MNRAS000,1–17(2016) Preprint5thJanuary2017 CompiledusingMNRASLATEXstylefilev3.0 Rotation Curves of High-Resolution LSB and SPARC Galaxies in Wave (Fuzzy) and Multistate (Ultra-light Boson) Scalar Field Dark Matter T. Bernal,1(cid:63) L. M. Fernández-Hernández,1† T. Matos2,3‡ and M. A. Rodríguez-Meza1,3§ 1DepartamentodeFísica,InstitutoNacionaldeInvestigacionesNucleares,AP18-1027,CiudaddeMéxico11801,México 2DepartamentodeFísica,CentrodeInvestigaciónydeEstudiosAvanzadosdelIPN,AP14-740,CiudaddeMéxico07000,México 3PartoftheInstitutoAvanzadodeCosmología(IAC)Collaboration 7 1 0 5thJanuary2017 2 n a ABSTRACT J ColdDarkMatter(CDM)hasshowntobeanexcellentcandidateforthedarkmatteroftheuni- 4 verseatlargescales,howeveritpresentsseveraldifficultieswithobservationsatthegalactic level.Ontheotherside,theScalarFieldDarkMatter(SFDM),alsocalledFuzzy,Wave,Bose- ] EinsteinCondensateorUltra-lightAxionDM,isidenticaltoCDMatcosmologicalscalesbut A different at the galactic ones. Because of its quantum nature, the SFDM forms haloes with G core density profiles; it has a natural cut-off in its matter power spectrum, thus it fits well . the amount of satellite galaxies in the Milky Way neighbourhood, and predicts well-formed h galaxiesathighredshifts.Intherecentyearsastronomershavemeasuredtherotationcurves p andtheamountofluminousmatterandgasingalaxieswithgreataccuracy.Inthisworkwe - o reproduce the rotation curves of high-resolution LSB and SPARC galaxies with two differ- r ent SFDM profiles: (1) The soliton+NFW profile in the Wave DM (ψDM) model, arising t s empirically from cosmological simulations of real, non-interacting SF at zero temperature, a and (2) the multistate SFDM profile, an exact solution to the Einstein-Klein-Gordon evolu- [ tion eqs. for a SF perturbation, taking into account the self-interaction and temperature of 1 the real SF, introducing several quantum states as a realistic model for a SFDM halo. From v thefitswiththesoliton+NFWprofile,withoutassuminganycosmologicalrestrictiononthe 2 boson mass m , we obtained 0.264 < m /(10−23eV/c2) < 30.0 and for the core radius ψ ψ 1 0.311 < r /kpc < 4.90.AdditionallyweshowthemultistateSFDMmodelfitstheobserva- c 9 tionsbetterthantheempiricalsoliton+NFWprofileinaverysimpleway,evenatthecentres 0 of the galaxies, and it reproduces naturally the wiggles present in some galaxies, being a 0 theoreticallymotivatedframeworkalternativetotheψDMprofile. . 1 0 Keywords: galaxies:haloes,galaxies:structure,(cosmology:)darkmatter 7 1 : v i 1 INTRODUCTION energycontentoftheuniverse,settingthecontributionofdarkmat- X terto∼26%,meanwhilethebaryonicmatterisonly∼5%andthe r Darkmatter(DM)waspostulatedfirstinordertoexplaintherota- a cosmologicalconstantΛordarkenergyis∼69%(PlanckCollab- tioncurvesofdiskgalaxiesandtheobservedvelocitydispersionsin orationetal.2016). galaxyclusters,aswellastheobservationalmass-to-lightratiosin galaxiesandclustersofgalaxies(Zwicky1933,1937;Smith1936; ThemostaccepteddarkmattermodelistheColdDarkMat- Rubinetal.1980;Rubin1983).Later,itsnecessitywasevidentto ter (CDM), which is very successful at reproducing the observa- explainthegravitationallenses,thestructureformationintheearly tionsatcosmologicalscales;however,atthegalacticlevelitfaces universe,theacousticbaryonicoscillations,thepowerspectrumof some problems (see e.g. Weinberg et al. 2015). One of the diffi- galaxies,amongotherastrophysicalandcosmologicalphenomena cultiesistheso-called“cusp/core”problem,sincefromCDMN- (seee.g.Bertoneetal.2005;Bennettetal.2013).Thespacemis- body simulations the DM haloes are assembled with the “cuspy” sionPlanckhasobtainedthemostprecisemapofthetotalmatter- Navarro-Frenk-Whitedensityprofile(Navarroetal.1997),which isproportionalto1/ratsmallradiiandto1/r3atlargedistances, meanwhile many observations suggest a constant central density (cid:63) E-mail:tbernal@fis.cinvestav.mx or“core”profile,e.g.inrotationcurvesofgalaxies(Mooreetal. † E-mail:lfernandez@fis.cinvestav.mx ‡ E-mail:tmatos@fis.cinvestav.mx 1999;deBloketal.2001a;McGaughetal.2007,2016)anddwarf § Email:[email protected] spheroidal(dSph)galaxies(Klypinetal.1999;Kroupaetal.2010; (cid:13)c 2016TheAuthors 2 T.Bernaletal. Boylan-Kolchinetal.2011;Walker2013;Pawlowskietal.2014). with the characteristic ultra-light SF mass, the bosons condense AnotherissueistheCDMpredictionoftoomanysatellitehaloes veryearlyintheuniverseatcriticalcondensationtemperaturesof aroundbiggalaxiesliketheMilkyWay(Sawalaetal.2016)which TeV(Matos&Ureña-López2001),makingupBose-EinsteinCon- havenotbeenobserved.Aside,itfailstoreproducethephase-space densates(BEC)interpretedasthedarkmatterhaloes.Oneimport- distribution of satellites around the Milky Way and Andromeda antpropertyoftheSFDMisthat,atcosmologicalscales,itbehaves galaxies (Pawlowski et al. 2012; Ibata et al. 2013, 2014) and the asdustandreproducesthesameobservationsaswellasCDM:the internal dynamics in tidal dwarf galaxies (Gentile et al. 2007b; cosmic microwave background and the mass power spectrum at Kroupa 2012). Finally, another issue might lie in the early form- large scales (Rodríguez-Montoya et al. 2010; Hlozek et al. 2015; ationofbiggalaxies,sincetheCDMmodelpredictsbiggalaxies Schiveetal.2016).Recently,Schiveetal.(014a,b)haverunhigh- wereformedhierarchicallyfromhaloeslessmassivethan1012M , resolution cosmological simulations of Scalar Field (Wave) DM (cid:12) as is the typical case, but there are some recent observations of andreproducedthesameresults. massivegalaxiesatveryhighredshifts(5 (cid:54) z < 6)(Caputietal. Inaseriesofpapers(Matos&Ureña-López2007;Bernaletal. 2015). 2008;Robles&Matos2012)itwasshownthattheSFDMforms Such problems at the galactic scales might be solved by in- corehaloes(seealsoHarko2011).FurtherfeaturesoftheSFDM troducing the baryonic physics to the simulations, which can be wereanalysed,forexample,thegravitationallensingwasstudied relevantatthecentresofthegalaxiesandgalaxyclustersthrough byNúñezetal.(2010);Robles&Matos(2013a);theψ4-SFpoten- theinclusion,forexample,ofstarformation,supernovaexplosions, tialwasstudiedbyMatos&Suarez(2011);multistatesolutionsfor stellarwinds,activegalacticnuclei,etc.