ebook img

Rotational stability---an amusing physical paradox PDF

13 Pages·2007·0.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rotational stability---an amusing physical paradox

IOPPUBLISHING EUROPEANJOURNALOFPHYSICS Eur.J.Phys.28(2007)845–857 doi:10.1088/0143-0807/28/5/008 Rotational stability—an amusing physical paradox Carlos M Sendra1, Fabricio Della Picca1 and Salvador Gil1,2 1DepartamentodeF´ısica,JJGiambiagi,UniversidaddeBuenosAires,Argentina 2EscueladeCienciayTecnolog´ıa,UniversidadNacionaldeSanMart´ın,CampusMiguelete, MdeIrigoyen3100,SanMart´ın(1650),BuenosAires,Argentina E-mail:[email protected] Received1May2007,infinalform7June2007 Published12July2007 Onlineatstacks.iop.org/EJP/28/845 Abstract Herewepresentasimpleandamusingdevicethatdemonstratessomesurprising resultsofthedynamicsoftherotationofasymmetricalrigidbody. Thissystem allows for a qualitative demonstration or a quantitative study of the rotation stabilityofasymmetrictop. Asimpleandinexpensivetechniqueisproposed to carry out quantitative measurements to explore the theoretical predictions ofthemodelpresentedtoexplainthemotionofthesystem. Ourresultsagree verywellwiththeexpectationsofthetheoreticalmodel. (Somefiguresinthisarticleareincolouronlyintheelectronicversion) 1. Introduction It is rewarding and instructive to share with friends and the public in general the fun and excitementthatwephysicistsoftenobtainfromexploringthewaysinwhichnaturebehaves. Herewepresentasimpledevicethatcanbeusedtoentertainfriendsataparty,whileillustrating thekindofproblemaphysicistenjoysworkingon. Itcanalsobeusedinaregularlaboratory coursetocarryoutquantitativemeasurementstoexplorethephysicsoftherotationalstability of a rigid body. The experiment consists of a rod the size of a pen or a ring attached to a flexible wire or a fishing line of about 30 cm as illustrated in figure 1. At rest the rod or the ring (symmetric top) hangs, as expected, with its centre of mass at its lowest position. Ifwestartspinningthewirewithourfingers, therodortheringrotateswiththeircentreof mass in the same position, but if we increase the rotation frequency above a critical value, thesymmetrictopbeginstoraiseitscentreofmassapproachingahorizontalpositionasthe frequencyincreases. Therisingofthecentreofmassisatfirstsightsurprisingandcontraryto ourintuition. Ifwenaivelyattempttocalculatethepotentialandkineticenergyofthebarata giveninclination,bothtermsincreasemonotonicallywiththeelevationofthecentreofmass 0143-0807/07/050845+13$30.00 (cid:1)c 2007IOPPublishingLtd PrintedintheUK 845 846 CMSendraetal ω ω z z 1 3 θ p θ θ 2 3 2 1 Figure1. Symmetrictoprotatingalongthezaxis. Left: thepositionadoptedbyabarwhen itisbeingspunthroughthewirewithourfingers. Right: thefigureshowsthecorresponding equilibriumpositionoftheringwhenitisrotating.Axis3representsthesymmetryaxis,whereas axes1and2aretheotherprincipaldirectionsofthebody. independentoftheangularfrequencyofrotation. Therefore,theobservedeffectappearstobe paradoxical. Thephysicsofthesymmetricaltophasimportantapplicationsinseveralareasofphysics, such as classical mechanics, molecular, nuclear physics and astrophysics. Therefore its understanding and inclusion in introductory and intermediate level courses is well justified andthedevelopmentofnewexperimentstoexploreitsphysicsisalsowelcome. Thephysics ofthefreerotatingtopistreatedinmostintroductoryandintermediateleveltextsonmechanics [1–4]. Therearealsoanumberofveryinstructiveandamusingdemonstrationsofthemotion of symmetric and asymmetric tops [5–8] among which the gyroscope is a classic example. Nonetheless,theliteratureofexperimentsonthissubjectthatallowsforprecisequantitative measurements, which can be contrasted with the corresponding theory or models, is very scarce. Inthisworkwedevelopasimplemodeltounderstandthisbehaviourqualitatively. Then wedevelopamorerefinedmodelthatcanbedirectlycomparedwiththeexperimentalresults. Themodelscanbereadilytestedusingtheresultsoftheexperiment. Weanalysethecaseof abarandaring. 2. Theoreticalconsiderations Webeginexaminingthecaseoftherotatingrod,whoselengthishandmassism,thathangs fromaverylongwireoflengthL((cid:1)h). Thissystemisillustratedschematicallyinfigure2. Thespinningangularfrequencyisω alongthezaxis(inthespace-fixedorinertialframeof reference). The behaviour of the bar becomes clear if we visualize our system from a body-fixed frameofreference. Inthisframe,whichrotateswithfrequencyωaroundthezaxis,thereare twotorquesinoppositedirections. Thetorqueduetothestringtension,τ ,tendstorestore w therodtotheverticaldirectionandthetorqueduetothecentrifugalforce[1,2],τ ,tendsto c Rotationalstability—anamusingphysicalparadox 847 Space-fixed frame ω Body-fixed frame z L >>h L T=mg θ F c F c mg h Figure2.Schematicrepresentationofarod,oflengthh,thatisbeingspunatanangularfrequency ωalongthezaxisbyalongwireoflengthL.Left: thebarisshowninthespace-fixedframeof reference.Right:thebarisshowninthebody-fixedframe(rotatingframe)ofreference.Herewe assumethatL(cid:1)h.Therefore,thestringisalmostparalleltotheverticaldirection(na¨ıvemodel). bring the rod to a horizontal position. We take the centre of mass of the rod as a reference pointforcalculatingthetorques. Inequilibriumthesetwotorquesareequal,therefore h h2 τ =m.g. ·sinθ =τ =m·ω2 ·sinθ ·cosθ. (1) w c 2 12 The details of the calculation of the centrifugal torque are presented in appendix A. From equation(1)itfollowsthattheequilibriumpositionoftherodisdeterminedby (cid:1) (cid:2) 6g ω 2 cosθ = = c0 , (2) hω2 ω with (cid:3) 6g ω = . (3) c0 h Inordertoobtainasolutionofequation(1)differenttoθ =0theconditionω(cid:1)ω must c0 besatisfied. Consequently,weexpectthatatlowrotationalfrequencies,ω<ω ,therodwill c0 rotateintheverticalposition(θ =0),forω > ω ,theangleθ willincreaseasω increases, c0 in accordance with equation (2). We will call the model just discussed the na¨ıve model. A moregeneraldiscussionofthisproblemispresentedinappendicesAandB,wherethecase ofafinitelengthofwire,andothergeometriesforthesymmetricaltop,arealsoconsidered. ThederivationpresentedinappendixAshouldbeaccessibletobeginnerstudents,whereasthe modeldiscussedinappendixBrequiressomeknowledgeofintermediateanalyticalmechanics [1–4]. 3. Theexperiment Theexperimentalarrangementweusedisshowninfigure3. Itconsistedofavariablespeeddc motor(withmechanicalreduction)poweredbyavariabledcvoltagesource,thatregulatesthe 848 CMSendraetal Variable speed motor ω Photogate toPC Motor Regulator Axis flag L h Figure3.Schematicrepresentationofarod,oflengthh,thatisbeingspunatanangularfrequency ωbyavariablespeedmotor. speedofthemotor. Wetapedaplastictubetotheaxisofthemotor(axisflag)tointerruptthe beamoflightofaphotogateoneveryrotation. Thephotogate,connectedtoacomputer,was usedtomonitorthespeedofthemotorandmeasureitsrotationalfrequencyω. Assymmetrical