Routing and tank allocation for a chemical tanker Mari Jevne Arnesen Magnhild Gjestvang Industrial Economics and Technology Management Submission date: June 2015 Supervisor: Kjetil Fagerholt, IØT Co-supervisor: Kristian Thun, IØT Norwegian University of Science and Technology Department of Industrial Economics and Technology Management Description of the thesis The purpose of the thesis is to model port operations done by a chemical tanker, with the objective of finding optimal routes in a port. The problem is considering one specific ship delivering and picking up cargoes in a port, complying with restrictions regarding time windows and draft limits. Cargo handling and stowage requirements are of particular relevance for a chemical shipping company, and are also included. The following topics will be studied: A tanker routing problem modeled as a pickup and delivery problem including time • windows and draft limits, solved both as a MIP implemented in Xpress Mosel and by using a dynamic programming algorithm implemented in Java. A pickup and delivery problem including time windows, draft limits, and tank • allocation, solved both exactly and by using a heuristic. Testing and discussion of results from generated test instances. • An evaluation of the models and solution methods developed. • i ii Preface This master thesis is the final result of the work for our Master in Science in Industrial Economics and Technology Management, with specialization in Managerial Economics and Operations Research. The thesis is a continuation of our work for the project thesis, done in the fall semester 2014. The purpose of the thesis has been to model port operations done by a chemical tanker, with the objective of finding optimal routes in a port. This master thesis is a part of the GREENSHIPRISK project, which is a collaboration between Odfjell, Western Bulk, MARINTEK, Norwegian School of Economics, and Norwegian University of Science and Technology. We would like to thank our supervisor Professor Kjetil Fagerholt for his insights and help- ful guidance. We would also like to express our gratitude to our co-supervisor, Kristian Thun, for his support and feedback, especially in the phase of developing the Java-code used in this thesis, as we had no knowledge with Java as a programming language. At last, we would like to thank our contact in the case company, Klaus Walderhaug, for his contribution of real case data and valuable input on shipping related issues. Trondheim, June 5, 2015 Mari Jevne Arnesen Magnhild Gjestvang iii iv Abstract This thesis considers a chemical tanker arriving a port with several terminals where customers are to be served. The customers have both pickup and delivery requirements, and the intention is to find a feasible route for serving the customers such that the total time used in port is minimized. Chemical tankers carry chemicals in compartments, and the routing decision is complicated when these chemicals need to be allocated to specific tanks. Draft limits at the terminals and time windows for when the cargoes can be served will also influence the terminal sequence the ship can follow. A literature study examining problems with similar characteristics is presented. There hasbeendonerelativelylittleresearchonshiproutingandschedulingcomparedtovehicle routing, and this thesis contributes to the literature by studying a pickup and delivery problem with time windows and draft limits. This has never previously been explicitly studied. Also including tank allocation to the problem is an additional contribution to literature, as the allocation of cargoes to tanks is an important planning problem for chemical shipping companies. Two models are developed, one without and one with tank allocation. The models are solved with two different solution methods. The model without tank allocation is solved exactly by direct implementation in a commercial mixed integer programming solver (MIP-solver), and by using a dynamic programming algorithm. The model with tank allocation is solved exactly with a MIP-solver and by using a heuristic. The heuristic consists of a dynamic programming algorithm to find ship routes and a MIP-solver to find feasible tank allocations. The computational study in this thesis includes testing of the two models using both solution methods for instances of different sizes, and analyses of the models and solution methods. The results from the computational study show that when the problem without tank allocation is solved using a MIP-solver, only small instances are solved in a short time. v The results from the computational study show that the MIP-solver is able to solve the problem without tank allocation in a short time only when instances of small sizes are considered. The run times increase drastically when the number of cargoes increases or tankallocationis included. The dynamic programming algorithmandthe heuristic shows promising results when solving the models without and with tank allocation, respectively. Bothsolutionmethodsareabletosolvetheproblemsforinstancesofrealisticsizes. These solution methods are therefore considered suitable to be a part of a tool used for decision support for chemical shipping companies. vi Sammendrag Denne avhandlingen betrakter en kjemikalietanker som ankommer en havn med flere terminaler hvor kunder skal betjenes. Skipet skal enten hente eller levere laster hos de ulike kundene, og hensikten med problemet er å finne en mulig rute slik at den totale tiden som brukes i havnen er minimert. Kjemikalietankere oppbevarer lastene i tanker, og allokeringen som må gjøres når laster skal tilordnes tanker kompliserer ruteplanleggingen. Dypgangsrestriksjonerforterminaleneogtidsvinduerfornårlastenekanbetjeneskanogså påvirke ruten skipet kan seile. I avhandlingen presenteres en litteraturstudie hvor problemer med lignende egenskaper har blitt undersøkt. I forhold til klassisk ruteplanlegging har det blitt gjort relativt lite forskningspesifiktpåmaritimruteplanlegging. Denneavhandlingenbidrartillitteraturen ved å studere et pickup and delivery-problem med tidsvinduer og dypgangsrestriksjoner. Detteproblemetharikkeblittstuderteksplisittfør. Åinkluderetankallokeringimodellen er et ekstra bidrag til litteraturen, da dette er et viktig planleggingsproblem for rederier med kjemikalietankere. To matematiske modeller har blitt utviklet; en med og en uten tankallokering. Modellene er løst med to ulike løsningsmetoder. Modellen uten tankallokering er løst ved direkte implementeringienkommersiellproblemløserforblandedeheltallsmodeller(MIP-solver), og ved bruk av en dynamisk programmeringsalgoritme. Begge disse løsningsmetodene er eksakte. Modellen med tankallokering er løst eksakt ved bruk av en MIP-solver og ved bruk av en heuristikk. Heuristikken bruker en dynamisk programmeringsalgoritme til å finne mulige skipsruter for så å bruke en MIP-solver til å løse tankallokeringsproblemet. Beregningsstudiet i denne avhandlingen omfatter testing av de to modellene med de ulike løsningsmetodene. Testingen er gjort på instanser av forskjellige størrelser for å analysere hvordan løsningsmetodene fungerer. Resultatene i beregningsstudiet viser at løsningsmetoden som innebærer å bruke en MIP- solver kan løse problemet uten tankallokering raskt kun for små instanser. Kjøretidene vii øker drastisk når antallet laster i instansene øker, eller når tankallokering inkluderes i problemet. Løsningsmetodene som bruker den dynamiske programmeringsalgoritmen og heuristikken for å løse henholdsvis problemene uten og med tankallokering viser deri- mot gode resultater når instansene er av realistiske størrelser. Disse løsningsmetodene vurderes derfor som lovende til å kunne være en del av et verktøy som kan brukes for beslutningsstøtte for rederier som står ovenfor lignende problemer. viii
Description: