ebook img

Rotman-An Introduction to Homological Algebra, 2nd PDF

721 Pages·2008·9.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rotman-An Introduction to Homological Algebra, 2nd

Universitext Forfurthervolumes: http://www.springer.com/series/223 Joseph J. Rotman An Introduction to Homological Algebra Second Edition 123 JosephJ.Rotman DepartmentofMathematics UniversityofIllinoisatUrbana-Champaign UrbanaIL61801 USA [email protected] Editorialboard: SheldonAxler,SanFranciscoStateUniversity VincenzoCapasso,Universita`degliStudidiMilano CarlesCasacuberta,UniversitatdeBarcelona AngusMacIntyre,QueenMary,UniversityofLondon KennethRibet,UniversityofCalifornia,Berkeley ClaudeSabbah,CNRS,E´colePolytechnique EndreSu¨li,UniversityofOxford WojborWoyczynski,CaseWesternReserveUniversity ISBN:978-0-387-24527-0 e-ISBN:978-0-387-68324-9 DOI10.1007/978-0-387-68324-9 LibraryofCongressControlNumber:2008936123 MathematicsSubjectClassification(2000):18-01 (cid:2)c SpringerScience+BusinessMedia,LLC2009 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork, NY10013, USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. Printedonacid-freepaper springer.com To the memory of my mother Rose Wolf Rotman (cid:5)(cid:12)(cid:11)(cid:2)(cid:8) (cid:5)(cid:8)(cid:1) (cid:11)(cid:6)(cid:3)(cid:7) (cid:9)(cid:8)(cid:4)(cid:2)(cid:11) (cid:10)(cid:7)(cid:2)(cid:2) (cid:3)(cid:2)(cid:11) Contents PrefacetotheSecondEdition . . . . . . . . . . . . . . . . . . . x HowtoReadThisBook . . . . . . . . . . . . . . . . . . . . . . . xiii Chapter1 Introduction 1.1 SimplicialHomology . . . . . . . . . . . . . . . . . . . . . . 1 1.2 CategoriesandFunctors . . . . . . . . . . . . . . . . . . . . . 7 1.3 SingularHomology . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter2 HomandTensor 2.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.2.1 AdjointIsomorphisms. . . . . . . . . . . . . . . . . . . . . . 91 Chapter3 SpecialModules 3.1 ProjectiveModules . . . . . . . . . . . . . . . . . . . . . . . 98 3.2 InjectiveModules . . . . . . . . . . . . . . . . . . . . . . . . 115 3.3 FlatModules . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.3.1 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Chapter4 SpecificRings 4.1 SemisimpleRings . . . . . . . . . . . . . . . . . . . . . . . . 154 4.2 vonNeumannRegularRings . . . . . . . . . . . . . . . . . . 159 4.3 HereditaryandDedekindRings . . . . . . . . . . . . . . . . . 160 vii viii Contents 4.4 SemihereditaryandPru¨ferRings . . . . . . . . . . . . . . . . 169 4.5 Quasi-FrobeniusRings . . . . . . . . . . . . . . . . . . . . . 173 4.6 SemiperfectRings . . . . . . . . . . . . . . . . . . . . . . . . 179 4.7 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 4.8 PolynomialRings . . . . . . . . . . . . . . . . . . . . . . . . 203 Chapter5 SettingtheStage 5.1 CategoricalConstructions . . . . . . . . . . . . . . . . . . . . 213 5.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 5.3 AdjointFunctorTheoremforModules . . . . . . . . . . . . . 256 5.4 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 5.4.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 5.4.2 SheafConstructions . . . . . . . . . . . . . . . . . . . . . . . 294 5.5 AbelianCategories . . . . . . . . . . . . . . . . . . . . . . . 303 5.5.1 Complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 Chapter6 Homology 6.1 HomologyFunctors . . . . . . . . . . . . . . . . . . . . . . . 323 6.2 DerivedFunctors . . . . . . . . . . . . . . . . . . . . . . . . 340 6.2.1 LeftDerivedFunctors . . . . . . . . . . . . . . . . . . . . . . 343 6.2.2 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 6.2.3 CovariantRightDerivedFunctors . . . . . . . . . . . . . . . 364 6.2.4 ContravariantRightDerivedFunctors . . . . . . . . . . . . . 369 6.3 SheafCohomology . . . . . . . . . . . . . . . . . . . . . . . 377 6.3.1 CˇechCohomology . . . . . . . . . . . . . . . . . . . . . . . 384 6.3.2 Riemann–RochTheorem . . . . . . . . . . . . . . . . . . . . 392 Chapter7 TorandExt 7.1 Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 7.1.1 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 7.1.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 7.2 Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 7.2.1 BaerSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 7.3 CotorsionGroups . . . . . . . . . . . . . . . . . . . . . . . . 438 7.4 UniversalCoefficients . . . . . . . . . . . . . . . . . . . . . . 448 Chapter8 HomologyandRings 8.1 DimensionsofRings . . . . . . . . . . . . . . . . . . . . . . 453 8.2 Hilbert’sSyzygyTheorem . . . . . . . . . . . . . . . . . . . 467 8.3 StablyFreeModules . . . . . . . . . . . . . . . . . . . . . . 476 8.4 CommutativeNoetherianLocalRings . . . . . . . . . . . . . 