topsweusedaluminiumtubesofabout9mminanexternaldiameterwithdifferentlengths h. WedrilledasmallholeclosetooneoftheirextremestoattachathinwireoflengthLthat wasconnectedtotheaxisofthemotor. WeusedageneralpurposePVCinsulatedelectronic hook-upwiregauge24andabout35cminlength. Itsmasswaslessthan0.5%ofthemassof therodandwasneglectedinouranalysis. Wealsousedmetalringsofdiametersbetween5 and10cm. AWebCam(GeniusGE11)wasusedtoobtainthedigitalphotographsofthetops,once theyreachedanequilibriumposition. Aplumblinewasplacedinthebackgroundtodetermine theangleθ ofthebarorring. AnadvantageofmanyinexpensiveWebCams,suchastheone usedhere,isthatastheilluminationgetsdimmertheshutterspeedofthecameraisreduced. Therefore,byregulatingtheilluminationitispossibletoobtainaphotographofthebarorring thataveragesoverseveralpositionsofthetopasshowninfigure4,whereweclearlyseethe orientationoftherod. Thesedigitalpicturesallowustoobtaintheorientationangleθ witha fewdegreesofuncertaintyforeveryfrequencyofthemotor. Naturally,thesameeffectcould beobtainedusingadigitalcamerawithshutterspeedregulation. Anotheralternativethatcan beusedformeasuringtheorientationangleθ istousethedigitalcamerainvideomode. The procedurewouldinvolverecordingafewrevolutionsofthetop,andthenexaminingthevideo frame by frame to select the one where the wire and the bar are in the plane of the picture. Thenthepictureisusedtoproceedassuggestedinfigure4. 4. Resultsanddiscussion In figure 5, we present the experimental results (symbols) obtained for a hollow aluminium bar oflength h =25.5 cmand an external diameter d=0.95 cm, attached toathinwireof L=33.4cmtoapointonthebaratδ =0.8cmfromoneofitsextremes. Inthesamefigure Rotationalstability—anamusingphysicalparadox 849 θ Figure4. Photographoftherotatingbar. Aslowshutterspeedwasusedsuchthateachshot averagedoverseveralorientationsofthebar. Inthebackgroundtheimageoftheplumblineis shownthatwasusedtodefinetheverticaldirection.Thistypeofdigitalpictureallowedustoobtain therotationalequilibriumangleθwithanuncertaintyofabout2◦foreachrotationalfrequency. 80 Bar h=25.5 cm s) 60 e e gr de 40 ( θ0 20 0 0 1 2 3 4 5 6 7 8 9 f (Hz) Figure5. Thesymbolsrepresenttheexperimentalresultsforabar(h=25.5cm). Thedotted line corresponds to the prediction of the na¨ıve model given by equation (2). The dashed line corresponds to the expectation of the model (no.2) discussed in appendix A where the finite lengthofthewireisincluded. Theheavylineisthepredictionofthemodel(no.3)discussedin appendixBwhereboththefinitelengthofthewireandthedistanceδofthepointofconnection tothewirearealsoconsidered.Inthiscase,L=33.4cmandδ=0.8cm. we also show the theoretical expectation of the na¨ıve model equation (2). The models that includethefinitelengthofthewireandthedistanceδofthepointofattachmenttotheextreme ofthebararealsodepictedinthesamefigure. It is clear that for an adequate description of the experimental data model no. 3 that includes both the finite length of the wire and the distance δ is necessary. This model is developed in appendix B. In figure 6, we show the experimental results for another bar of a different length and for a ring. In this figure we have also included the prediction of model no. 3. Out of all the cases analysed in this work model no. 3 gives a very good description