], there are no simple geographic rules that i X cells [1] enable dense spatial resource reuse, i.e., coexistence result in scheduling users across the network with symmetric r of spatially separated short-range links on the same channel pilot-contamination characteristics, thereby making the prob- a resource. Combined with large antenna arrays to spatially lemofoptimizedcoordinatedschedulingandpilotassignments multiplex many users on the same channel resource [2], across the network a non-trivial one. [3], dense deployments can potentially provide 100-fold or In this work, we consider aggressive reuse of the pi- higher increases in throughput per unit area and bandwidth. lot dimensions across a remote radio head (RRH) system. Such dense massive MIMO operation is possible at higher The combination of aggressive pilot reuse and random user frequencies(e.g.,6-60GHz),wherelargenumbersofantennas scheduling inherently results in pilot contamination and pilot can be packed in a small form factor, [4], [5]. collisions at different RRH sites. By assigning the same pilot Inordertoachievelargespectralefficienciesinthedownlink dimensiontomultipleusersacrosstheRRHcoverageareafor (DL) via multiuser (MU) MIMO, channel state information simultaneous UL pilot transmission, and by employing fast at the transmitter (CSIT) is needed. Following the massive user proximity detection at each RRH site based on these MIMO approach [2], CSIT can be obtained from the users’ transmissions, different RRH sites can serve the packets of uplink (UL) pilots via Time-Division Duplexing (TDD) and multiple users whose codes are aligned on the same pilot UL/DL radio-channel reciprocity. This allows training large dimension. As a result, densification benefits can be achieved antenna arrays by allocating as few UL pilot dimensions as and the multiplexing gain of the system can be substantially the number of single-antenna users simultaneously served. increased compared to traditional schemes. A distributed massive MIMO system with single antenna noise compromising of IID 0,N γ entries, where N o p o CNp { q at each location is considered in [7], whereby multiple users denotes the thermal noise power. broadcast pilots over the same pilot dimensions causing pilot In the system we consider RRH j has available for (poten- contamination. [7] proposes a greedy algorithm for pilot code tial) transmission to user k in RB n a coded packet u n k r s design and a power allocation optimization between each (common across all RRHs). We focus on linear precoding antenna and user to mitigate pilot contamination. Our work options whereby, during the data transmission portion of the is different from [7] in that it relies on pilot allignment, and RBn,RRHsitej transmitsthefollowingM 1vectorsignal ˆ fastuserproximitydetectionateachfastRRHsite(whichcan over its M-dimensional array also be viewed as a decentralized RRH-site selection method x n v n u n (2) for each user’s packet). More important, unlike [7], we also jr s“ kr s kr s advocatetheuseoflargeantennaarraysateachRRHsiteasa kPÿSjptq meansforreducingthenumberofRRHsitesneededtoachieve where v n denotes the precoding vector for user k and k r s acertainmultiplexinggain.Aswedemonstrate,byleveraging t t is a suitably chosen subset of active users. The j S p qĂKp q theinherentlynarrowangularspreadintheuserchannels,large set t for which RRH j transmits their packet at slot t and j S p q antenna arrays at each RRH site, aggressive pilot reuse, and the precoding vectors v are chosen based on the received k t u fast user RRH-sector proximity detection, large increases in signal over the Q UL pilot REs in RB n. The received signal multiplexing gains can be harvested at a fraction of the RRH at active user k during the data-transmission portion is sitesrequiredbysingleantennaRRHdeploymentssuchas[7]. N yDL n hT n x n wDL n (3) II. SYSTEMMODEL k r s“ kjr s jr s` k r s j 1 ÿ“ We consider a setting involving an RRH system comprised where wDL n 0,N represents thermal noise. of N M-antenna radio heads uniformly (and randomly) dis- k r s„CNp oq In general, for a RRH system with a sufficiently large tributed over a square wrap-around geographical region A coveragearea,eachuserpilotisreceivedat“sufficiently”high with area A. The RRH system serves a large set of user Ktot power by only a fraction of RRH sites in the proximity of the terminals (uniformly and randomly distributed over the RRH users, i.e., only by RRH sites with sufficiently large g ’s. coverage region) via reciprocity-based MIMO over OFDM. kj For simplicity we consider a distance-based user RRH-site We assume a slotted system according to which the RRH proximity model, according to which a user pilot is received systemschedulesusersfortransmissionoverschedulingslots. at “sufficiently” high power by RRH site j if the distance Each slot comprises a subset of concurrent resource blocks between the user and the RRH site is less than r , for some (RBs), with each RB corresponding to a contiguous block of o value r . As a result, a user can be served by only the RRH OFDMresourceelements(REs).Withoutlossofgeneralitywe o sites within a distance r from the user. Given that a user consider a quasistatic channel model where the user-channels o can also be interfered by RRH sites within a distance r , remain fixed within any RB, but are independent across RBs. o we assume that a user can be served if and only if the user Weconsideragenericschedulingslott,andassumethatthe experiences no pilot contamination by any RRH site within users with indices from t are active in this slot for Kp qĂKtot distance ro to the user. somepreselectedschedulingsizeK t .WeletLdenote “|Kp q| This modeling abstraction is reasonable for reciprocity- thenumberofRBsintheslotandQthenumberofdimensions based DL MIMO transmission (as the pilot contamination (REs) allocated for uplink pilots in each RB. The k-th active from a RRH site to a user depends on the large-scale channel user (for any given k t ) broadcasts a Q 1 uplink pilot PKp q ˆ strength between the RRH and the user [2]) and corresponds in pilot RE n given by ?