(seee.g.Governatoetal. theSF,i.e.bosonsinexcitedstatesoutsidethegroundenergylevel, 2010;Teyssieretal.2013;Pontzen&Governato2012;Madauetal. havebeenconsidered(seee.g.Bernaletal.2010;Robles&Matos 2014;DiCintioetal.2014;Pontzen&Governato2014).Froma 2013b;Martinez-Medinaetal.2015a;Bernaletal.2016).Numer- phenomenological pointof view,empirical CDMdensity profiles icalsimulationsofgalaxyformationwereperformedbyMartinez- have been proposed in order to explain the observations, e.g. the Medina & Matos (2014); Martinez-Medina et al. (2015b), where Burkert profile (Burkert 1996) and the generalised NFW profile thecharacteristicspiralarmsandbarsofadiskgalaxywereeasily (Zhao 1996). Aside, there are some alternatives to CDM seeking generated.Itwasalsoshownthatsatellitegalaxiesarestablearound to solve the discrepancies at galactic scales without appealing to SFDMhaloes(Roblesetal.2015).Andastatisticalstudyofhigh- baryonicprocesses,forinstance,WarmDarkMatter(Zavalaetal. resolutionrotationcurvesofspiralgalaxiesintheBEC-DMmodel 2009;Navarroetal.2010;Lovelletal.2012),Self-InteractingDark hasbeendeveloped(Fernández-Hernándezetal.2016). Matter(Spergel&Steinhardt2000;Yoshidaetal.2000;Davéetal. Asmentionedbefore,theSFDMmodelhasmanyvariants,de- 2001;Elbertetal.2015)andScalarFieldDarkMatter(SFDM)(see pendingonthespecificcharacteristicstudiedbydifferentauthors: Matos & Guzman 2000; Magaña et al. 2012; Suárez et al. 2014; theSFmightberealorcomplexandpossessaself-interaction,it Matos&Robles2016;Marsh2016;Huietal.2016,andreferences mighttakeintoaccountalsothetemperatureoftheSF,byintrodu- therein). cingasuitableSFpotential.ThemodelhasbeennamedasFuzzy We are interested in the SFDM model, studied within some DM (FDM) (Hu et al. 2000), Wave DM (WDM or ψDM) (Bray specialcasesandnameddifferentlydependingontheauthors.The 2012;Schiveetal.014a)orUltra-lightAxion(ULA)DM(Hlozek motivation is the natural solution emerging from this model to et al. 2015); Bose-Einstein Condensate (BEC) DM (Boehmer & theCDMproblemsmentionedbefore.TheSFDMmodelassumes Harko2007);MultistateSFDM(Robles&Matos2013b),etc. dark matter is a spin−0 scalar field (SF) ψ, with a typical ultra- IntheBEC-DMmodel(Boehmer&Harko2007)itisassumed lightmassm ∼10−23−10−22eV/c2,whichmightincludeself- a dominant self-interaction between the particles (Thomas-Fermi ψ interactions. The first time when this idea was mentioned was in limit);inthismodelallthebosonslieinthegroundstateatzero Baldeschietal.(1983);sincethentheideawasrediscoveredseveral temperature;themeanbosonmassfromtheanalyticdensitypro- timesusingdifferentnames(seee.g.Membradoetal.1989;Press file is m ∼ 10−6eV/c2. This model has been widely studied, ψ etal.1990;Sin1994;Ji&Sin1994;Lee&Koh1996;Matos& showing up sharp discrepancies in dwarf galaxies (Diez-Tejedor Guzman2000;Sahni&Wang2000;Peebles2000;Goodman2000; etal.2014),diskgalaxies(Boehmer&Harko2007;Robles&Ma- Matos&Ureña-López2000,2001;Huetal.2000;Wetterich2001; tos 2012; Fernández-Hernández et al. 2016) and galaxy clusters Arbeyetal.2001;Boehmer&Harko2007;Matosetal.2009;Woo (Bernal et al. 2016), ruling out this approximation as a realistic &Chiueh2009;Bray2010;Lundgrenetal.2010;Robles&Matos SFDMmodel. 2013b; Marsh et al. 2014; Schive et al. 014a) and more recently ThefirstmodelstudiedinthepresentworkistheWave,Fuzzy by Hui et al. (2016). However, the first systematic study of this or Ultra-light Axion DM, which share the same characteristics: idea started in 1998 by Guzman et al. (1999); Matos & Guzman aquadraticnon-thermal,non-interactingpotentialwithultra-light (2000),showingthattheobservedrotationcurvesofdiskgalaxies massesm ∼10−23−10−21eV/c2.Fromthecosmologicalsim- ψ can be reproduced by the SFDM model, and the cosmology was ulationbySchiveetal.(014a,b),anempiricaldensityprofilewas studiedforthefirsttimebyMatosetal.(2000);Matos&Ureña- obtainedfortheWaveDMmodel,composedbyacouplingofthe López(2000).OthersystematicstudiesoftheSFDMmodelwere asymptoticNFWdeclinewithaninnersoliton-likeprofilefromthe performed by Arbey et al. (2001); Arbey et al. (2002) and more SFDM(“soliton+NFW”profile)(Schiveetal.014a;Marsh&Pop recentlybyMarshetal.(2014);Marsh(2016). 2015). In the works by Matos et al. (2000); Matos & Ureña-López Secondly,weinvestigatethemultistateSFDM(Robles&Ma- (2000), using the amount of satellite galaxies observed in the vi- tos 2013b), which considers the SF is thermal at the very early cinity of the Milky Way, it was found that the mass of the scalar universe, interacting with the radiation and the rest of matter. By fieldshouldbem ∼10−22eV/c2.Withthisultra-lightmass,Al- introducingaself-interacting,temperature-correctedSFpotential, ψ cubierreetal.(2002)foundthroughnumericalsimulationsthatthe theauthorsobtainedanexactanalyticsolutionfortheSFdensity, gravitational collapse of a SF configuration forms stable objects includingthegroundandexcitedquantumstates.Thismodelhas withmassesM oftheorderofagalaxyhalo:M ∼1012M .Also, beenprovedsuccessfulinfittingtheobservationsofdwarfspher- (cid:12) MNRAS000,1–17(2016) RCsofHigh-ResolutionLSBandSPARCGalaxiesinWave(Fuzzy)andMultistateSFDM 3 oidalgalaxies(Martinez-Medinaetal.2015a),therotationcurves generalpotentialisgivenby ofdiskgalaxies(Robles&Matos2013b),thestronggravitational 1 1 lensing(Robles&Matos2013a)andthedynamicalmassesfrom V(ψ)= 2m2ψψ2+ 4λψ4, (2) X-rayobservationsofclustersofgalaxies(Bernaletal.2016). theso-called“double-well”potential,whichincludesthemassm Inthisworkwereproducetheobservedrotationcurvesof18 ψ of the SF and a self-interaction λ. For positive m2 the potential high-resolutionlowsurfacebrightness(LSB)galaxies,whereonly ψ has a single minimum at ψ = 0 and the potential is Z invari- the DM is taken into account, 4 representative SPARC (Spitzer 2 ant;for−m2 thepotentialhastwominimaandtheZ symmetry Photometry & Accurate Rotation Curves) galaxies and 2 other ψ 2 appearsspontaneouslybroken,beingofgreatinterestforphysical galaxiesusedinRobles&Matos(2013b)(thelast6galaxieswith situations(seeSubsection2.2).Arecentstudyoflargescalestruc- high-resolutionphotometricinformation).Forthegalaxieswithba- tureformationwiththelastpotentialhasbeendevelopedbySuárez ryonic data, McGaugh et al. (2016); Lelli et al. (2016a) analysed & Chavanis (2016). For this potential, in the hydrodynamic ap- 153galaxieswiththegasandstarsinformationfromtheSPARC proach, it is possible to write an equation of state of the SF, res- database(Lellietal.2016b),andfoundanempiricalradialacceler- ultinginapolytropeofindexn=1. ationrelationbetweentheobservedaccelerationfromtherotation Inthecaseλ=0,thepotential(2)reducesto curvesofthegalaxiesandtheaccelerationfromthebaryoniccom- ponent,showingadeviationatthevalueg† = 1.2×10−10m/s2. 