oftheobservedresults. Itisinterestingtonotethatduetotheeffectofthecentrifugalforce, athighrotationalfrequencies,thedrivensymmetricaltoptendstorotateabouttheaxisofthe largestmomentofinertia,independentlyofwhetheritisasymmetryaxisornot. In summary, we have devised a simple and inexpensive experiment that can be implementedinanintroductoryorintermediatelaboratoryclassonclassicalmechanics. We also developed a realistic model that adequately reproduces the experimentally observed 850 CMSendraetal 80 Bar h=15.6 cm s) 60 e e gr e 40 d ( 0 20 0 0 1 2 3 4 5 6 7 8 9 f(Hz) 80 Ring R = 3.1 cm ex s) 60 e e gr e 40 d ( 0 20 0 0 1 2 3 4 5 6 7 8 9 f(Hz) Figure6.Experimentalresults(symbols)forabarandaring.Theheavycontinuouslinesarethe expectationofthetheoreticalmodel(no.3)presentedinappendixB.Theotherlinesinthecaseof thebararethepredictionofthena¨ıvemodel(dotted)andmodelno.2(dashed). equilibriumorientationsofaspinningsymmetricaltopthatcanbeusedtostudytherotational stability of a rotating top. Our results are complementary to the analysis of supercritical bifurcation carried out, with a different approach, for the case of the ring using a similar experimentalsetup[9]. Acknowledgments Wewouldliketoexpressouracknowledgmenttootherstudentswhohaveexploredthephysics ofoursystemswithdifferentexperimentaltechniques: VBazterra,ACamjayi,MMansilla, ASolerno´andJTiffenberg. WeexpressoursinceregratitudetoProfessorFScarlassaraforan illuminatingdiscussionandaverycontributoryrevisionofthisarticle. Wearealsogratefulto DrASchwintforcarefulreadingofthemanuscript. AppendixA.Improvedmodelofarotatingrod—modelno. 2 Consider a rod forming an angle θ with the vertical. In the body-fixed frame, there is a centrifugal force that tends to bring the rod to a horizontal position and the string tension and weight that tend to restore the rod to the vertical position. The system is illustrated in figure7. Throughoutallouranalysiswewillassumethatthestringorwireislongerthanthe bar,i.e.L>h. Theequilibriumoftheverticalandhorizontalforcesimpliesthat T cosβ =mg and T sinβ =F(cm) =mω2εsinθ, (A.1) c whereTisthestringtensionandF(cm)isthecentrifugalforceactingonthecentreofmassthat c isrevolvingaroundtheverticalthatpassesthroughthepointofsuspension,thenetcentrifugal force. Hereε isthedistanceofthecentreofmassoftherodtothepointO(figure7)where Rotationalstability—anamusingphysicalparadox 851 Space-fixed frame Body-fixed frame ω L β L β δ T T.cosβ=mg θ θ O λ O Fc Fc x h ε mg Figure7.Schematicrepresentationofarod,oflengthh,thatisbeingspunatanangularfrequency ωbyastringoflengthL.Left:thesystemisinthefixedorinertialframeofreference.Right:the systemisinthebodyframeofreference(rotating). ThepointOontherodistheintersectionof theaxisoftherodwiththeverticalthatpassesthroughthepointofsuspensionofthestring,λis thedistancefrompointOtothepointofattachmentofthewire. theaxisoftherodintersectstheverticalthatgoesthroughthepointofsuspension. Fromthe geometryofoursystemwehavethat λ·sinθ =Lsinβ, (A.2) whereλisthedistancefromOtothepointofattachmentofthewire,therefore λ sinθ tanβ = · (cid:4) . (A.3) L 1−(λ/L)2sin2θ Fromthegeometry(figure7)wehavethatλ=h/2−δ+ε,whereδisthedistancefromthe pointattachmentofthewiretotheextremeofthebar. From(A.1)itfollowsthat g λ 1 ε = · (cid:4) . (A.4) ω2L 1−(λ/L)2sin2θ Note that ε > 0 if L is finite, since ε depends on the ratio λ/L ≈ h/2L, ε → 0 for L (cid:1) h. Thisexpressionprovidesanimplicitdependenceofε withθ andω,sinceλalsodepends