γpakrns, where akrns denotes the to neglecting pilot contamination from RRH sites at distances unit-norm normalized version of the UL pilot vector assigned larger than r . It is especially justified for milimeter Wave to the user by the RRH system and where γ represents the a o p (mmWave) channels, where the blocking probability grows priori known UL pilot transmit energy. such rapidly with distance that it is reasonable to assume The received signal at the M-dimensional array of RRH that beyond a certain distance no signal is received, despite site j from all pilot transmissions during the Q pilots REs the purely distance-based pathloss which, although sharply on RB n can be expressed (after rescaling by 1{?γp) in the decreasingfunctionofdistance,maybeneverthelessnon-zero. formofthefollowingq M matrix(Thedependenceontfor ˆ Letting j t t denote the subset of active users in Y n , x n , etc. is suppressed in (1)–(3).) K p q Ă Kp q jr s jr s proximity of RRH j in slot t, the set of active users served Yjrns“ akrnshTkjrns`Wjrns (1) byWReRfHocjusmounstpitlhoutsscsahteimsfyesSwjhpteqreĂthKejQptqp.ilotREsinanRB k t “ÿKp q are split into disjoint groups of q pilot dimensions (there are whereh n 0,g I denotesthechannelbetweenthe Q q suchgroups).Whenq 1,theuserssharingagroupofq kj kj r s„CNp q { ą antenna of the k-th active user and the M antennas of RRH pilot REs are assigned pseudorandomly generated codewords. sitej.Theh n ’sareindependentink,j,n.Weassumethat The scenario is illustrated via the toy example in Fig. 1 kj r s RRHsitej doesnotknowaprioritheg ’s.W n represents involving q Q 1, an RRH system with 6 RRH sites, kj j r s “ “ RRH 1 during a sufficiently large number of scheduling slots, RRH 4 AT. Given that the multiplexing gains per dimension for the RRH 5 Q q 1settingarethesameasthosefortheQ q 1setting UT 2 { “ { ą it suffices to study the multiplexing gains per RE in the case RRH 2 RRH 6 q Q: UT 3 “ 1 T UT 1 RRH 3 mq K,N lim t;q , (5) p q“T Tq |Sp q| Ñ8 t 1 ÿ“ with t;q t;q . The maximum multiplexing gain j j Sp q “ Y S p q per pilot RE for a given q Q scheme is given by Fig.1. q Q 1,3activeuserterminals(UTs)and6RRHsites. “ “ “ serving 3 active user terminals (UTs). The 3 UTs broadcast m˚qpNq“mKaxmqpK,Nq (6) pilotsonthesamepilotREonanRBinslott.Asitcanbeseen with the optimizing active-user scheduling size given by in the figure, RRH 1 can serve none of the UTs as it is not in the proximity of any of the UTs. In contrast, RRH sites 2 and Kq˚pNq“argmaxmqpK,Nq K 3 are in proximity of only UT 1 and transmit the same coded A. Upper Bounds based on Structured Scheduling packetu n toUT1.Similarly,RRH4transmitsu n toUT 1 2 r s r s 2.Incontrast,RRHsites5and6areinthevicinityofmultiple Upper bounds on the multiplexing gain per pilot RE can UTs (pilot collision event) and thus serve none of the UTs. It be obtained by assuming that the region is blanketed with A isalso evidentthatUT3 isnotservedin thegivenscheduling infinitely many RRH sites and users and assuming the ability slot as its transmitted pilot is contaminated (collided) at each to freely schedule users on suitably chosen locations. For this RRH in its proximity by other user terminals. Then, t upperboundwefocusonq Q 1.Onagivenslot,ouraim S2p q“ “ “ t 1 , t 2 , and t t t . istoschedulein asmanyasuserspossiblethatcanbeserved S3p q “ t u S4p q “ t u S1p q “ S5p q “ S6p q “ H A In summary, three active UTs broadcast pilots on a common byanRRHwithoutcausingpilotcontaminationtootherusers, pilot RE, and the 6 RRH-site system can serve two of these thereby obtaining an upper-bound on the multiplexing gains UTs yielding an instantaneous multiplexing gain equal to 2. per pilot RE with randomly scheduled users and randomly We consider a user k as “served” by the RRH system at placed RRHs. Since the area is completely covered by RRHs, t, if its packet is transmitted by at least one RRH site in its ascheduledusercanbeservedaslongasithasaninfinitesimal vicinity, i.e., if and only if j s.t., k j t . Then, letting areainitsdiscofradiusr0 withnootheruserdiscoverlaping. D P S p q t t , the multiplexing gain of the RRH system This can be achieved by packing as many discs as possible j j Sp q “ Y S p q in slot t is given by t . An implicit assumption in calling overthecoveragearea withanon-overlappedareaperdisc. |Sp q| A this the RRH-system instantaneous multiplexing gain is that As explained next, the maximum packing can be obtained for any user k t , any RRH j within distance r must by putting the discs on a hexagonal lattice. In particular, 1 o P Sp q alsonotcreatepilotcontaminationatuserk.Whenusercodes consider a hexagonal lattice in the form of two sets of offset are aligned on a single pilot RE then no RRH serves active square-grid sub-lattices. Letting d 2r0 denote the diameter “ users in a pilot dimension when multiple active users in the of the user discs with area of size D π 4 d2, we consider “p { q pilot dimension are in the proximity of the RRH. spacing the lattice points at a distance of d ?β. Such lattice { Similarly,considerthecasewhereasetofactiveusersshare examples for various values of β 0.5,1.5,2 are shown P t u Q q 1 pilot REs on an RB and assume the users are in Fig. 2 where blue and black circles simply correspond to “ ą assigned pseudorandom pilots over the q pilot REs on an RB the two set of discs on the two square sub-lattices. To avoid sothatthepilotsofanyqactiveusersarelinearlyindependent. “edge” effects we scale the area to “match” the lattice. A In the same spirit as in the q 1 case, the RRH serves all Assumethatc2 discsarespacedoneachoftheblueandblack “ the active UTs (on the shared q pilot REs) in proximity of the rectangular sub-lattice (See Fig. 2 with c 3 examples) and “ RRH,ifnomorethanq UTsareintheproximityoftheRRH, thatthereisonescheduleduseratthecenterofeachdisc.With and serves no UTs otherwise. Then for q Q, this lattice-based scheduling there are K β 2c2 many “ scheduled users in each slot. For a given βL,pAq “c2d2 β and if j t q “ { j t j t;q H |K p q|ą (4) thesetofactiveusersisK β π 2 β A D .Asthefigure S p q“S p q“#Kjptq if |Kjptq|ďq illustrates, for β 2, all aLcptivqe“uspers{aqrepser{vedq as there is at ă III. MULTIPLEXINGGAINSWITHGENIE-AIDED leastapointwithineachactiveusersdiscthatisnotoverlapped PROXIMITYDETECTION by other user discs. Since for β 