1 V(ψ)= m2ψ2, (3) Thisresultcouldsuggestthatbaryonsarethesourceofthegravit- 2 ψ ationalpotential,atleastatsmallradii.AsMcGaughetal.(2016) whichhasbeenwidelyusedtomodeltheSFDMintheuniverse,as pointedout,suchrelationcanbeexplainedastheendproductof discussedinthenextSubsection. galaxy formation processes (including the baryonic matter), new DM physics or the result of a modified gravity law. In the CDM paradigm, Ludlow et al. (2016) introduced different stellar and 2.1 Wave(Fuzzy)DarkMatter AGNfeedbackprocessestoexplaintheobservedaccelerationrela- The Fuzzy DM (FDM) (Hu et al. 2000), Wave DM (WDM or tioninwell-resolvedgalaxiesfromtheEAGLEsimulation,show- ψDM)(Bray2012;Schiveetal.014a)orUltra-lightAxion(ULA) ingthattheempiricalrelationcanbe“accommodated”withinthe DM(Hlozeketal.2015)(herewenameitasSchiveetal.(014a), model. However, instead to look for complicated and diverse ba- simply ψDM), considers the SFDM is described by the poten- ryonicprocesses,inthisworkwetestthetwoSFDMmodelswith tial(3),forultra-lightmassesm ∼10−23 −10−22eV andnull theobservedrotationcurvesofsomerepresentativeSPARCgalax- ψ self-interaction λ = 0. As showed by Matos & Ureña-López ies,showingthatthemodelisconsistentwiththedata. (2001); Schive et al. (014a); Ureña-López & González-Morales The idea is to analyse statistically both approximations: the (2016), this approximation presents a cut-off in the power spec- studycangiveusaclueforwhetherthescalarfieldisthermalor trum which suppresses the small scale structure formation below not,oriftheself-interactionbetweenSFparticlescanbeimportant, the de Broglie wavelength λ (corresponding to halo masses assumingthescalarfieldisthedarkmatterofthegalaxies.Inorder deB M<108M form ∼10−22eV),asaresultofthequantumprop- todoso,thisworkisorganisedasfollows:InSection2webriefly (cid:12) ψ erties of the model (Heisenberg uncertainty principle), solving in explain the SFDM model and the two different approaches to be this way the small scale structure overproduction in CDM. This compared;inSection3wedescribethegalaxies’samplesusedto approachassumestheSFDMisatzerotemperature,implyingall fit the SFDM models; in Section 4 we present the results, and in thebosonsareinthegroundstate,i.e.thelowestenergylevelwith Section5wediscusstheresultsandpresentourconclusions. no nodes. Also, Suarez & Matos (2011) showed that, within this approach, the evolution of perturbations of the SFDM model is identicaltoΛCDMandRodríguez-Montoyaetal.(2010)showed 2 SCALARFIELDDARKMATTER theSFDMmodelisconsistentwiththeacousticpeaksofthecos- micmicrowavebackgroundforabosonmassm ∼10−22eV. From particle physics motivation, spin-0 scalar fields are the ψ Nevertheless,Lietal.(2014)foundthatthismodelisnotcon- simplest bosonic particles, described by the Klein-Gordon (KG) sistent with the Big Bang Nucleosynthesis (BBN) constraints for equation: thebosonmassm foranymodelwithλ = 0,at1σ-confidence ψ dV(ψ) level(CL),makingnecessarytointroduceaself-interactionintothe (cid:3)ψ− =0, (1) dψ SFpotential.Althoughtheirresultsallowtoalleviatesuchrestric- tionsat2σ-CL,theirworkisamotivationtostudyaSFpotential fortherealorcomplexscalarfieldψ andtheSFpotentialV(ψ); includinganon-nullself-interaction(seethenextSubsection). fromhereafterweusethenotation(cid:126) = 1 = c,forcthespeedof Schiveetal.(014a,b)runahigh-resolutioncosmologicalsim- lightand(cid:126)thereducedPlanck’sconstant.Thescalarfieldsarisein ulation based on the dynamics of ψDM in the Newtonian limit, cosmologytoexplaintheinflationaryepochintheearlyuniverse governedbytheSchrödinger-Poisson(SP)system.Fromthesimu- andasalternativestoexplaintheacceleratedexpansionoftheuni- lation,Schiveetal.(014a)derivedanempiricaldensityprofilefor verse;theycandescribealsocompactobjects,asbosonstarsand the DM haloes, consisting of a soliton-like core in every system, supermassiveblackholes.AsalternativetotheCDMparadigm,itis prominentbeforeatransitionradius,embeddedinaNFWdensity proposedthatDMhaloesareconstitutedbyultra-lightscalarfields, halo,dominantatlargeradii.Themotivationofthisproposalisthe forwhichthecompleteEinstein-Klein-Gordonequationsreduceto expectedlossofphasecoherenceoftheψDMwavesatlargedis- theSchrödinger-PoissonsystemintheNewtonianlimit. tancesfromthecentreofdistribution,expectingatransitionfrom Untilnow,thereisnotanagreementonthecorrectformofthe thesolitontotheNFWprofile(Marsh&Pop2015).Suchprofile potentialV(ψ)forDMapplicationsandsomeofthemhavebeen canbeapproximatedby proposedinordertoapplytheSFDMtheorytodifferentastronom- ical and cosmological situations (see e.g. Suárez et al. 2014). A ρ (r)=Θ(r −r)ρ (r)+Θ(r−r )ρ (r), (4) ψDM (cid:15) sol (cid:15) NFW MNRAS000,1–17(2016) 4 T.Bernaletal. where Θ is a step function, r is the transition radius where the freeparameters,thuswefitonlym ,r andr .Thecompleteex- (cid:15) ψ c (cid:15) densitychangesfromthesolitonprofile(Schiveetal.014a): pressionsarewritteninAppendixA. ρ ρ (r)= c , (5) sol [1+0.091(r/rc)2]8 2.2 MultistateScalarFieldDarkMatter totheNFWprofile(Navarroetal.1997): AsastepforwardonthestudyoftheSFDMmodel,Robles&Ma- ρ tos(2013b)consideredthegeneraldouble-wellpotential(2),with ρNFW(r)= (r/r )(1+s r/r )2. (6) ano-nullself-interactionterm,plusone-loopfinite-temperatureT s s corrections(Kolb&Turner1994): Inequation(5),ρc :=1.9(mψ/10−23eV)−2(rc/kpc)−4M(cid:12)pc−3 1 1 1 π2 isthecentralsolitondensity,m thebosonmassandr thehalf- V(ψ)=− m2ψ2+ λψ4+ λψ2T2− T4, (7) ψ c 2 ψ 4 8 90 lightradiusofthesoliton-likeregion.Inequation(6),ρ isrelated s in units k = 1 for the Boltzmann constant and where the Z to the density of the universe at the moment the halo collapsed B 2 symmetry appears spontaneously broken (with the term −m2). and r is a scale radius. The total density profile (4) has 5 free ψ s Suchself-interacting,finite-temperaturecorrectedpotentialismo- parameters (m , r , r , ρ , r ), which are reduced to 4 asking ψ c (cid:15) s s tivated by the theoretical expectation of modern particle physics forcontinuityofthefunctionatthetransitionradiusr andupto (cid:15) that,athightemperatures,symmetriesspontaneouslybrokentoday 3askingfordifferentiabilityatthesamepoint(seeAppendixA). wererestored.Symmetrybreakingstudiesareofgreatinterestfor Schiveetal.(014a)foundthatthetransitionradiusr is,ingeneral, (cid:15) diverse physical situations, assuming the universe has underwent r >3r . (cid:15) c phasetransitionsduringitsevolution(seee.g.Kolb&Turner1994, Thereareseveralconstraintsonthebosonmassm fromdif- ψ andreferencestherein),asforexample,theinflationaryera.With ferent observations: From the study of the effect of tidal forces thismotivationinmind,Robles&Matos(2013b)considerthatat on the cold clumps in Ursa Minor, Lora et al. (2012) found m ∼(0.3−1)×10−22eV,andinSextants,Lora&Magaña(2014) theveryearlyuniverse,theinitialSFfluctuationsfrominflationin- ψ foundm ∼(0.12−8)×10−22eV;fromCMBandgalaxycluster- teractwiththerestofmatterandradiationatveryhightemperatures ψ ingdata,Hlozeketal.(2015)constrainedthemassm >10−24eV; T (cid:29)Tc,forTcthecriticaltemperaturewhereψ=0isaminimum ψ ofthepotentialandthesymmetryisrestored.Inthiscase,theSFis from the high-redshift galaxy luminosity function, Schive et al. (2016)obtainedm >1.2×10−22eV;fromLyman-αobservations, embedded in a thermal bath at finite temperature T at very early Sarkaretal.(2016)ψderivedm >10−23eV.Fromultra-faintdwarf times1. As the universe expands, the temperature decreases and ψ eventually the SF decouples from the rest of matter, evolving in- spheroidalgalaxies(dSphs)galaxies,Calabrese&Spergel(2016) derivedm ∼(3.7−5.6)×10−22eV. dependently. As the potential (7) depends on the 4th-power with ψ respecttoT,asthetemperaturecontinuesdecreasing,theSFgoes For the classical dSph galaxies in the Milky Way, Marsh & throughaZ spontaneoussymmetrybreaking(SSB),whichturns Pop (2015) constrained m using the soliton+NFW density pro- 2 ψ a minimum of the potential to a maximum, which increases the file (4), through stellar populations’ observations in Fornax and Sculptor and found m <1.1 × 10−22eV. More recently, Chen amplitudeoftheinitialSFperturbationsformingtheinitialgalaxy ψ haloes(seealsoMatos&Rodríguez-Meza2014,forthestudyof et al. (2016) applied the Jeans analysis to the kinematic data of theSSBofachargedcomplexSF). theeightdSphstoconstrainm ;forallthedSphs,exceptforFor- ψ For cosmological applications, Robles & Matos (2013b) as- nax, as the transition radii are outer the half-light radii r , they c sumedtheSSBatT=T takesplaceintheradiationdominatedera. tookintoaccountthesolitoncoreprofile(5)only,derivingamass c m = 1.18×10−22eV. For Fornax, they applied the complete TheyfoundthatatthatmomenttheSFfluctuationscanstartgrow- ψ densityprofile(4)andfoundalargerm =1.79×10−22eVand ing in the linear regime for T<Tc, until they reach a new stable ψ minimum. Then obtained the perturbed Einstein-Klein-Gordon smallerr ,withrespecttothesoliton-onlymodelresults.Mostre- c evolution equations for the SF perturbation, δψ, in a Friedmann- cently, González-Morales et al. (2016) constrained m with the ψ Lemaître-Robertson-Walker background spacetime. Under these completesoliton+NFWprofile(4),usingkinematicmockdataof assumptions,thegalactichaloescouldhavebeenformedalmostat FornaxandSculptor,whichincludethestellarcomponentsofthe thesametimeoftheSSBandwithsimilarmasses,M ∼1012M galaxies, finding core radii r > 1.5 kpc and r > 1.2 kpc, re- (cid:12) spectively,andm <4×10−2c3eV.Suchresultsacreintensionwith (formψ ∼ 10−22eV),whichisthetypicalmassofagalaxylike ψ ours.Lateron,suchhaloescanenterinthenon-linearregime,mer- the estimates from the cold clumps in Ursa Minor and Sextants ging and constituting larger structures, hierarchically, just like in (Loraetal.2012;Lora&Magaña2014),thehigh-redshiftlumin- theCDMmodel. osityfunction(Schiveetal.2016)andtheultra-faintdSphsstudies Under the linear approximation to describe the evolution of (Calabrese&Spergel2016).González-Moralesetal.(2016)sup- agalaxyhalo,intheNewtonianregime,theexact solutiontothe pose that such small boson mass might be the result of baryonic perturbation equations for the temperature-corrected potential (7) feedbackprocessespresentinthedSphgalaxies. isfoundas(Robles&Matos2013b) For the LSB and SPARC galaxies analysed in the present work,weassumethesoliton+NFWprofile(4)fortheψDMmodel (cid:20)sin(k r)(cid:21)2 ρj (r)=ρj j ; (8) andexpectthetransitionradiusr(cid:15) iswellinsidetheradiusofthe SFDM 0 (kjr) lastobservedpoint(spanningarangeR ∼1−30kpc,forthe max thusthefinite-temperaturecorrectedpotential(7)impliestheexist- maximumradiusofluminousmatter),thusweapplythecomplete enceofdifferentexcitationstatesj assolutiontotheSFperturba- density profile. Additionally, we impose continuity and differen- tionequation,i.e.thebosonsarethermallydistributedintheground tiability conditions to the total profile at the transition radius r , (cid:15) assumingasmoothtransitionbetweenthesolitonandtheexternal NFWhalo.Withthesetwoadditionalconditions,itispossibleto 1 Inequation(7),theterm∝ ψ2T2appearsduetotheinteractionofthe writetheNFWparametersrsandρsinfunctionoftheotherthree SFwiththethermalbathandtheterm∝T4isduetothethermalbathonly. MNRAS000,1–17(2016) RCsofHigh-ResolutionLSBandSPARCGalaxiesinWave(Fuzzy)andMultistateSFDM 5 andexcitedstatesathigherenergylevels,andthegeneralsolution (2013b) (NGC 1003, data from SPARC; NGC 