onε. Thevaluesofεandλcanbecalculatedrecursivelyasweindicatebelow. All torques will be calculated using the point O as a reference. The torque due to the centrifugal force on an infinitesimal element of rod dx at a distance x from the centre of massis dτ =(x+ε)·cosθ ·dF =(x+ε)2·cosθ ·dm·ω2·sinθ. (A.5) c c Hereωistheangularvelocityoftherodanddm=(m/h)·dxisthemassoftheinfinitesimal elementoftherod. Sinceλ≈h/2,thetotalcentrifugaltorquewillbe (cid:5) m h/2 m τ ≈ cosθ ·sinθ ·ω2· (x+ε)2·dx = h2ω2cosθsinθ ·[1+12ε2/h2]. (A.6) c h −h/2 12 Thetorqueduetotheweightoftherodandthestringtensionis sinβ τ =mgλ·sinθ +mg· λcosθ −mgεsinθ, (A.7) w cosβ 852 CMSendraetal or (cid:6) (cid:7) λ λ cosθ τ =mg(λ−ε)·sinθ · 1+ (cid:4) . (A.8) w (λ−ε)L 1−(λ/L)2sin2θ Inequilibriumτ −τ ,therefore (cid:6) w c (cid:7) 6g 1 λ λ 1 2(λ−ε)/h ω2 = · + · (cid:4) · , for ω(cid:1)ω . h cosθ (λ−ε)L 1−(λ/L)2sin2θ (1+12ε2/h2) crit (A.9) Thisrelationdescribestheconnectionbetweenθ andω. Notethatthisisanimplicitequation betweenthesevariables. Itssolutioncanbefoundrecursively. First,basedontheconnection between θ and ω given by the na¨ıve model, we can calculate ε(θ, ω) using equation (A.4). Thisvalueofεthenallowsustocalculateλ. Usingequation(A.9)weobtainimprovedvalues of θ and ω. This process can be repeated to the desired precision. In our experience, two orthreeiterationsaresufficienttodetermineθ andωwith1–2%ofuncertainty. Thecritical valueofω isobtainedfrom(A.9)forθ =0,i.e., crit (cid:6) (cid:10) (cid:11) (cid:7) (cid:8) (cid:9) 6g h 1 2δ 2ε 2 1− 2δ ω2 = · 1+ (cid:8) (cid:9) 1− + c · (cid:8) h (cid:9), (A.10) crit h 2L 1− 2δ h h 1+ 12εc2 h h2 sinceλ−ε =h/2−δ,tofirstorderinδ/handε/h,thislastexpressionbecomes (cid:12) (cid:10) (cid:11)(cid:13) 6g 2δ h 4δ 4ε ω2 ≈ · 1− + 1− + c crit h h 2L h h (cid:12) (cid:13) h 2δ 2δ 2ε ≈ω2 · 1+ − − + c , (A.11) c0 2L h L L (cid:8) (cid:14) (cid:9) whereε =ε(ω ,θ =0)≈ g ω2 (λ/L)isthevalueofεatthecriticalfrequency. Sincein c crit c0 generalε andδ aresmallcomparedwithhorL,seefigure9,weneglectedthesecond-order c termsin(ε/h). Expression(A.11)canbefurtherapproximatedforthecaseofδ(cid:5)handε(cid:5) h<Las (cid:12) (cid:13) h ω2 ≈ω2 · 1+ . (A.12) crit c0 2L Consequently,theeffectofthefinitelengthofthewireistomoveω totherightofthevalue crit predictedbythena¨ıvemodelequation(3). ForL(cid:1)h,theexpressions(A.9)and(A.11)are reducedtoequations(2)and(3)respectively. Thezcoordinateofthecentreofmass,relativetoitslowestpositionis (cid:4) z =L+(λ−ε)− L2−λ2·sin2θ −(λ−ε)·cosθ, (A.13) CM and (cid:10) (cid:10) (cid:11) (cid:11) dz λ λcosθ CM =(λ−ε)sinθ · 1+ · √ ·θ˙, (A.14) dt λ−ε L2−λ2·sin2θ where(λ−ε)isthedistanceofthecentreofmasstothehangingpointofthebar. AppendixB.Effectivepotential—modelno. 3 Fortheanalysisoftherotationalstabilityofasymmetricaltop,subjecttoamovableconstraint (wire)inamoregeneralmanner,itisusefultoobtaintheeffectivepotential. Tothispurpose weusetheLagrangianformulationoftheproblem[1–4]. Letusdenotetheprincipalaxesof Rotationalstability—anamusingphysicalparadox 853 z z=Rotation axis z (3) L L β (3) β θ p (2) (2) θ θλ y λ y O O (1) (1) x φ Line of x φ nodes Figure8.Rotatingsymmetricaltops.Weassumethatω=φ˙andψ˙ =0,sincethereisnorotation aroundaxis3. λisthedistancefrompointOtothehangingpoint. Left: illustratesthecaseofa ring-liketop.Right:correspondstotherod-liketop. inertia of the top by 1, 2 and 3, axis 3 being the symmetry axis. Due to this symmetry the