2, no scheduled user can ą We next consider the genie-aided scenario according to be served (as any point in its region is covered by other user which each RRH knows the identities and the pilot codes of discs), the multiplexing gains per dimension are maximized the active user terminals that are in its proximity. A method with β 2 yielding an upper bound on the multiplexing gain “ for achieving such knowledge based on coded UL pilots is equal to m πA D. max “ { presented in Sec. IV. We investigate the average multiplexing Next consider lattice-based scheduling in the case of finite gains per pilot RE that can be obtained over coverage area N, there is a trade-off between the number of active users 105 pilootncSiwonhnbtcaetaeosmtfwiehernecravaacteianaddirfioneunnbiasaegtstmeeirtaoalsrchxo0eiehowcngitixitwmoeghaohhuvegmneraelrormpCsdalaentowuetnipiatnsbittdladnseecyehilcolroehndsykassp.aitmoDeotolsatrnitctceydgcTmhohaikaeeehaivsdtnictrtlren�“shanaraaiogsetonuaenin⇡tpprscnidcsaeipfie-bePcesdrxer4neio{e0abciptoda.lvtolnyfoddffmoeee5qaf2ifum,rassoibss,ldssiteruniRnc1tcaeeaad.pstyeairemmpRnslc5prwsdanhe,pesdpfledeH{e?adierraas2nt(tssdo,od�ocanehcfhSc.brnebdxeaiesoeobmuaeytdortust.envyasbeuLaahtsRheslouroieasaertniFepashtrlwneRindhdtncuepsaoeapoiegterHae.krtqpeuciotswrnitssa.seaupccsn2nessteceiaen,tairsigrrphAtaahKdeosAnnbd(.cer3ntatecotlixli0baechodhsetahoes)iFgifc”eofTcsiehuss inrdei)mgn“.htgi,cbmongssits2.nnepds⇡-ihstp5asliiqhltcxtetse2Lse.cweaeuem.hcr2tshepca{lhaxtptephwbwseastTriltu2elimiNor”rihf�tte0recshqyflusleeouo-enoeheeetteerma.mvrrngcagmltheaepmeArestxo aeyiaai1eaidtKaLTrntv5rsdcdtlnecmrUholha{edDzhuleeuod�aaressaiLstetsiaaoln.ateSRleudpii1pvocbitsAutwiβbutβusAaβws“prlgqm2rillB0bacnooufiom`“ovyshhsoS-taoi.ri2Sifqiese2 nannoie“cusssc.cyd0Fi.qnsrmNbdtSod.i tannish.tihekie. arsevueee=en”s5gtndeuai50td qtAT““gmAaF.snSac r“.esifov1zls enoh=deotmsAnrrrdaA sbeqwa2trmutBat sc.iiwshbhu2ttge uhRtetaotehmr=tasae Rovqiehsasrf0arhteeht hr�mhal f4mse”edewssnln=eRweatridhba1ae ree2ie0legeoteelsRgou01nr8eeie1seasflHcbwaafwesrfeiu`ilivvglaiicefi2la.teo.fnaneeuessssprnefha.thlihaoiscmoH5ceuhdnsrsistctcfirupirn5hsdscitoreoeeeunicetC1estoegtsvnes�dno�sG,altpsβrabRihe,ufsarie)iecnnreoasssw rspedlaoibswnnRic=cesslucowws-heerlyeynlsag(npsAlissx uβcHidaseg0uneaFcfoo,rs�firitthsrintbiirÑcf.hedstendwreh2sihh5tesbiniirintafbtbi,w1o,lAmtthbehtdtreichλam02ehaaath“tgsee`tdioeeaiuihoeottan2ecireearnarslonsssyNhhsse,rtasrhidngi.khebeeedorimdeqFeslcrceestrb2Rnrtdsietmeumeute�uitaibyevcehg2iβ0sihiadRasnnsnheeghouot.neianlientnritese�qeoslais{mr,vh5odH.euieraosoeggirshneuerakpiuinsrstneitl˚1rnAour“sa-bsrnN2vhtlvfistonsmmBogma.Feβfio.nieoueoeaea.aieslihisrbaeouruycrcoLnebisvtcnortlIepodfe’gmsyi2estat.oea.nssatLtosrSnbm2Rneiy1srsmsinitbbtqshedilrfieUi03tIpmtfi2sdclitrRmshhyaldh,sal rdnagafmeaoosntunr,ifFmhyihFipeaeelntoiihaeptsHutiefeictotulsfalemshβu�sga txladrpsrndlpsdnfiyeeco.ghsliidtvosalsg,)tlt.ftav.reReakgarrm.tranteoeutu-3deoe�Naheoyisamplwd.llRanmeilhotseedg2qeFnoxe3vnacetaaesaatndat,tHyCsifhlldalpoSbocfimhldDd�coss(utattwealfinAtw�itditmittmuefasuoorlmttslarnalfalqnsdahyuelrahhhohnhshnoheimfraSgebiavnarcpcrvgxrairbepeinefeeifsuiseecirlpinncleoeaaaPtrhsidesedlelaseiecafiesaufiteUebsapahntsqbr’oaLminaeeeoPveutpxcfioninet,ltmtCAGF«lnpttlcoisiatrsdnmaÑRduedtcsseeeue-xneattlhesEenvrlihlrl2incerrecttnnswmnvit�Ul(ysbls“teasoeroaaaesfoslliriLmoeatctetaotseoaeea,ulsRuyirtoawintitoetut1bteedebi.tielevvaiiiabemrtrraogvlcnanplsti“vhwqpUermeip04orihnydahbaKsi0acecrdehtptFusa0hsestofmrntoepHssdReoirirpealubluefeseerceaceluioutceeioe|osenriueisrnerecstsdainnoraivadprruealeuach2e.eshsit2Jfitet,adomnrRuaappolNtssalus|svrhxeoslueta2naeeswsa.n5drghftruilshnsgth.nt|heciiapytlgecslasaiyloge,⇡spoSbocfimhldDd�coss(utattwealfinAtw�itditmittmuefaseeeiebstibnbt2enux“mesiHeutJueiohxr5ondsntlpnecaratae,nahhhohnhshnohn.ihmleeanpnSdeohauomcicpc|eawJtAsvhidxssyairbscehn�w�yhwtinefeeifsuispei|oxiitioinnom{nidf{tdtiurfallciqatmgoeodaeiip1ttrhsirime|lrselaseiecafiesaufitehrenscpeqhesaahnesn�btLhna2aeeePmntaenauhyehlaxcbsnin{nehrnsuaiieshrtmtCAGFrehr4wrluaedcoisiaIβunbvttnieruaÑeerBdtchpslfsen-�a.xneattlaamdreceiisraplihlhrealliovxmcerrecttnnwlssnaba�ersUle,sitst“aqrattedcoagre,“0iswc5egllitetqiroeeatctxits⇡ualeeeoonenleeeaeenusuisbubicrtorwhacathticethe“βiiistosfubfbgaeednebi.thefgec´sdaSeap1liiimvt“easeigaaflcant|cβt2dvsticwavhruoo(cdn,vermeev.ixepr⇡tanrtoraihnydthtKudalarcQiitptFntus.ear0easgnoo{Jalstr´aciiocsdeoirrw,dirkeauepceusueeefaithlcrtbl2cta2necerptsg rcwottnceegoiii|akshnotaren22saoor,enseiseoierntileestccairaaisvaserli=hny,{it2udylAua2e.ryvhQqrksneitiJfiatlshhrnrsplcmolapotaoiscsauluavnxv)imeoslutaocgemnndniAa,ayeiilwaon5eledAualhsgghnt)ruishtsooenlsnsgta?bas|thAeci iialelgeahtha1rqsossycmhlovel,v⇡.{tbceapbteiiss�ramotirthspngttcmatneaf“emen1gtedohxriwtondstenlpninanieulactgiione,aenoinc.igattameaer{pm)�udeehaoemecardmlloR|eiwAeiehiDieeolanitmewhnwqhoyhsiewsxseiiith2igtdrsont.i1rsd{ttapan,bafie“ra,liqrnnhutmgoenpRgaoda�pβieo1ttoe{snt-szirongKcphl5iusasgueehnDcnrRoibte.febra2nmbathayeahacaehmnnfsphtaui1hsah4�rk4cpeReia.ns.iblcopteaiss�rae.cherymBoop(rpshyofveaeenniten.eoadeaasnoraaewgcoerpsasftalaliwprs.smuiβcsAsbaReteirds,itposthad�tcgete“t0aesotd5ettuvgeeRqiskulxe⇡senaleeenevewfl�leposquaiecreaneehactxtKshncehoi-AHmeatsahbydtah⇡oTcxhcsslaSsAdsvaeaeae{afea|tenafFdrsocewdhhvhh(cdnp,sevusraxeprtarnHir,qoastt,w”editoaseobn{eaanihnnrddnwet´Lseaccfih{JlcraHitaiobctoackorecepiemotocsfttebleetxt�ptnerrcrssnre,wdhangeidsnaref22hssavoaisre2es.b�nyedssetioeqemaibraaeDtcvtlheanxurplityehny,{gt2eyoeod,l“aboqeprtvieAQtkeieelhhhrr“nnlgD�maoteaooweoivnr)lWntritolsrcedrnhiAegaa,anruesorpoidemuiagntscnoβoeaanatxe?bsaKa|heelepnpxrlleotheqaemNnmihhtuaeecmbbisatep�natmnrciiehspwmAtetcifrvaeaaagediisnbRisotyitqeenlinneetdqmcotichccksunbonnigttatrf�urahmo)sl�(nsto{tradldaorRcfspleolempapnpniaeeomesnhiblmeDwsqsciwdsfeviiRdgnoioinga.admott1til.11notpeai,blall0red,aRmiahuelrRgfi�ponaeruopeh.iRnb-sestidhogafofecplesattsgheiuaqrRcicetecerKzvrttelpaghecula{fprnseeu,Rmacm�nguipaBln2DabReora.ainlserlucoi,tphe�distocsymhusn.ssorqhvmef�etepeyne⇡Htomes,meenaaviewsg.