1560, data from allowsaconfigurationoutofthefullycondensatesystem.Inthelast de Blok et al. (2001b); NGC 6946, data from McGaugh (2005)). equation,j =1,2,3,...isthenumberoftheexcitedstaterequired InTable2weshowthecharacteristicsofthesegalaxies. tofitthemassdistribution,ρj = ρj (0)isthecentraldensity The SPARC database contains the near-infrared photometry 0 SFDM andtheradiusRoftheSFconfigurationisfixedthroughthecon- (tracing the stellar mass distribution) and high-resolution HI/Hα ditionρj (R) = 0,i.e.k R = jπ.Thissolutionisnaturally rotationcurves(tracingthegravitationalpotentialouttolargeradii) SFDM j core.Themassdistributionisgivenby of175diskgalaxies,derivingwithhighresolutionthestellarand (cid:20) (cid:21) gas components of the galaxies (Lelli et al. 2016b). The sample 4πGρ r sin(2k r) Mj (r)= 0 1− j . (9) represents a wide range in morphological types, stellar masses, SFDM k2 2 (2k r) j j surface brightnesses and gas fractions, and the mass models are Now,asthesolutiontotheSFperturbationequationislinear, reconstructedfromtheobserveddistributionsofstarsandgasfor itispossibletohavecombinationsofexcitedstates;thismeansthat differentcharacteristicradiiandvaluesofthestellarmass-to-light thetotaldensityρ canbewrittenasthesumofthedensities ratio.Thedatabaseincludeslowsurfacebrightness(LSB)galaxies, SFDM inthedifferentexcitedstates(Robles&Matos2013b): in major part gas-dominated dwarf galaxies; high surface bright- ness(HSB)galaxies,inmajorpartbulge-dominated spiralgalax- ρ (r)=(cid:88)ρj(cid:20)sin(jπr/R)(cid:21)2. (10) ies;andintermediatesurfacebrightness(ISB)galaxies,whichare SFDM 0 (jπr/R) disk-dominatedsystems. j Usually,inLSBgalaxiesthedarkmattercomponentisdom- ItisworthnotingthattheradiusRinthelastequationisthesame inantevenatsmallradii,whilstinHSBgalaxiesthecontributionof foralltheexcitedstatespresentintheconfigurationanditisdefined thestellarandgascomponentstothetotalmassisimportantatthe astheradiusoftheSFDMhalo.Suchprofilehasatleasttwofree centralregions.However,McGaughetal.(2016)foundthat,even parametersforonestateandeveryadditionalexcitedstateaddsone when the dark matter is dominant at the inner regions for many parameter, ρj. The disadvantage of this profile is that the phys- 0 galaxies, the observed acceleration in 153 galaxies of all types ical parameters of the SF, m and λ, are degenerated with other ψ (LSB,ISBandHSBgalaxies)fromtheSPARCdatabasestrongly quantities,likethecriticaltemperatureT attheSSB,thetemperat- c correlates with the acceleration from the baryonic matter, show- ureofthehaloattheformationtime,etc.However,thismodelhas ingamassdiscrepancyatthevalueg†=1.2×10−10m/s2.There- beenprovedsuccessfulinfittingtheobservationsofdwarfspher- fore,inthiswork,weinvestigatetheconsistencyofthetwoSFDM oidalgalaxies(Martinez-Medinaetal.2015a),therotationcurves modelswiththeobservationalrotationcurvesoffourrepresentative ofgalaxies(Robles&Matos2013b),thedynamicalmassesfrom SPARCgalaxies,includingthebaryonicinformation. X-rayobservationsofclustersofgalaxies(Bernaletal.2016),pre- dictingthesizeoftheEinsteinradiusoflensedgalaxiesbystrong gravitationallensing(Robles&Matos2013a)andthesurvivability 3.3 Statisticalcalibrationmethod ofsatelliteSFDMhaloesorbitingaroundaMilkyWay-likegalaxy (Roblesetal.2015). Thegalaxyrotationcurveisgivenby (cid:114) GM (r) V(r)= T , (11) r 3 GALAXIES’SAMPLES where M = M +M +M +M , for M the 3.1 High-ResolutionLSBGalaxies T bulge disk gas DM DM dark matter contribution depending on the density profile used We are using two sets of galaxy rotation curves according to the (soliton+NFWormultistateSFDM).InthecaseoftheLSBgalax- availability of photometric data. For the low surface brightness ies(Subsection3.1),MT = MDM,andforthegalaxieswithpho- (LSB)galaxies,inwhichthedarkmatteristhedominantcompon- tometricinformation(Subsection3.2)weconsiderthedifferentba- ent,weareusingtheobservedrotationcurvesof18high-resolution ryoniccomponents(bulge,disk-starsandgas),ifgiven. LSB galaxies reported in de Blok et al. (2001a). In this work, In order to constrain the free parameters of every SFDM theauthorsconsideredthevisibledatacontribution,classifyingthe model,weusedtheMarkovChainMonteCarlo(MCMC)method galaxiesaccordingwiththeavailabilityofphotometricdataandus- (Gamerman1997),throughamaximisationofthelikelihoodfunc- ingthreemodels:theminimumdiskmodel,wherethedarkmatter tionL(p)givenby istheprincipalcomponentinthehaloes,makingzeroallthevisible 1 (cid:18) ∆TC−1∆(cid:19) components for the galaxies with photometry, a constant M/L∗ L(p)= exp − , (12) (2π)N/2|C|1/2 2 andthemaximumdiskmodelswhereonlythegalaxieswithphoto- metrydataareconsidered. wherepisthevectorofparameters,Nthenumberofobservational Giventhatweareinterestedintestingdarkmattermodelsthe points for each galaxy, ∆ = V (r )−V (r ,p), for V obs i model i obs set without photometric data will be used. This set is in Table 1, theobservationalcircularvelocityattheradiusr andV the i model wherewedescribesomeimportantcharacteristicsofeachgalaxy. derived total velocity for a given SFDM model computed in the samepositionwhereV wasmeasured,andCadiagonalmatrix. obs We sample the parameter space from uniform prior ranges 3.2 NGCgalaxieswithphotometricdata withtwoMarkovchainsandtestedtheconvergenceofthefitwith Inthisworkweselected,asrepresentativesystemsofthesecond theGelman-Rubinconvergencecriterion(R−1 < 0.1)(Gelman setofgalaxieswithphotometricdata,thethreesamplegalaxiesin &Rubin1992).Thefittingparametersand1σ and2σ confidence McGaughetal.(2016)(NGC7814,6503,3741)fromtheSPARC rangesarecomputedfromtheMarkovchainswith30%asburn-in. (SpitzerPhotometry&AccurateRotationCurves)database(Lelli Simultaneously, we used the data analysis software ROOT et al. 2016b), and the sample galaxies used in Robles & Matos (Brun & Rademakers 1997). The method minimises the χ2 er- red MNRAS000,1–17(2016) 6 T.Bernaletal. High-resolutionLSBgalaxies Galaxy Morphology Mabs Rmax Vmax D Name (mag) (kpc) (km/s) (Mpc) (1) (2) (3) (4) (5) (6) ESO-LV014-0040 Spiral -21.6 29.2 263 212 ESO-LV084-0411 Edge-on -18.1 8.9 61 80 ESO-LV120-0211 FuzzyMagellanicbar -15.6 3.5 25 15 ESO-LV187-0510 Irregularspiral,flocculent -16.5 3.0 40 18 ESO-LV206-0140 Spiral -19.2 11.6 118 60 ESO-LV302-0120 Spiral,hintofbar? -19.1 11.0 86 69 ESO-LV305-0090 Barredspiral -17.3 4.8 54 11 ESO-LV425-0180 Spiral -20.5 14.4 145 86 ESO-LV488-0490 InclinedMagellanicbar -16.8 6.0 97 22 F730-V1 Spiral ... 