momentsofinertiaalongaxes1and2areequal,i.e.I =I =I (cid:7)=I . Thezaxis(inertial 12 1 2 3 frame) is chosen to be in the vertical direction. We take z = 0 to coincide with the lowest positionofthecentreofmassofthetop. TheLagrangianofthissystemis L=T +T +T(cm)−V , (B.1) tras rot rot grav where T is the translational kinetic energy associated with the raising or lowering of the tras centreofmassofthetop. Accordingto(A.10)wehave (cid:10) (cid:11) (cid:10) (cid:10) (cid:11) (cid:11) 1 dz 2 1 λ2 cosθ 2 T = m· CM = m (λ−ε)sinθ · 1+ √ ·θ˙ , tras 2 dt 2 (λ−ε) L2−λ2·sin2θ (B.2) where(λ−ε)isthedistancefromthecentreofmasstothehangingpointofthetop. Inthe caseofthebar,(λ−ε)≈h/2andforaring(λ−ε)≈radius. ThetermT(cm) indicatesthe rot kineticrotationalenergyofthecentreofmass,i.e., (cid:10) (cid:11) 1 1 g2 λ 2 sin2θ T(cm) = mω2ε2sin2θ = m . (B.3) rot 2 2 ω2 L 1−(λ/L)2sin2θ The rotational kinetic energy, T , written in terms of the Euler angles [1–4], for a rot symmetricaltopis (cid:15) 1 1 T = I ω2 = [I (θ˙2+φ˙2sin2θ)+I (ψ˙ +φ˙cosθ)2], (B.4) rot 2 i i 2 12 3 i whereθ,φ andψ aretheEuleranglesthatareusedinourproblemasgeneralizedcoordinates as indicated in figure 8. As usual, ψ describes the rotation of the top around axis 3 [1, 2]. In our case there is no rotation around this axis, since the wire does not twist, we have that ψ = constantandψ˙ = 0. Theconstraintimposedbytherotatingwireimpliesthatφ˙ = ω. Therefore,accordingtoourmodelθ becomestheonlydegreeoffreedomforoursystemand 854 CMSendraetal weuseitasthegeneralizedcoordinatetodescribeitsstate. Expression(B.4)isdifferentfor thecasesofaring-likeandtherod-liketopsasillustratedinfigure8. Inthecaseofarod-like topwehave T = 1[I (θ˙2+ω2sin2θ)+I ω2cos2θ]. (B.5) rot 2 12 3 Inthecaseofaring-liketopwehave (cid:16) (cid:17) T = 1 I (θ˙2 +ω2sin2θ )+I ω2cos2θ , (B.6) rot 2 12 p p 3 p withθ =π/2−θ andθ˙ =−θ˙. Ifweintroduceanewvariable,χ sothat p p (cid:18) π/2 forthecaseof thering-liketop χ = (B.7) 0 forthecaseof therod-liketop. Thenexpressions(B.5)and(B.6)canbecastinasingleconvenientform T = 1[I (θ˙2+ω2sin2(χ −θ))+I ω2cos2(χ −θ)], (B.8) rot 2 12 3 Forthegravitationalpotentialenergyaccordingtoequation(A.13)wehave (cid:4) V =mg·z=mg·[L+(λ−ε)(1−cosθ)− L2−λ2·sin2θ]. (B.9) grav Consequently,theLagrangianofoursystemis (cid:10) (cid:11) 1 λ2 cosθ 2 L= m(λ−ε)2sin2θ · 1+ √ ·θ˙2 2 (λ−ε) L2−λ2·sin2θ 1 + [I (θ˙2+ω2sin2(χ −θ))+I ω2cos2(χ −θ)] 12 3 2 (cid:10) (cid:11) 1 g2 λ 2 sin2θ + m 2 ω2 L 1−(λ/L)2sin2θ (cid:4) −mg·[L+(λ−ε)(1−cosθ)− L2−λ2·sin2θ] (B.10) andtheconjugatedmomentumofθ is (cid:6) (cid:10) (cid:11) (cid:7) ∂L λ2 cosθ 2 p = = m(λ−ε)2sin2θ 1+ √ +I ·θ˙. (B.11) θ ∂θ˙ (λ−ε) L2−λ2sin2θ 12 TheHamiltonian[1–4]ofoursystemis p2 H =p ·θ˙−L= (cid:16) (cid:8) θ (cid:9) (cid:17) +V (θ), (B.12) θ 2 m(λ−ε)2sin2θ 1+ λ2 √ cosθ 2+I eff (λ−ε) L2−λ2sin2θ 12 whereV (θ)istheeffectivepotentialgivenby eff (cid:10) (cid:11) 1 1 g2 λ 2 sin2θ V (θ)=− ω2(I sin2(χ −θ)+I cos2(χ −θ))− m eff 2 12 3 2 ω2 L 1−(λ/L)2sin2θ (cid:4) +mg·(L+(λ−ε)(1−cosθ)− L2−λ2sin2θ) (B.13) and ∂V (θ) eff =−ω2sinθcosθ|I −I |+mgsinθ 12 3 ∂θ (cid:19) (cid:10) (cid:11) (cid:20) λ2cosθ g λ 2 cosθ · (λ−ε)+ √ − (cid:8) (cid:9) . (B.14) L2−λ2sin2θ ω2 L 1−(λ/L)2sin2θ 2

Description:
z. 1. 3. 2 z θ ω ω θ θ. Figure 1. Symmetric top rotating along the z axis. such as classical mechanics, molecular, nuclear physics and astrophysics.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.