-tsaftieanohtrwpessab.tdic´AdiyRepseneassicpnoesseRaul�oe5ottetqaaoheaetpuRt,gttkho-ihsTeemeeehsvofl�ilpdeotseoraxqaraiac,eReansoendxcteseav-AHmTsetadelttoeixah”ehe�qslxcl“Aebaldnpadotet1eeaf{rscnoohnvbc,ashrchqsrncysrinaprtHieqeoberfh”rrega“abHso{shannrdhdwpeQirLymFrpychaficinHiiphtβr,teeolellfceiaee0eamtnowfeteety�ltH.1rcrdsanshmmdvgeeodaaearmeniiesrofcossevaefanerfhrioeemmyiraaDtprsivwrnxsenaha{ry“htbttfioeeord,lt“aafaanpe1esit1ss“pntnnnahxertemmowcgiueddeennraislonedxoaoeurhierlarsuhgsuoucrhp4ieucme.ecnogRg:aienplDlnleesoK“lppdreimlrFhepoyoecvamnhdrvdistuuaR2ma´eupcu1ataRnnetotnesdi,geusweoaseetir�nirailpri1biessotcytln�l.umsoedtqatchkse´edsuuaboiinsQeastrf.uynoRn(nrstrdic�ocphfslbolpttnannniameomeserst.saltci`deamdn2tgidmaeoBnirawetsβianex.1seemit�aileepnl0nrdadeicauoelhee.n⇡rurpptiRrearpbt{tesLdhopuofpiees2tttahqio?iteceel.cvFKrHul.vehrav2tpyaghmuelwsnuseesbexlteRqmcsphooinigweonrbo)noelalncrerEihheuardiwtovhst.sysb�lh1�{epeewys⇡aslmeeea�o-ytnnafsnhtrci�rnespπ.Aflbsr´encybaaQepnedhspis,nn3esssroleRaloe5onetltTrmdtqggftig-ihse.mwtyeetAxhfioL,pleee,t?elrtneraidnRnedacenaepeatssseeaad..iteseiehatqt”rhnqalANbyalpode-hillgdntpdauosetrtRofJnexva,tvph1crwshtncroirhiU|oerhrwtga“bHneenasidmtbsiryFnnenopeiyaanioh{ie{�rectpe�lylif´bias�tdaDetnreoeoheg“teatlhHrdNrseimdvehoi1tiampnoaeAsrecof��wfhaishTydtpastnstorgpedaha{rdticbRtotearrsAsitpacdkmieedepsuvate1isnsl“1tdinrJdahxy|usl8miastehetneafibndedo|aaseqoebasolurihitrlasolhgauhogr�uctatumeoosgDl.i�t�pDnpldoeacstivbe.rledrpayrctchxuIccge2gaQeueepncshranhionvneeesfodus{uoarssnshHovtsrslper.iatnqqeciuosclneni�.m.sehaoase´iesuavcsrpito.atfRnhringhni.giccdrc�ophebereeetennthrameeiptlstlmsRi`syedcsaA´meismeuweacssrAlyocmhsebtrerastesnrordeuoeftrheaq⇡s“qaeues|o“stearempttnotlomhpp1iiTee2htasusorRteeeaitsvFirml.ceryinm2ienytaweeeamnsrseubxe(uTileaReAqsnsoseqii{tceoiradnArlncerihdeervwshmshtmcrrysb�n1{arlFeips.,uaaamcton�spycasna.sencrndbasip.uubzstrdencaeema,ddsni,Hitirhohbd2.utaatltTnsipodogfbilHrtefefic{ghre|nntserhtii?uomieaa.i“lsnennedaaaptdessisrgdwsftea.efo.pghi2qRtdrfnialN2yJpdtoie-1il(Roetidaselass“asrsemeeRftaaacveTspscg.whuRdpsypoiorfiTsinvsibwtmlntetna´udsasmrbsne,neoyeapreoa�t{�cte”cLhldR�ars´banstnendetee1reseaio.iinbgbr.bnhcouiinilt�ltrpht0oae.�pihhaseuTlc|rRasscQauoetWutdoasudicRosutrA-sioicgdkietederesaRyduviaetecsroxnleelirrherpdeteyssdia3.hhanogbleergeamqa:hslecaeAtRwraolnR�.r�tayxntmhadsooossaIsec,�lrinλn�mpphdaeTcstvvtfseivbln.esaaorgdotrsarhns�naieueiqsdi5esieHenfas{uerss,tHvnaeeen.iattorHneutos)laec.uhp3a{svclcdpicrpeoftetobfetneni.genceecrstberre2Hetfettot,hhrtgg“tihplsechunFAod.taapepd.aacef-rAleyAqohsfabtoλeoueqzcstsoiulfroabRhhes“eeβseoereosr“segemgrsllawhrophpmThdrtausrsqteHitsirlryhettntswueaaen{adeuearTeaeaeAaAdocxnntseaitciuaatieisiCAeetteifvshnmh.m, lcrsratarboioeeRa,oamehospeatiaRsehendbtstdhbsgavdp=tn”iirnrohxlcsadarAgrg.{h`βasatnnsthpgvhctdceoeepcrDNinphan|atehoirmdislaiQ|udsaspesedesssedsorweftRolhHeeaopsirisRL2idntiaaao2Jdie ie.(gRrf2ahspelaehslphetasβirlimgwduRaipiifisnlhpesnvfWc2biiilsJc.ltus2isacdsstsneapsreiotiR”Lrhad-ReeβunaRm“canxtnneeoi1itsa.isnva.bnoeotbHna2an|aioenn.lvpu�qhleru0gns.⇡zdsihetqsanteiuec|huRarIieutegutownsusutftd-iveidtenvRn,iescssicxRdeairerhpspktoaaweosdadhnux.esgesueeghsseelkhacRiereAhtRowsesen.afynridsoesItmirnewc�rrneurcmttehaebTtvvs(rAstsardntsarRse�iihenqdi5ptBtlxHiaqlnisrs,beHrtlqnebrxx.eschoewnilitrHmdsu’es)hsscovhieissi`pcefdsttexdSsiee-seetymFr“hyHtlostudttno,hgex“tRshweekhunFdcoe.toeedniiceadaucseteehsn)qafriottouReefencbh{i.l2ocaeaslhhceceeresrner{lsaairortlheiumTHdrsopmehrrotcest.teduaseeniFtaareopatagaseaocrxntnrgfbuqsnatiesDaa.smhusCAtRfsheSmdnrpo,lsaby.eooeef,naoeeeheieesdichsdHhel.onhbgavetsgwTt”virr“ebtsu{hcesarorgrh`vA2aruaaatgtceetridpcoRceisTsiardrd.sbus2Qusmmmspsa,ttansdegfmrei2clh3eesiiHisctad,louaoemnie.e12auinzihpptltmtlrearoierlim,m.qhhesiiwaatiaeRhiepesrciisiiscii2{untdstbesc?noneqeseivoueauhahham-tleunm“rncezeneostasqvbsIobaegbn2nmtgittherrvpThdlrrlns⇡nzdeeceeatiiatheshhu�rRmiett“tregwrhtfyieid(vdndnndnhnyoRcicd0aeceeaeeaeaeeeeaaaawssko1ahsssssssdhfnucemc-rf-suhaeeldkaeiL:ehlsee,,,..afpgtrltoenrerldnittoaeba(trAeHtReeiiihen.xhirsdbealexx.schoewNil.amtUd’e2ssecvhuesgiehhseans`uvsttxd“strrn-“βy“ltmu.d1ao274Rsiueksd1e“oicihsdsteehs)eardaHttttRef,c,bh{.al2easealescmeaIpiQiumTcoetlrrel.ed.eriteartipatddnsenrfbxmnDeeeeea.musiqRdmrpo2srcsltsiBaaosvoawthugismcaps(dlvuqas(terfchnoeeNormalized multiplexing gainssf-)dHltdotltv,sgwTLi....btsuhcugvehshnoiaruaaaotsoidooeeloqeeicisTsiuv.snrosnuslc2aammsffasrersthtag2mciHta.louoUnermuinzQ4aiitltmtlreardde“teiachhesiiwaaiIreeohnieerrsm,ueeii{elltv“dsnrdnonlbtmAFWINIteauhahh8gevrs11223cezeebsIobaeutihvmtgitterrnenuudnmi,tarstpeectanfhw“tii|es�dpreenneoli8nSeav80505050v1uldndnndnhnyoae0aeceeaeeaeaeeeeaaanhitaahsiimssssssJpoao-rf-et:ccpee,,,..itseeioievdi0oqr2 orpgtiecUeabxnacil.lneeoealeeAretlwncodnrp1vmbsexteiAraoa|teheu)puranon,gtrea.tmFsesdhrml(roe,n“tergsreiEeprs2dRFttdueiFgtyctannlufieeqedlr{R.taiso(maiurseeiabedefid,i{aidlih3rldheirihhmhfnenetsiBaaosvoawthugismcaps(dlvuqas(teranNormalized multiplexing gainssgsDetasoagnc.nnarutr.RnoDltta.oatehshnoi.,liesaRgasorrhto,“eqeeiciibvdussnrosnsQtaaaesaaomffasrersnlnsollm.miwnEcm.rWdolmeRiQnseuru)iis“nameeseiacneouireeohnqahdgttmueesyaeFlllmmmSSSSB.ym3dsnrdoeHrsttmAFWINIcgrccrs11223t,enspFFtaUvtiuumsltautepHteabanfhowienct|arndpreennemso“sn3Selaiiiia0505050vihb4A1uerzeoaoc4nmLLhis“alhaohimmmmnboJrtfcdaeneooeceEaeetaer.eenedlatseai�evdir0nqsefyria2 itURmrpgmt,ihenUaeaeioe,nstxtilxamdrieuueoenlnhAteroaleiiyr⇡dcond)nrp1tvrmstesxl....evtecdttAdnaioa|betesoccnzusxson,ueepereFa.,“ indeqFes1hscodyhrml(iaolteortrrieggoo,hqqqql“1Pgrr8eelEaeaisrwhhegtcmtc{ecnLisore�nlooi4firqpedlr{Rlntsioenlsacmauduunspyianp0eabfid,i{ttai ihmpnu3etdaeMultiplexing gains per pilot RElueeminrnaoi,mtsehly2“nuscaibe====adgrRgmDhetyasoletnnslmuaeg.etnrrdnnqso.soDletsotoaoeatsaRsrtgancaricshrh,“hearaby nssQ.namssataoimyfnln.miitlr.tewsnsn1sscRal1248WdspsneetdaicQnsemureuhtosernmsfmoainuipadt.