484 Contents ix Chapter9 HomologyandGroups 9.1 GroupExtensions . . . . . . . . . . . . . . . . . . . . . . . . 495 9.1.1 SemidirectProducts . . . . . . . . . . . . . . . . . . . . . . . 500 9.1.2 GeneralExtensionsandCohomology. . . . . . . . . . . . . . 504 9.1.3 StabilizingAutomorphisms . . . . . . . . . . . . . . . . . . . 514 9.2 GroupCohomology . . . . . . . . . . . . . . . . . . . . . . . 519 9.3 BarResolutions . . . . . . . . . . . . . . . . . . . . . . . . . 525 9.4 GroupHomology . . . . . . . . . . . . . . . . . . . . . . . . 535 9.4.1 SchurMultiplier . . . . . . . . . . . . . . . . . . . . . . . . . 541 9.5 ChangeofGroups . . . . . . . . . . . . . . . . . . . . . . . . 559 9.5.1 RestrictionandInflation. . . . . . . . . . . . . . . . . . . . . 564 9.6 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572 9.7 TateGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 9.8 OuterAutomorphismsof p-Groups. . . . . . . . . . . . . . . 587 9.9 CohomologicalDimension . . . . . . . . . . . . . . . . . . . 591 9.10 DivisionRingsandBrauerGroups . . . . . . . . . . . . . . . 595 Chapter10 SpectralSequences 10.1 Bicomplexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 10.2 FiltrationsandExactCouples . . . . . . . . . . . . . . . . . . 616 10.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 10.4 HomologyoftheTotalComplex . . . . . . . . . . . . . . . . 628 10.5 Cartan–EilenbergResolutions . . . . . . . . . . . . . . . . . 647 10.6 GrothendieckSpectralSequences . . . . . . . . . . . . . . . . 656 10.7 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 10.8 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 10.9 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675 10.10 Ku¨nnethTheorems . . . . . . . . . . . . . . . . . . . . . . . 678 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689 SpecialNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 Preface to the Second Edition HomologicalAlgebrahasgrowninthenearlythreedecadessincethefirstedi- tionofthisbookappearedin1979. Twobooksdiscussingmorerecentresults are Weibel, An Introduction to Homological Algebra, 1994, and Gelfand– Manin, Methods of Homological Algebra, 2003. In their Foreword, Gelfand andManindividethehistoryofHomologicalAlgebraintothreeperiods: the first period ended in the early 1960s, culminating in applications of Homo- logical Algebra to regular local rings. The second period, greatly influenced bytheworkofA.GrothendieckandJ.-P.Serre,continuedthroughthe1980s; it involves abelian categories and sheaf cohomology. The third period, in- volvingderivedcategoriesandtriangulatedcategories, isstillongoing. Both ofthesenewerbooksdiscussallthreeperiods(seealsoKashiwara–Schapira, CategoriesandSheaves). Theoriginalversionofthisbookdiscussedthefirst period only; this new edition remains at the same introductory level, but it now introduces the second period as well. This change makes sense peda- gogically, for there has been a change in the mathematics population since 1979; today, virtually all mathematics graduate students have learned some- thing about functors and categories, and so I can now take the categorical viewpointmoreseriously. When I was a graduate student, Homological Algebra was an unpopular subject. The general attitude was that it was a grotesque formalism, boring to learn, and not very useful once one had learned it. Perhaps an algebraic topologistwasforcedtoknowthisstuff, butsurelynooneelseshouldwaste time on it. The few true believers were viewed as workers at the fringe of mathematicswhokepttinkeringwiththeirelaboratemachine,smoothingout roughpatcheshereandthere. x Prefaceto theSecond Edition xi ThisattitudechangeddramaticallywhenJ.-P.Serrecharacterizedregular localringsusingHomologicalAlgebra(theyarethecommutativenoetherian local rings of “finite global dimension”), for this enabled him to prove that any localization of a regular local ring is itself regular (until then, only spe- cial cases of this were known). At the same time, M. Auslander and D. A. Buchsbaum also characterized regular local rings, and they went on to com- pleteworkofM.Nagatabyusingglobaldimensiontoprovethateveryregular localringisauniquefactorizationdomain. AsGrothendieckandSerrerevolu- tionizedAlgebraicGeometrybyintroducingschemesandsheaves,resistance to Homological Algebra waned. Today, it is just another standard tool in a mathematician’skit. Formoredetails,werecommendC.A.Weibel’schapter, “HistoryofHomologicalAlgebra,”inthebookofJames,HistoryofTopology. Homological Algebra presents a great pedagogical challenge for authors and for readers. At first glance, its flood of elementary definitions (which oftenoriginateinotherdisciplines)anditsspace-fillingdiagramsappearfor- bidding. To counter this first impression, S. Lang