11.9 145 144 UGC4115 Im -12.4 1.0 40 3.2 UGC11454 Fuzzyspiral,smallcore −18.6a 11.9 152 91 UGC11557 SBdms -20.0 6.2 95 22 UGC11583 dI −14.0a 1.5 36 5 UGC11616 Sc −20.3a 9.6 143 73 UGC11648 I −21.0a 12.7 145 48 UGC11748 Sbc −22.9a 21.0 242 73 UGC11819 dG −20.3a 11.7 153 60 Table1.InthisTableweshowthecharacteristicsofthe18high-resolutionLSBgalaxies(deBloketal.2001a)usedinthepresentwork.Thecolumnsread: (1)Thenameofthegalaxy,(2)Morphology,(3)Absolutemagnitude(aisZwickymagnitude17),(4)Maximumobservationalradius,(5)Maximumvelocity oftherotationcurveand(6)Distancetothegalaxy. Galaxieswithphotometricdata withthedensityprofile(10),alsoseparatingthefitswiththehigh- Galaxy Morphology Mabs Rmax Vmax D resolution LSB galaxies (Subsection 4.2.1) and the galaxies with Name (mag) (kpc) (km/s) (Mpc) photometricdata(Subsection4.2.2). (1) (2) (3) (4) (5) (6) NGC7814a Sabl -20.15d 5.03 218.9 14.40 4.1 Soliton+NFWfits NGC6503a Scd -17.7e 3.04 116.3 6.26 NGC3741a Im -13.13f 5.14 50.1 3.21 4.1.1 High-resolutionLSBgalaxies NGC1003a SA(s)cd -19.2 31.3 115 11.8 Table3showstheresultsforthe18high-resolutionLSBgalaxies NGC1560b Sd -15.9 8.3 78 3.0 NGC6946c SABcd — — 224.3 10.1 reported in de Blok et al. (2001a), for the ψDM model with the soliton+NFWdensityprofile(4).AsexplainedinAppendixA,we restrictedthedensityprofileaskingforcontinuityanddifferentiab- Table2.ThesameasTable1forthegalaxieswithphotometricdata. ilityofthefunction(4)atthetransitionradiusr ,asasmoothtrans- (cid:15) aDatafromtheSPARCdatabase(Lellietal.2016b). itionbetweenthesolitonandNFWregions.Withtheserestrictions bDatafromdeBloketal.(2001b). wehavethreefreeparameters:thecentraldensityρ ,thesoliton- cDatafromMcGaugh(2005). c likecoreradiusr ,andthetransitionradiusr .Wereportthe1σ dMonachesietal.(2016). c (cid:15) eKodaetal.(2015). errorsfromtheMCMCmethodused,alsothereducedχ2red errors fGentileetal.(2007a);Duttaetal.(2009). foreachgalaxy.Fromρc andrc weobtainedthebosonmassmψ, andwithr wecomputedtheNFWparameters,r andρ (seeAp- (cid:15) s s pendixA),andadditionally,derivethevirialradiusr andcon- 200 rorstoobtainthebestfitfromtheobservations: centrationparameterc:=r /r ,2showninthesameTable. 200 s Figure1showstheresultingplotsforthedensityprofile(4)for χ2red =(cid:88)N (cid:18)Vobs(ri)−σVmodel(ri,p)(cid:19)2 , (13) thefittingparametersshowninTable3;thetransitionradiusr(cid:15) is i=1 i theverticallineshownforallthegalaxies.Theobservationalerror barsarebigforsomegalaxiesinthesampleand,ingeneral,thefits whereσ istheerrorinthemeasurementofV (r ). i obs i aregood,exceptattheouterregionofUGC11748.Figure2shows the 1σ and 2σ contours for the parameters m and r from the ψ c MCMCanalysis,andthetransitionradiusr isthescattercoloured (cid:15) 4 RESULTS plot. FromTable3itisnoticeablethat,ingeneral,r isoftheorder InthisSectionweshowtheresultsofthefitswiththetwoSFDM c models. In Subsection 4.1 we present the results for the ψDM model with the soliton+NFW density profile (4), separately for 2 r200 istheradiuswherethedensityis200timesthecriticaldensityof the high-resolution LSB galaxies (Subsection 4.1.1) and for the theuniverse,anddefinesthehaloradius.IntheCDMframework,concen- galaxieswithphotometricinformation(Subsection4.1.2).InSub- trationsarestronglycorrelatedwiththehaloformationepoch,andmustbe section 4.2 we show the results for the multistate SFDM model inagreementwiththeN-bodysimulations. MNRAS000,1–17(2016) RCsofHigh-ResolutionLSBandSPARCGalaxiesinWave(Fuzzy)andMultistateSFDM 7 EESSOO 00114400004400 EESSOO 00884400441111 EESSOO 11220000221111 80 35 300 70 30 250 60 25 V [km/s] 125000 V [km/s] 4500 V [km/s] 1250 30 10 100 20 5 50 10 0 00 5 10 15 20 25 30 0 1 2 3 4 5 6 7 8 9 -50 0.5 1 1.5 2 2.5 3 3.5 r [kpc] r [kpc] r [kpc] EESSOO 11887700551100 EESSOO 22006600114400 EESSOO 33002200112200 45 140 100 40 120 35 80 100 30 m/s] 25 m/s] 80 m/s] 60 V [k 20 V [k 60 V [k 40 15 40 20 10 5 20 0 0 0.5 1 1.5 2 2.5 3 00 2 4 6 8 10 12 0 2 4 6 8 10 12 r [kpc] r [kpc] r [kpc] EESSOO 33005500009900 EESSOO 44225500118800 EESSOO 44888800004499 70 180 120 60 160 100 50 140 V [km/s] 3400 V [km/s] 11028000 V [km/s] 6800 20 60 40 10 40 20 0 20 0 -100 1 2 3 4 5 00 2 4 6 8 10 12 14 0 1 2 3 4 5 6 r [kpc] r [kpc] r [kpc] FF 773300__vv11 UU 44111155 UU 1111445544 160 160 140 40 140 120 120 30 m/s] 100 m/s] m/s] 100 V [k 80 V [k 20 V [k 80 60 60 10 40 40 20 0 20 00 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 00 2 4 6 8 10 12 r [kpc] r [kpc] r [kpc] UU 1111555577 UU 1111558833 UU 1111661166 160 40 80 140 30 120 V [km/s] 4600 V [km/s] 20 V [km/s] 10800 60 10 20 40 0 20 0 0 1 2 3 4 5 6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 00 2 4 6 8 10 r [kpc] r [kpc] r [kpc] UU 1111664488 UU 1111774488 UU 1111881199 160 140 250 160 140 120 200 120 V [km/s] 10800 V [km/s] 150 V [km/s] 10800 60 100 60 40 40 50 20 20 00 2 4 6 8 10 12 00 2 4 6 8 10 12 14 16 18 20 22 00 2 4 6 8 10 12 r [kpc] r [kpc] r [kpc] Figure1.Bestfitsforthe18high-resolutionLSBgalaxieswithoutphotometryfortheψDMmodelusingthesoliton+NFWprofile,correspondingtothefitting parametersshowninTable3.Theverticallinescorrespondtothetransitionradiir(cid:15).ItisworthnotingthatinUGC11648r(cid:15) isnegligible,inthiscasethe soliton-likecontributiontothetotalprofileisnotrelevant. MNRAS000,1–17(2016) 8 T.Bernaletal. High-resolutionLSBgalaxies Soliton+NFWprofile FITTINGPARAMETERS Galaxy ρc(M(cid:12)/pc3) rc(kpc) r(cid:15)(kpc) mψ(10−23eV) c r200(kpc) χ2red ESO-LV014-0040 0.222+0.044 3.12±0.76 3.23±0.92 0.352+0.063 21.029 254.131 0.658 −0.091 −0.16 ESO-LV084-0411 0.00588+0.00068 4.90+1.5 4.0+1.1 0.986+0.011 — — 0.092 −0.0015 −0.99 −1.6 −0.58 ESO-LV120-0211 0.0266+0.0072 1.01+0.17 1.44+0.35 9.6+1.6 44.524 21.505 0.074 −0.0091 −0.27 −0.78 −3.9 ESO-LV187-0510 0.0466+0.0092 1.20+0.27 1.46+0.36 5.28+0.87 21.118 37.729 0.101 −0.014 −0.34 −0.84 −2.7 ESO-LV206-0140 0.172+0.031 1.65+0.31 1.80+0.39 1.34+0.25 23.063 105.844 0.133 −0.048 −0.36 −0.56 −0.49 ESO-LV302-0120 0.0423+0.0068 2.66±0.57 3.28+0.89 1.09+0.14 21.556 78.971 0.032 −0.012 −1.4 −0.48 ESO-LV305-0090 0.0265+0.0044 2.26+0.68 2.30+0.77 2.589+0.020 — — 0.076 −0.0099 −0.89 −1.4 −1.9 ESO-LV425-0180 0.0404+0.0067 3.7±1.1 3.42+1.2 0.653+0.053 6.139 251.269 0.509 −0.022 −0.83 −0.35 ESO-LV488-0490 0.089+0.014 1.98±0.45 2.24+0.52 1.37+0.22 20.398 90.886 0.131 −0.025 −1.0 −0.62 F730-V1 0.181+0.035 1.84+0.34 1.95+0.39 1.08+0.22 21.181 129.491 0.329 −0.050 −0.46 −0.67 −0.44 UGC4115 0.152+0.020 1.06+0.14 1.037+0.075 6.5+1.1 14.418 91.143 0.132 −0.043 −0.66 −0.79 −5.8 UGC11454 0.157+0.030 1.96+0.39 1.96+0.44 1.0+0.21 16.037 156.477 0.364 −0.040 −0.44 −0.55 −0.38 UGC11557 0.0191+0.0018 3.7+1.4 2.77+0.94 1.152−0.072 — — 0.12 −0.0062 −1.2 −1.1 −0.83 UGC11583 0.095+0.022 0.86+0.11 1.45+0.25 7.2+1.9 — — 0.097 −0.026 −0.26 −1.0 −3.0 UGC11616 0.163+0.019 1.93±0.28 2.10+0.38 0.97+0.13 22.378 122.007 0.189 −0.032 −0.49 −0.27 UGC11648 2.26±0.25 0.0858+0.010 0.0737+0.0089 128+20 8.375 183.7 1.097 −0.0093 −0.0080 −30 UGC11748 0.97+0.13 1.70+0.23 2.14±0.35 0.502+0.056 77.024 159.495 1.978 −0.23 −0.21 −0.098 UGC11819 0.0710+0.0040 3.92+0.51 4.9±1.1 0.351+0.017 27.976 139.349 0.28 −0.0096 −0.26 −0.077 Table3.InthisTableweshowtheresultingparametersρc,rcandr(cid:15)fortheψDMmodelwiththesoliton+NFWdensityprofile(4),andtheresultingboson massmψ,allthequantities±1σerrorsfromtheMCMCmethodused.Wealsoshowtheresultingr200fromtheNFWhaloradius,concentrationparameter candχ2 errorsforthe18high-resolutionLSBgalaxiesindeBloketal.(2001a). red ofthetransitionradiusr .Thismeansthatthesolitoncontribution resultingbosonmassm ,thetransitionradiusr andthereduced (cid:15) ψ (cid:15) isoverlappedwiththeNFWhalo(asweaskforasmoothtransition χ2 errorsfromthefittingmethod.TheNFWparametersr and red s betweenbothprofiles),andfromthebestfits,thevaluesofr do ρ wereobtainedfromthelastthreefittingparameters,andwere- (cid:15) s notcorrespondtor >3r (Schiveetal.014a). ported in the same Table the corresponding virial radii r and (cid:15) c 200 Moreover,fromFigure1itiseasytoseethatthesolitoncon- concentrationparametersc:=r /r . 200 s tribution to the total density profile is negligible for UGC11648, In Figure 3 we show the plots for the corresponding fitting meanwhileforESO4250180andF730-V1thesolitoncontribution parameters presented in Table 4; the vertical lines show the cor- spansonlyoneobservationalpoint.Forthelastthreegalaxiesthe respondingtransitionradiusr foreachgalaxy.Aswenoticefrom (cid:15) maincontributiontothetotalvelocitycomesfromtheNFWpro- Table4andFigure3,thesoliton+NFWprofilefitstheobservations file, and for UGC11648 is not necessary to add the soliton part. ofNGC7814,6503and6946onlyoncethebaryoniccontribution Thus,toobtainthevalueofthebosonmasswediscardedthegalaxy is taken into account, except some points inside 5 kpc for NGC UGC11648,sincefromthenegligiblesolitoncontributioninclud- 6503.ForNGC1003andNGC6946,thetransitionradiusr isvery (cid:15) ingm ,thevalueobtained(m ∼10−21 eV)isnotreliable.For smallwithrespecttothemaximumradiusR ,i.e.inthesecases ψ ψ max thelast15galaxies,thesolitoncontributionbecomesimportantin the whole rotation curve is better explained with the NFW pro- order to fit the whole rotation curves. From the 17 galaxies (ex- fileandthesolitonpartdoesnotintroduceanyimprovement.For ceptfromUGC11648)thevaluesobtainedforthebosonmassare NGC3741,whichisagas-dominateddwarfgalaxy,theNFWpro- in the range 0.351 < m /10−23eV < 9.6, and core radius in filefitsthedataverywell,bothwithandwithoutphotometry.And ψ 0.86<r/kpc<4.9. forNGC1003thefitisbetterincludingthebaryons,butaswenote, evenwhenthefitisbetter,theNFWprofilecannotexplaintheos- cillationsfromthehigh-resolutionobservations(seealsoRobles& 4.1.2 NGCgalaxieswithphotometricdata Matos2013b);inthiscasethemultistateSFDMprofileisrelevant (seeSubsection4.2).Finally,NGC1560istheonlygalaxywhich InTable4weshowthefittingparametersforthethreerepresent- remainswithalmostthesamecontributionfromtheψDMmodel, ativegalaxiesinMcGaughetal.(2016)(NGC7814,6503,3741) withoutandwiththephotometricinformation.Theresultingranges fromtheSPARCDatabase(Lellietal.2016b)andthethreesample fromtheDM+baryonsfitsforthebosonmassandcoreradiusare: galaxies analysed in Robles & Matos (2013b) (NGC 1003, data 0.264 < m /10−23eV < 30.0 and 0.311 < r/kpc < 4.84, fromSPARC;NGC1560,datafromdeBloketal.(2001b);NGC ψ respectively. 6946, data from McGaugh (2005)), for the ψDM model with the soliton+NFW density profile (4). In the top panels we show the resultsforthegalaxieswithoutthephotometricinformationandon 4.2 MultistateSFDMfits thebottompanelstheresultsincludingthebulge,diskand/orgas profiles, to analyse the effect of the baryons on the DM profile. InthisSubsectionwepresenttheresultsforthemultistateSFDM We report the central density ρ and the core radius r , with the model.Itisworthmentioningthatwithahaloformedofoneex- c c MNRAS000,1–17(2016) RCsofHigh-ResolutionLSBandSPARCGalaxiesinWave(Fuzzy)andMultistateSFDM 9 Figure2.Posteriordistributionsfortheparametersmψ(10−23eV)andrc(kpc),withthetransitionradiusr(cid:15)(kpc)asthecolouredscatterplot,forthehigh- resolutionLSBgalaxiesintheψDMmodel,correspondingtothefittingparametersshowninTable3.Thecontoursarethe1σand2σconfidenceregions. TheplotswereobtainedwiththeGetDist0.2.6Package. citedstateonly(twofreeparameters)itispossibletoreproducethe (the halo radius). We also computed the mass in the higher en- rotationcurvesofsomegalaxiesinthesample,however,insome ergy level M and in the lower state M , as well as the mass j i cases,thenumberoftheexcitedstateisveryhighandasaresult, ratio η = M /M . Ureña-López & Bernal (2010) showed it j i the halo radius R is much greater than the maximum observable is possible to have stable multistate configurations for values of radiusR ;inthesecases,wepreferredlowerexcitationstates. η = M /M (cid:46) 1.3withrespecttothegroundstateM ,i.e.the max j 1 1 Additionally,itisawell-knownresultthatitisnotpossibletorepro- multistatehaloesdonotdecaytothegroundstate.Therefore,from ducethewholerotationcurveofbiggalaxieswiththegroundstate ourresults,wemightarguethatthefinalconfigurationsarestable only(Boehmer&Harko2007;Robles&Matos2012;Fernández- wherethegroundstateappearsasadominantcomponent.However, Hernández et al. 2016), so we do not include these results in the thereare8galaxiesinwhichthelowerdominantstateisi=2,3or article. eveni=6;inthesesystemsthefinaldistributionindifferentexcit- Thereportedcombinationsofexcitedstatesaretheonesthat ationlevelsmightbethefinalproductofinteractionswiththeba- bestreproducethedata.Itisimportanttonotethatinsomecases, ryonicmatter.Furthernumericalsimulationsareneededtoinvest- the resulting configurations do not display the ground state as a igatethestabilityofmultistateconfigurationswithoutadominant dominantcomponent.Thismightbetheresultofthedifferentform- groundstateandtheinfluenceofthebaryonicmatterintheSFDM ationhistoriesforeverygalaxy,includinginteractionswiththeba- halo. ryonicmatterresultingindiversemultistateconfigurations. With the haloes formed by two states only we found a very goodagreementwiththeobservationalvelocitiesforallthegalax- 4.2.1 High-resolutionLSBgalaxies ies.Figure4showstheresultingbest-fitprofilesforthesegalaxies. In Table 5 we show the results for the 18 high-resolution LSB Forsomegalaxies,forexample,F730-V1andUGC11748,thefits galaxies from de Blok et al. (2001a), for the multistate SFDM mightbeimprovedbyintroducingathirdexcitedstate;howeverit model(10)withtwoexcitedstates.Wereportthefittingparamet- isnotnecessarytoincludeadditionaldegreesoffreedomandwe ers:ρi andρj (thecentraldensitiesforthestatesiandj)andR donotreportthesefitsinthework. 0 0 MNRAS000,1–17(2016) 10 T.Bernaletal. NGCgalaxieswithphotometricdata DM-onlyfits Soliton+NFWprofile Galaxy ρc(M(cid:12)/pc3) rc(kpc) r(cid:15)(kpc) mψ(10−23eV) c r200(kpc) χ2red NGC7814 47.3±4.8 0.0872+0.010 0.0774+0.0096 27.0+2.8 69.425 147.32 5.541 −0.0067 −0.0063 −5.5 NGC6503 14.3+1.9 0.0464+0.0036 0.0402+0.0032 171±20 28.59 98.725 6.38 −1.3 −0.0028 −0.0025 NGC3741 1.33+0.13 0.0367±0.0050 0.0315±0.0043 932+200 6.032 72.329 0.646 −0.20 −300 NGC1003 0.90+0.52 0.154+0.046 0.133+0.040 69+70 8.778 124.246 4.864 −0.24 −0.065 −0.056 −30 NGC1560 0.0563+0.0064 1.39±0.18 1.31±0.20 3.16+0.50 7.983 95.974 0.395 −0.0088 −0.78 NGC6946 0.0514+0.0032 4.92+0.36 6.28±0.70 0.254+0.019 27.294 150.211 1.616 −0.0047 −0.30 −0.029 DM+baryonsfits Soliton+NFWprofile Galaxy ρc(M(cid:12)/pc3) rc(kpc) r(cid:15)(kpc) mψ(10−23eV) c r200(kpc) χ2red NGC7814 0.0557+0.0066 4.84+0.80 5.6±1.2 0.264+0.028 18.492 177.278 0.86 −0.014 −0.66 −0.070 NGC6503 0.0459+0.0041 2.81+0.29 3.07+0.38 0.831+0.072 13.809 106.975 1.547 −0.0068 −0.24 −0.34 −0.13 NGC3741 0.0633+0.0082 0.68+0.21 0.60+0.18 18.0+1.4 4.687 93.217 2.115 −0.029 −0.27 −0.25 −12 NGC1003 0.231+0.061 0.311+0.033 0.269+0.029 30.0+8 5.062 135.755 2.93 −0.032 −0.052 −0.045 −4 NGC1560 0.0411+0.0042 1.46±0.20 1.38+0.20 3.35+0.47 7.113 86.89 0.234 −0.0065 −0.23 −0.83 NGC6946 0.27+0.16 0.62+0.33 0.55+0.30 8.7+7.9 9.376 143.84 5.34 −0.12 −0.27 −0.24 −4.9 Table4.InthisTableweshowthefittingparametersρc,rcandr(cid:15),theresultingbosonmassmψ,theconcentrationparameterscandr200radiifromthe NFWprofile,andtheχ2 errorsforthesoliton+NFWprofile,fortheNGCgalaxieswithphotometricinformation.InthetoppanelweshowtheDM-onlyfits red andinthebottompanelthefitstakingintoaccountthebaryoniccontribution. High-resolutionLSBgalaxies MultistateSFDMwithtwostates FITTINGPARAMETERS Galaxy i,j R(kpc) ρi0(M(cid:12)/pc3) ρj0(M(cid:12)/pc3) Mi(1010M(cid:12)) Mj(1010M(cid:12)) η χ2red ESO-LV014-0040 2,7 46.93±2.071 0.031±0.0052 0.2±0.025 26.5219 15.6727 0.59 0.1262 ESO-LV084-0411 1,6 19.7±8.85 0.0039±0.0012 0.0033±0.0024 0.7595 0.0214 0.03 0.0029 ESO-LV120-0211 3,8 15.56±2.919 0.0035±0.0024 0.029±0.0098 0.0253 0.0264 1.04 0.0204 ESO-LV187-0510 2,7 8.404±1.512 0.024±0.0078 0.045±0.022 0.1014 0.0127 0.13 0.0029 ESO-LV206-0140 2,7 23.1±1.51 0.021±0.0037 0.17±0.02 2.0117 1.4056 0.70 0.2341 ESO-LV302-0120 1,2 12.02±2.235 0.0097±0.0078 0.028±0.0086 1.0633 0.771 0.73 0.0084 ESO-LV305-0090 1,5 7.699±1.987 0.016±0.0048 0.025±0.013 0.3412 0.0173 0.051 0.0078 ESO-LV425-0180 1,9 26.3±5.25 0.008±0.0026 0.19±0.099 5.4805 1.5405 0.28 0.0054 ESO-LV488-0490 3,8 23.8±2.954 0.035±0.0094 0.064±0.017 1.0278 0.2134 0.21 0.0054 F730-V1 1,4 14.8±1.235 0.02±0.0041 0.18±0.02 3.9812 1.7529 0.44 1.0227 UGC4115 1,5 2.25±0.978 0.13±0.037 0.031±0.086 0.0356 0.0004 0.011 0.0023 UGC11454 1,3 14.27±0.624 0.025±0.0026 0.1±0.0077 4.4521 1.7955 0.40 0.2939 UGC11557 1,5 23.31±14.06 0.01±0.0028 0.0079±0.0049 0.8712 0.0603 0.069 0.0392 UGC11583 1,4 6.413±2.922 0.015±0.031 0.087±0.024 0.0199 0.0227 1.14 0.0801 UGC11616 2,5 25.56±1.844 0.021±0.0041 0.11±0.0078 2.5003 1.7909 0.72 0.5551 UGC11648 1,7 19.36±1.131 0.012±0.0012 0.23±0.017 4.3513 1.4266 0.33 0.6469 UGC11748 6,9 41.12±0.8 0.27±0.032 0.33±0.051 16.8126 9.5328 0.57 1.6754 UGC11819 2,7 24.7±0.997 0.043±0.0034 0.062±0.013 5.2072 0.5528 0.11 0.0931 Table5.InthisTableweshowthefittingparametersR,ρi andρjfortwoexcitationstatesi,jinthemultistateSFDMmodel,forthe18high-resolutionLSB 0 0 galaxiesindeBloketal.(2001a).WereporttheresultingmassesMiandMj foreachstate,themassratioη = Mj/Miandχ2rederrorsfromthefitting method. 4.2.2 NGCgalaxieswithphotometricdata NGC1560,datafromdeBloketal.(2001b);NGC6946,datafrom McGaugh(2005)).Forthehaloesformedbytwostateswereport: ρi,ρj andR,all±1σerrorsfromthefittingmethodused.Wealso InTable6wepresenttheresultsforthemultistateSFDMmodel, 0 0 reportthetotalmassesM andM ,andtheresultingmassratios for the three representative SPARC galaxies in McGaugh et al. i j η = M /M . For the DM+baryons fits we obtain four galaxies (2016)(NGC7814,6503,3741)andthethreesamplegalaxiesana- j i withadominantgroundstateandtwowithexcitedstatesonly.In lysedinRobles&Matos(2013b)(NGC1003,datafromSPARC; MNRAS000,1–17(2016)