«1teodyalpmmmSSSSB.ugmlWtHst)aci8orc2eodnom(K,N)hnsstn,u,noedalnRsrnelipnhtarreqiwh0slhenefiauaeaAienct112233rersao“s33epsitaiiiiaeifh4AtsdreezueoemaoRamLL2s“l,nn2durummmmlntnbeormtdfnoceeoteonaletemHtamaluraqehd4lad�osmn05050505treseiabURhmoxctstm,hnnieridaehiaoe,hstemhndamRiugBi,n{hisrsilallfyr⇡nteemn)neavtssrsestgl....ectstadicbtrscznaetxbcruatpFs ndbet qrcQo1hecnahmynm2ohdD.il4ttscorrioilcop,haoqqqqlPnd8reeliaalwehlteegard{etgtLisoem�stooihhpottcan112olRgnlswcRdreuennpynpiiarh0eiseatshaa o,hlpanibeytevaihinRdnoo,seRtly2ae“isafbtd====dngFecRimhy05050tnesetealgeawwetbtatrdotwnqRoesnhfolwtr8mgs“rRnneQteisslathlrieeyos nmsa8oa.edmth0ieyoice.sildoraeessBnn1lswat l1248eaesaaustendccmetedHrtumofmna(.rinrdspru«1ioileisoadcghxWNteaHqRsi)an82eohnouHloredu,inooacr2iuhpn.esnremqwh0.tlenn,au.dinArorhoesQaiFhn8pfesnsfgbteleodfsiixissreeuaaa2s,nn2nedouorulmmdfn{ran.leetoupvtFnRmtgamsurasesn,dotsmnreaee.Fcuicts.ee.seaeoatnQ“urdhahsmtemqnteiego,{gspm�llfocneaemRidi,neavssfestetaiugegctrnerrqhtrmyaddcrrogaHstsubthmmmSSSSBimarcQossetahm2hdD.d4tAtqtctdoiilopceapqnbderirveigwlrtgeatr5.otme.asehhuRettncuo2Ruopusmlrehennopp´ucriiseahao.,hehrlgueibimeviiiiamuhisRdnoabQte1th.urnimFdesem*1*1sc3“disseqoemmmmealatbtalt{lrbaoesoFebdcnhr,ltic8e5H1rnma“RneatisleLLa“atleelewosstmiyasa.gelicesssp drua�iBqlwl3ltr0aereaonupustlrtnRdbsaocnehl1niotitutiaonURa.tr1esdsrnoonailoeisccshux....eeNiea3sHqRbivnlegoheunlvrdiocyo2itixoopae.snefebnug.uta tplqrn,ted0rehtestiqBFgahn((8cfecgi dbtloeo´sidihetrhraaaiqqqqluaoi.beooloimeafrstR1nb{r2sseuupFRnghsNNtsnstsnilxu2nolaeseeh2F.cevoauic.ee.saieoaaQ“uRdimsle“ntenishe1Qebctsm�r ocaRiii,ngtgseFcoRtcem3sdvuggtminreoqhdtmtenieddeearfgeHss====cuw“woimnedccsso))xdaaderinolcttehiqinbpeiroevrgw.eq.r,hgen.,eHee.aedfurRiedrohcud2ouo“apouslvnge´citotQ sie,hrt1gueiatgdmRdn)usiabinm1tma.ursrdidb31248dneqiuahgstlo{hclbrAaneesoetFeebt�tcainpsl0tH1rnantsaauee“lnel“swistsiyls.yoaheh4eltpt rhu{Rg�ishala3llar0r4npsugslctRssdnsuonosa1aotuinia.hyaho,danminaoeiesc,canusnei3csHepbcvlgotehentlveeit{oaaesnlfnecmugutpBqrmdenbmeeQet,dluioBQwgaceAci deotohgdt´detrcraai(saloe.bfmie⇡b3irstR1ln11u2tslusgnyhtthnselxhdd,oodieetsohevolaltnmScniaauexislehheseQbbitpeyiitwgs{txgcoRu,cUqe3esedbvumita.tohdtfmntieieafoeossc“idwlondsaiodxdL)seauoenwlteeiFipDishnDoero.uq.nmaphnimt,eeeHeyistddfi1nidhcoawsonomsl1vumgEbetQosiUemir,srartrdhatgn)neiidenrmlposmaersrs05tnmaeiuhsaisoRcnfrfsAtlne)ttsl�teicaltnpaqpt.ntarsee,4niet“ioslcshgyseytaehihoeotginetyhc{RgrlshaLlar4.griartusstnessarrsunnheyrplhRoA,d(acusmeitscelx,fnushotctinepsraqerhitneteaaeeUeNc.8{aeneIc.antcBhpctmgadenablaeQedumoQawlAiQtsthxgdtmiragtoHgenR(santlmo⇡beidt1utlahg2yrtahhe.lhapesdeodeiinltnmeSvdnmiu{custauex“ddohtl4.qscxeedbepmeyton,taws{txose,{URqitreebhtapaiFfmtonhsidiisraiediilIuLnsdDmcerumoiewofee2nDshDl�euoun.dofpfitemtlenftoiuiaterLitencmawsoineamHl1pcoumEbgebesUlafirbsrr0rhndhmfdnceoasgrl.osuner1sis0tcimaeeUnnlasregsRosffstlaiserleblte-aqp´.evmreeengseec,i4igtloxch.yesentenilooaminecmscrrhduLrl.rnrartusrtspsprmrstnerrp(uaReqcgustbctea“lxeflirhcottt3ienehtsraqerhwgaaUeRRomsas|c.eeIcaatiomdNeihepcnteeg1alagsoaimoa.n4leQtuJttdrnrago,HseaenRontlaoxem“Tadtmetsah2rarhsiuor)p.lapeRRene qpiitdfltgdmibicrut“tmmaddotinaw1xneedKerchmotonut,atoose{2Rit)recnbhevhpancF1aeuei2hiinttilleerr1tHHilIundmcr0tis|iosofen�elu0.ldofhoonnyn1y fqqf/xaleeeeeeaeeeeftoia)rLsssqs5tnnmarrieaHpcottbi.eul=afq35b hnmrfcoesg0une1stcieUnnlsrRreg,osnaierglei´eeeengcisx.etnlamcmrdusrlrnxstppsnmteraqgbcaReolirctt3eehta2lowhgRRomss|aeaRiomdieneee1soao.ne.uJdn,seaiyoasxm“Tapm0Hrsiuor)nsRRenqtdftfibertmmaninawrnercut3o2wcnbhevnc1aEe4ttilleerdtHHestis|Fs0lr0.hoonnyn1y qqxeeeeeeaeeeesssqsgrrapmtt.t5,8r .chhiQNemgfoaeyIdgru.nrd“3iuang5RqmRse5ilcipnts8RnE“eitesspianHcoi4hllan0s1tfenoiisowxs1oSSSSowp0oraiiiiiinmmmmna4itenfs4te....,r5r hgsqqqqrsftaf tiKehu,====onhnr vgen1248rwedegq˚e5amcs on0laiippteatnmusilNh ecossmbpctnqqitteiUbpvh{lsoot“eeeqaEto-frrtt,. p q« p {a´ q “p { q p { ´ q of scheduled users per RE, and provides some insight into the a a trend observed in Fig. 4. While at small numbers of active B. Random Scheduling Simulations users per RE, the collision probability is lower at larger q Fig. 3 compares the upper bound mmax, m˚1LUpNq and the values(seefigureinset),intheperformance-optimizingregime performanceofthebaselineschemewhereonly1userperRE of large numbers of active-users per dimension, the collision per RB is served by the system. For high enough number of probabilityismuchlowerforq 1.Tofurtherunderstandthis, “ RRHs where each user has at least one RRH in its vicinity, consider a system with Q 1 pilot REs per RB, with q 1 ą “ the baseline scheme has an average multiplexing gain of 1 andq Q.Forq QRRHjservesnouserif t exceeds j “ “ |K p q| per pilot RE. Besides, for various q values, 100 frames with Q. In contrast, with q 1, some users may be served even “ random user scheduling and random RRH site locations are when t exceeds Q, as a user is only interfered by the j |K p q| run for each K and N. The simulated multiplexing gain per subset of users sharing the same pilot dimension. Effectively, pilotREmqpK,Nqandm˚qpNq(asin(5)&(6))areobtained. the benefits of the q “ 1 system can be attributed to “pilot We first focus on the q 1 case. As expected, mmax interference alignment” of the other-group user pilots away “ is an upper bound to both m˚1pNq (Sim. q “ 1 curve) from the user’s direction. and m LU N (lattice based scheduling). It can be seen that ˚1 p q C. Finite Angular Spreads as the number of RRH, N, increases the ratio of m to max m N , empirically converges to π 2. We can also observe Although aggressive pilot reuse and fast user proximity ˚1p q { that m LU N approaches m as N increases and the detection can offer substantial increases in multiplexing gains ˚1 p q max lattice based scheduling has better performance than random with respect to conventional pilot-assignment schemes, these scheduling. Fig. 3 also shows m LR N , the multiplexing gainscomeatalargecostinthenumberofRRH-sitesrequired. ˚1 p q gainsperdimensioninthecasewheretheRRHsitesareplaced As the earlier examples reveal, the increase in multiplexing one a lattice (similar to the earlier described user lattice) with gainsissub-logarithimicinthenumberofRRHsitesrequired. random UEs scheduling. As seen, the benefits from careful In this section we leverage the presence of antenna arrays Probability00..168 SSSSiiiimmmm.... qqqq ====Cd 1248e.tAeFclittnhioiotnuegcAhanngaougflgafrerersSsspiuvrbeesatadpnsiltoiatlrienucsreeasaensdinf amstulutispelrexpirnogxigmaiintys S = 6 LS = L6 L Collision 00..0240 5 1wgA0aisitnhtsh1r5eceosempae2erc0litaettroae2l5caxoragnmevp3ec0ln0oe0.0t.015ssi