set the following exercise onpage105ofhisbook,Algebra: Takeanybookonhomologicalalgebraandproveallthetheorems withoutlookingattheproofsgiveninthatbook. Taken literally, the statement of the exercise is absurd. But its spirit is ab- solutely accurate; the subject only appears difficult. However, having rec- ognized the elementary character of much of the early material, one is often temptedto“waveone’shands”: topretendthatminutiaealwaysbehavewell. It should come as no surprise that danger lurks in this attitude. For this rea- son,Iincludemanydetailsinthebeginning,attheriskofboringsomereaders by so doing (of course, such readers are free to turn the page). My intent is twofold: to allow readers to see that complete proofs can, in fact, be written compactly; to give readers the confidence to believe that they, too, can write suchproofswhen,later,thelazyauthorasksthemto. However,wemustcau- tion the reader; some “obvious” statements are not only false, they may not evenmakesense. Forexample,if Risaringand Aand B areleft R-modules, thenHom (A,B)maynotbean R-moduleatall;and,ifitisamodule,itis R sometimesaleftmoduleandsometimesarightmodule. Isanallegedfunction withdomainatensorproductwell-defined? Isanisomorphismreallynatural? Does a diagram really commute? After reading the first three chapters, the readershouldbeabletodealwithsuchmattersefficiently. This book is my attempt to make Homological Algebra lovable, and I believethatthisrequiresthesubjectbepresentedinthecontextofothermath- ematics. Forexample,Chapters2,3,and4formashortcourseinmodulethe- ory,investigatingtherelationbetweenaringanditsprojective,injective,and flatmodules. Makingthesubjectlovableismyreasonfordelayingtheformal introduction of homology functors until Chapter 6 (although simplicial and xii Prefaceto theSecond Edition singular homology do appear in Chapter 1). Many readers wanting to learn HomologicalAlgebraarefamiliarwiththefirstpropertiesofHomandtensor; evenso,theyshouldglanceatthefirstchapters,fortheremaybesomeunfa- miliaritemstherein. Somecategorytheoryappearsthroughout,butitmakesa morebrazenappearanceinChapter5,wherewediscusslimits,adjointfunc- tors,andsheaves. AlthoughpresheavesareintroducedinChapter1,wedonot introducesheavesuntilwecanobservethattheyusuallyformanabeliancat- egory. Chapter6constructshomologyfunctors,givingtheusualfundamental resultsaboutlongexactsequences, naturalconnectinghomomorphisms, and independence of choices of projective, injective, and flat resolutions used to construct them. Applications of sheaves are most dramatic in the context of SeveralComplexVariablesandinAlgebraicGeometry;alas,Isayonlyafew words pointing the reader to appropriate texts, but there is a brief discussion oftheRiemann–RochTheoremovercompactRiemannsurfaces. Chapters7, 8,and9considerthederivedfunctorsofHomandtensor,withapplicationsto ringtheory(viaglobaldimension),cohomologyofgroups,anddivisionrings. LearningHomologicalAlgebraisatwo-stageaffair. First,onemustlearn the language of Ext and Tor and what it describes. Second, one must be able to compute these things and, often, this involves yet another language, thatofspectralsequences. Chapter10developsspectralsequencesviaexact couples, always taking care that bicomplexes and their multiple indices are visiblebecausealmostallapplicationsoccurinthismilieu. Awordaboutnotation. Iamusuallyagainstspellingreform;ifeveryone iscomfortablewithasymboloranabbreviation,whoamItosayotherwise? However,Idouseanewsymboltodenotetheintegersmodmbecause,nowa- days, two different symbols are used: Z/mZ and Z . My quarrel with the m firstsymbolisthatitistoocomplicatedtowritemanytimesinanargument; myquarrelwiththesimplersecondsymbolisthatitisambiguous: when pis aprime,thesymbolZ oftendenotesthe p-adicintegersandnottheintegers p mod p. SincecapitalIremindsusofintegersandsinceblackboardfontisin commonuse,asinZ,Q,R,C,andF ,Idenotetheintegersmodm byI . q m It is a pleasure to thank again those who helped with the first edition. I also thank the mathematicians who helped with this revision: Matthew Ando, Michael Barr, Steven Bradlow, Kenneth S. Brown, Daniel Grayson, Phillip Griffith, William Haboush, Aimo Hinkkanen, Ilya Kapovich, Randy McCarthy, Igor Mineyev, Thomas A. Nevins, Keith Ramsay, Derek Robin- son, and Lou van den Dries. I give special thanks to Mirroslav Yotov who notonlymademanyvaluablesuggestionsimprovingtheentiretextbutwho, having seen my original flawed subsection on the Riemann–Roch Theorem, patientlyguidedmyrewritingofit. JosephJ.Rotman May2008 UrbanaIL

Description:
Homological Algebra has grown in the nearly three decades since the first edi- and Manin divide the history of Homological Algebra into three periods: the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.