toirn3ne5avlte5hpaeli4,ln0out1th0m-aebs4sei5nir1g5co nrfem5aR0esRnetHisn-cshimteeumslrteiespq,luetixhrieensdge. L RRHL1 L L H H L RRH2 gainsissub-logKa/qrithimicinthenumberofRRHsitesrequired. θ θ In this section we leverage the presence of antenna arrays L r 0 at eaFcihg.R5R.HNsit=e2to04i8mprove the number of RRH sites vs. H θ multiplexing gain trade offs. We remark that placing many θ arrayelementsonasmallfootprintateachRRHunitbecomes UT increasinglyfeasibleathigher(e.g.,mmWave)frequenciesand at each RRH site to improve the number of RRH sites vs. allows RRH-site sectorization. Sectorization is a well known multiplexing gain ttreachdnei-qoufefst.haWt iencrreeamseasrkthethsaptecptrlaalceinffigciemncaynyper sFiitge.i6n. Two RRHs are shown within r0 distance from UT. UT is in the arrayelementsonacsemllualallrnfoetowtoprrkisnbtyatpaeratictihonRinRgHeacuhnsiittebreacdioamllyeisntospercotxoirmsityofasectorifitsangularspectrumsupportoverlapswiththesector. andreusingthespectralresourcesineachsector[8]. The sectors where the UT is in the proximity are denoted by H, the others increasinglyfeasibleathigher(e.g.,mmWave)frequenciesand WeassumeasimplifiedscenariowherethechannelaorfeadneynotedbyL. allows RRH-site sectorization. Sectorization is a well known given user in the proximity of a given RRH site (i.e. within tcagdc“eenasiicvselndWhltecuanntrsenloeieacqruuparseusssa”neiesrnerurabtgotmytwei)hnteoaahthptrhteakahpesisesrsnopirbcmapepeyrdc“sowbRacrcrepeasnoifeiefitRiapsecanglrtNxitDrnscthiHaatvuaeofiitoeeisirnFllcomerneattstesceTredesitprriseiddhittvpeat”setiivitherspyospsaahresabastdoetonnaicmcteetycile)nuoatcigeaaotoatnactrrfnnlutroyhtsupeschgsraapaulmfipaeecsroascrfsreoelsofitorpibtrstcrig)ahoacepaevursitaciiewcnreprsnreevtisewfihnipapanirupenihlinotvlvertslnohnaesgliereeaaygtnvaietdersae.tctpedorhRpeiaidfCphenoipa(natfigeRosostrnintaiichles,tanθhYgagoHrshcieesdleupntetet.ecolofiiijgop(nqoaąfiatrws.rl1rruobcc,’tbclionse)eelsptahyrexrsyeernsnraiapi0)rpiotn[mtnvnlr(n)io.r8pj(gygefnaeeintnio]eauottcso.owtAy.ivdeelerotoronaieenl.nonnnrarat✓Ylsfsgalsownyfae(siargfijYptRg(stc°en.ier1huieqtutnwvajR)e.Rmhou,lrsnei0iianRseiHrietnnnyn(uth.nsrsHsfttbcohootApyshrasneineiataltrttoonaueuogtRgnssaf(iewugeevRtrsler.ehiageH’)lknesrtl..Multplexing Gain per pilot RE123400000 Multplexing Gain per pilot RESSSSSSS1234 00000======= 124681810,,,,,,, 1θθθθθθθ SSSSSSS======= =======πππππππ 12468181/////666660,,,,,,, 1θθθθθθθ ======= πππππππ/////66666 NuFmiNgbu.em6rb .oefr oS?f?i tS?eitses 110022 sectorthismaycorriessipnopnrodxtimo,itey.gof.,apsreoctjoercstinofgRYRHjrjn,sifotnhetodiastsanectebetween Fig.7. q“1,Q“8 ofNDoFtTetvheacttaonrsacstpiavutnehsneeuirsnsuekgprapainondrsttseRhcoeRtfoHptrrh’josexiaasinmnlggeuisutlsyalrathorsafpnfearcerntoqru,RumaRennHdocfyisfuisrttehaeren(kgiene.atge)n..rdsesceticotnorosf dtoimleeanrsnionasupseerr’suFscieghr.an7(n.oenlqdoi“vsetir1n,cthQteO“wFhD8oMle btoannedsw)idarthe fnoeredtehde ofRRHj isnon-empty.Wecanthusconsiderstraighforward withindistancero)ewxitellnsaiopnpseoafrthtoetbecehpnirqeuseesnotf(tih.ee.p,reitcsedpinilgostewctiiolnl replacing duration of such a scheduling slot1. In terms of the required bereceivedatsufficientlyhighpower)ononlythesubsetofthe user chatrnanineinlsg bovyerchoeandssidtoerlienagrnsaecutsoerri’szacthioannn.elI,nth[is6]s,ettthinegsisame thenotionofRRHsiteswithRRH-sitesectors.Forinstance, equivalent to the abstracted scenario in the previous section RRHsitesectorsthainththaevseys(tseimgnwifiithcaqnt)Qover1la,panwRiRthHt-hsieteusseectro’srcancshearrvaecteristic of user channels is used to carefully design user “ “ wherebyeachschedulingslotcomprisesLconcurrentRBsand angularspectrumsuapnpaocrttiv.eCuosnerseifqiuteinsttlhyewonelyasasctuivmeeustehraitnupsreorxikmitystcohtehdeules. In contrast, here, RRH-sector proximity detection the user channels are quasistatic over each RB [2]. Further- isinproximityofaRsRecHt-osritessoecftoRr.RHj,ifthedistancebetween combinemdorwe,itthheQagpgirloetsdsiimveenpsiiolnostpreeruRsBe(aolflothwespreuvsiotuossreacntidono)mly Fig. 7 illustrates the benefits of sectorization comparing user k and RRH j is less than r , and if the intersection of schedulecourrseesrpsonwdhhielreesttoilalsmsumaiinntgatihnaitnwgithhiignheamchulstcihpeldeuxliinnggsgloatins. against the omni-oscenario in Fig. 3 with q 1 and Q 8. the supports of theTahnegfiugluarrescpoencstidruerms uosferuasnegrulkarasnpdreasdesc“toofr✓s ⇡“(as a set of QL orthogonal pilot vectors (spanning QL OFDM of RRH j is non-eminptFyi.g.W3e) caannd t✓hus c⇡on6s.idAesr esxtrpaeicgtehdf,orfowra✓rd“ ⇡ IwVe. PtiImLeO-fTreCquOenDcIyNRGEsF)OaRreFalAloScTatePdRfOorXUIMLItTraYiniDngE.TECTION “ { “ Since at least L UL pilot dimensions are required for extensionsofthetecghetnitqhuee“soomfnti”hepeprrfeocrmedanincegsinecFtiigo.n3rewplitahciSng“ 1 aInndthilsearsneicntgioanuwseers’pcrheasnennetl,cwoedecsonfsoidreracthteiveca-suesewrheprreobxyima ity S 8 sectors. When the user-angular spread, however, is the notion of RRH✓sit“e⇡s w6,istehctRorRizHati-osnitperosveicdetosrssu.bsFtoanrtiianlsgtaainnsc.eI,ndeedde,ttehcetiosne.tFooflLlo1w“inLg`th`e°apLprpoialocthdiimne[n2s]ionesac(hforscsohmedeu`li°ng0slot in the system withmqu“ltipQ{lexing1g,aiannoRbtRainHed-sbitye1s0e4cRtoRrHcsa(nseeseFrivge. 3) csapnanbes thteowbehodeleterbmainndedw)iadrtehaagngdrescsoivmelypraissseisgntehdettootaalsiettyooffKa set “ “ active users across the RRH coverage area. Without loss of an active user if it oisbttahineedonbyly45acRtiRvHe usisteesriifnSpro4xismecittoyrstoarethuesed,obfyc3o0nsecutive OFDM symbols. The time-duration of a slot is “ generality,weassumethatthesepilotdimensionscorrespond RRH-site sector. sitesifS“6andby23sitesifS“8. within tthoeacseothoefrLen1cReEsti(monediostfintchtetonuesse)rincthhaenOnFeDlsMapnladnet.hWatethe InFig.6,asectorizIaVti.oPnILaObTstCraOcDtiIoNnGFisORshFoAwSTnPwRhOeXrIeMIwTYeDplEoTtECTmIOaNximuemnumuesreart-ecthhaenpnileoltRmEuslsthiparaetdhbsyparneaadctiviesgLrouspamfropmle1stolong twoRRHswithintheIpnrothxiismseitcytioonfwoeneprUesTenwt ciothdeasnfgourlaacrtivspe-ruesaedr pro(xwimiitthy LL1naontdceoxncseideedri“nogn-othffe”tyOpFeDpiMlotccoidrecsu.Tlahrekp-rtehfiaxct)i.veLuseprilot θ.EachRRHsitehadsete6ctsieonc.toFroslloswhoinwgnthbeyaprpergoiaochnsinb[e2t]weeacehnstcwheodulindgimsloetnsipoinlostppaettrernusisersp(eocinfieddibsytinmcetanOsoFfDanML1tˆon1ebsi)naaryrevencetoerded consecutive arrows.spIannsththisewfihgoulreeb,atnhdewiUdthTainsdicnomthperispesrothxeimtotiatylityotfoalseetarnbka,duessecrr’ibsincghwanhentehleroovrenrottuhseerwkhtroalnesmbitasnadpwiliodttihnefaocrhthe ofconsecutiveOFDMsymbols.Thetime-durationofaslotis of one of the sectorwsiothfinRtRheHco1hewrehnicleetiimteisoifnthteheusperrocxhiamnnietylsoanfd thdautrtahteion o1Ifnpsruacctihce,aL¯ sc↵hLe,d↵uli1nmgansylopitlo1t.diImnentseiornmscsanobefutshedetoreenqsuureired two sectors of RRHma2xiamsumshouwsenr-cbhaynnleelttemrulHtip.ath spread is L samplestraloinngingthoevquearlihtyeoafdchsan“tnoelelsetimar°antionabasuedseorn’asnycL¯hraanndnomelp,ilotthlioscatisoensttoivnegr is OFDMblock[9].Inthiscase,theanalysisprovidedinthissectionwillbe Fig. 7 illustrates(wtihtheLbennoetfietxsceoedfinsgecthteorOizFaDtiMoncicrcoumlarpaprrienfigx). LeqpuiliovtalevnaltidtboyutshinegL¯abinsstteraadcotfeLd. scenario in the previous section against the omni-scenario in Fig. 3 with q 1 and Q 8. wherebyeachschedulingslotcomprisesLconcurrentRBsand “ “ The figure considers user angular spreads of θ π (as the user channels are quasistatic over each RB [2]. Further- “ in Fig. 3) and θ π 6. As expected, for θ π we more,theQpilotdimensionsperRB(oftheprevioussection) “ { “ get the “omni” performance in Fig. 3 with S 1 and correspond here to assuming that within each scheduling slot “ S 8 sectors. When the user-angular spread, however, is a set of QL orthogonal pilot vectors (spanning QL OFDM “ θ π 6, sectorization provides substantial gains. Indeed, the time-frequency REs) are allocated for UL training. “ { multiplexing gain obtained by 104 RRHs (see Fig. 3) can be obtained by 45 RRH sites if S 4 sectors are used, by 30 1In practice, L¯ L ∆,∆ 0 many pilot dimensions can be used “ to ensure the quali“ty of`channel ąestimation based on any L¯ random pilot sites if S 6 and by 23 sites if S 8. “ “ locationsoverOFDMblock.Inthiscase,theanalysisprovidedinthissection In this section, we exploited the narrow angular spread of willbevalidbyusingL¯ insteadofL. (a) if multiple users are within distance r of the RRH site ygrenetolip User 1 ‚ (thi.aet.,tihfeřreKki“s1azkpiąlot1c),otlhliesiRonR;Hmustbeoabletodetermine if a single active user is within distance r of the RRH o L+` pilotdimensions ‚ site (i.e., if K z 1), the RRH must be able to (b) identifythataski“ng1lekus“erisinproximityandtheidentity ygrenetolip User 2 ‚ tohfethRaRtHusmeru(sřit.ea.l,stohebekaibnldeetxofiodrenwtihfiychwzhken“no1)u;sers are in proximity of the RRH. L+` pilotdimensions We also note that if a single active user on these L pilot 1 dimensions is the proximity of the RRH and is detected by (c) ygrene tuhseerRcRhaHn,ntehlecaunsebrecaenstibmeatseedr,vethdatbyis,thperoRviRdHedpthroevuidseedr hthaes tolip transmitted a pilot over at least L out of of L1 shared pilot REs (i.e., the user codeword must have at least L ones). Note L+` pilotdimensions that, the code example in Fig. 8 with two users satisfies these conditions.IftheRRHobserveshigherthannoisefloorenergy Fig.8. Receivedpilotenergy at more than 3 locations, it rightfully declares a collision (the case seen in Fig. 8 (c)). If it observes exactly 3 “off” pilot dimensions,bymatchingtheon-offpatternitdecideswhothe Since at least L UL pilot dimensions are required for uniqueuseris(Fig.8(a)or(b)).Incaseitobservesnoreceived learning a users’ channel, we consider the case whereby a pilotenergyinanyofthepilotdimensions,itdeclaresthereare set of L L (cid:96) L pilot dimensions (for some (cid:96) 0 1 “ ` ą ą no users in its proximity signaling at these pilot dimensions. to be determined) are aggressively assigned to a set of K Inspired by the received pilot energy example shown in active users across the RRH coverage area. Without loss of Fig.8,thepilotenergydetectionatanRRHcanbeseen“OR”- generality, we assume that these pilot dimensions correspond type channel (formal justification is also provided at the end to a set of L REs (on distinct tones) in the OFDM plane. We 1 of the section), whereby an RRH receives an “1” (indicating enumerate the pilot REs shared by an active group from 1 to sufficiently high received power) if at least one active user L andconsider“on-off”typepilotcodes.Thek-thactiveuser 1 transmitting a pilot is in the proximity of the RRH and 0 pilot pattern is specified by means of an L 1 binary vector 1ˆ otherwise. Specifically, for all 1 n L1, the RRH at pilot b , describing whether or not user k transmits a pilot in each ď ď k RE n observes the following: of the L RBs in the scheduling slot. Let b n b , then 1 k k n r s“t u user k transmits a pilot on shared pilot RE n if bkrns “ 1 (cid:15)rns“ORpz1b1rns,z2b2rns,¨¨¨ ,zKbKrnsq , (8) and remains silent if b n 0. In Fig. 8, a simple example kr s “ The simplest codes that enable active-user proximity detec- is shown with L 5 and (cid:96) 3 where two users share 8 pilot “ “ tion are comprised of K L 1 codewords (corresponding dimensions. ď ` to the case (cid:96) 1) given by Fig. 8 (a) shows the received pilot energy at an RRH if “ only the first user is in the proximity of this RRH while (b) bp1q n 1 δ k n , for 1 k K. (9) k r s“ ´ r ´ s ď ď shows the received pilot energy if only the second user is It can be verified that for the user-proximity model (8), the in the proximity of this RRH. The probability of any pilot observations (cid:15) n ; 1 n L satisfy the following: dimension being in deep fade is negligible due to large M t r s ď ď 1u andcoherentcombining,andnoiseflooriseasilydistinguished 1 if K z 1 from any received pilot energy. Then the individual received k“1 k ą (cid:15) n 1 δ n k if z δ k k for some k . pilot energy plots (Fig. 8 (a) & (b)) can be also seen as a r s“$ ´ r ´ os řk “ r ´ os o visualization of the on-off pilot pattern for each user. The ’&0 if zk “0 for all 1ďk ďK specific on-off code assignment to each user in this example Consequ’%ently,iftheRRHreceivestheall1’spattern(active- lets two users’ pilots overlap at pilot dimensions 5,7 and 8. userpilotcollision)ortheall0’spattern(noactiveuserisclose ThereceivedpilotenergyatanearbyRRH(withinr0 distance by) it does not send any user data. If, however, it receives a to both users) is the superimposition of two pilot sequences, pattern (cid:15) n 1 δ n k , it can identify the single user in o r s“ ´ r ´ s shown in Fig. 8 (c). proximityasuserk .Effectively,asingleuserispresentwhen o Next we consider user proximity detection at a fixed RRH there is exactly one zero observed, and the index of the pilot site and suppressing the dependence of variables on RRH site RE where a zero is observed identifies the user in proximity index. Let z 1 if user k is within distance r of RRH j, (as this is the only user that did not transmit a pilot on the k o “ and z 0 otherwise. According to the example in Fig. 1, given pilot RE). Subsequently, when user k is identified as k o “ to enable proximity detection, the detection mechanism based thesingleuserinproximity,thesetofLpilotobservationson on a set of active-user codewords must satisfy the following: theLpilotREsexceptpilotREk allowtheRRHtoestimate o on j), the channel response on tone n is given by 0.81 LL == 510 hk n L´1h˜k τ e´j2Nπnτ r s“ r s η L = 15 τ 0 0.6 ÿ“ L = 20 where 2π N is the OFDM tone spacing. Assuming also that Fvaigri.o9u.svaCloudese0.4oE 1fffiL6ci1.e1n1c6y21vs.numberoKf a5c6tive66usersperpilot10d0imensionfor tChNeNphe˜0xk,trρ,τkns,{’oτstIeqartwheaitithntdhρeekp,τeonbudsneeknrvntaoitwnionnkwoanendhthaeτve,nag-tnkhd“ptihloattLτ“´Rh˜01Ekρrτ(kns,τ-.t„h ř OFDM tone) is given by the Q 1 specialization of (1) the user channel across the whole bandwidth and thus serve “ the user in the data portion of the scheduling slot. K Since L ` 1 pilot REs are used per user, as opposed to yrns“ bkrnshTkrns`wrns the minimum required of L, the pilot code efficiency is η kÿ“1 “ L{pL`1q. Furthermore, letting Kmax denote the number of with bkrns denoting the pilot of user k on the n-th RE (with codecodewords,themaximumnumberofactiveusersthatcan b n 0,1 ).TheRRHsitefirstobtainsthesample-average k be supported on the common set of L1 pilot REs by a given recreisvePdtenerugy per antenna estimate ˆn y n 2 M. Er s“} r s} { code is Kmax. For the code in (9), Kmax L 1 users. Noting that E ˆn K b n g N , a hypothesis Extensions of the code in (9) can be d“evelo`ped that trade Er s “ k“1 kr s k ` o test of the form ” ı off η with Kmax. One such family of codes that includes the ř(cid:15)ˆn 1 code in (9) is parametrized by a pair of integers L and (cid:96) with ˆn r s“ Γ Er s ¡ (cid:96) 1. The code for a given (cid:96),L pair is the constant weight (cid:15)ˆn 0 ě p q r s“ code comprising all binary codewords of length L L (cid:96), 1 for some appropriately defined threshold enables proximity “ ` with L ones and (cid:96) zeros. The active users using such a code detection.FortheabstractedexampleofSec.II,whereauser’s share L1 L (cid:96) REs for UL training. large scale gain g z g, i.e., it is a non-zero value g if the “ ` k k Consider using such a code for a fixed (cid:96) and assume each user k is within r d“istance of the RRH j and zero otherwise, o activeuser(sharingtheL (cid:96)REsforULtraining)isassigneda setting the threshold to Γ 0.5g N , and taking the limit ` o unique codeword. For the model (8), it can be readily verified M yields (cid:15)ˆn (cid:15) n“, with (cid:15)`n from (8). that if more than 1 active users are in the proximity of the Ñ8 r s“ r s r s RRH, then there are at most (cid:96) 1 zeros in (cid:15) n , while the REFERENCES ´ t r su presence and identity of a single user in proximity are readily [1] V.Chandrasekhar,J.Andrews,andA.Gatherer,“Femtocellnetworks:A recovered at the RRH from the set of (cid:96) values of n for which survey,”IEEECommun.Mag.,vol.46,no.9,pp.59–67,Sep.2008. (cid:15) n 0. Also, the observations on the L pilot REs where [2] T.Marzetta,“Noncooperativecellularwirelesswithunlimitednumbersof thresde“tected user has ones in its codeword allow the RRH to basestationantennas,”IEEETrans.onWirelessCommun.,vol.9,no.11, pp.3590–3600,Nov.2010. estimatetheactiveuserchanneloverthewholebandwidthand [3] H.Huh,G.Caire,H.Papadopoulos,andS.Ramprashad,“Achievingmas- serGveivtehneaustearr.gCetlevaarlluye, Kfompr(cid:96)aqKx ,“theL`(cid:96)n(cid:96)um,banerdoηfp(cid:96)aqc“tivLe{upsLer`s (cid:96)oqn. sIEivEeEMTIrManOs.sopnecWtrairleeleffissciCenocmymwuint.h,vaonl.ot1-1so,-nlaor.g9e,npupm.b3e2r26o–f3a2n3te9n,nSaesp,”. ` ˘ 2012. a set of pilot REs, we may select the code (among the ones [4] A. Adhikary, E. Al Safadi, M. K. Samimi, R. Wang, G. Caire, T. S. for which Kmp(cid:96)aqx K) that yields the highest efficiency. This Rappaport, and A. F. Molisch, “Joint spatial division and multiplexing is equivalent to fiěnding the lowest (cid:96) for which K ď L`(cid:96)(cid:96) . f2o0r14m.m-wave channels,” IEEE J. Sel. Areas Commun., vol. PP, no. 99, Hence, the highest efficiency for a given K is given by [5] T.Rappaport,S.Sun,R.Mayzus,H.Zhao,Y.Azar,K.Wang,G.Wong, ` ˘ J.Schulz,M.Samimi,andF.Gutierrez,“Millimeterwavemobilecommu- 1 if K 1 η˚pK;Lq“#LL`(cid:96) if L(cid:96)`´“(cid:96)´11 ăKď L`(cid:96)(cid:96) for some (cid:96)ě1 [6] nMHi.caayYtii2on0n,1sD3f.o.rG5eGsbceerltl,uMlar.:FItilwipipllowu,orakn!d”IYE.ELEiuA,c“cAessc,ovoorld.i1n,atpepd.3a3p5p–ro3a4c9h, Subsequently, the ach`ieved˘net mu`ltiple˘xing gains by the to channel estimation in large-scale multiple-antenna systems,” IEEE Journal on Selected Areas in Commun., vol. 31, no. 2, pp. 264–273, RRH system is given by m K,L m K η K;L . netp q“ p q ˚p q February2013. Fig. 9 shows the maximum efficiency possible with the [7] H.Q.Ngo,A.Ashikhmin,H.Yang,E.G.G.Larsson,andT.L.Marzetta, givenfamilyofcodesasafunctionofK,forvariousvaluesof “Cell-freemassiveMIMO:Uniformlygreatserviceforeveryone,”arXiv preprintarXiv:1505.02617,2015. L. As seen, even small values of L provides high efficiencies. [8] H.Huang,O.Alrabadi,J.Daly,D.Samardzija,C.Tran,R.Valenzuela, Finally,itisworthjustifyingtheuseoftheORchannelin(8) andS.Walker,“Increasingthroughputincellularnetworkswithhigher- at RRH site j. Given an L-tap channel h˜ τ between user k order sectorization,” in Proceedings of the Forty-Fourth Asilomar Con- k andRRHsitej (suppressingagainthedeperndsenceofvariables ferenceonSignals,SystemsandComputers,,Nov.2010,pp.630–635.