ebook img

Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7 PDF

239 Pages·2019·20.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7

Conference Proceedings of the Society for Experimental Mechanics Series Dario Di Maio Editor Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7 Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics 2018 ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries SeriesEditor KristinB.Zimmerman,Ph.D. SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Dario Di Maio Editor Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7 Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics 2018 123 Editor DarioDiMaio FacultyofEngineering Queen’sBuilding UniversityofBristol Bristol,UK ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-74692-0 ISBN978-3-319-74693-7 (eBook) https://doi.org/10.1007/978-3-319-74693-7 LibraryofCongressControlNumber:2018939785 ©TheSocietyforExperimentalMechanics,Inc.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpartofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface RotatingMachinery,Vibro-AcousticsandLaserVibrometryrepresentsoneofninevolumesoftechnicalpaperspresentedat the36thIMAC,AConferenceandExpositiononStructuralDynamics,organizedbytheSocietyforExperimentalMechanics, and held in Orlando, Florida, February 12–15, 2018. The full proceedings also include volumes on Nonlinear Dynamics; DynamicsofCivilStructures;ModelValidationandUncertaintyQuantification;DynamicsofCoupledStructures;Special Topics in Structural Dynamics; Structural Health Monitoring, Photogrammetry and DIC; Sensors and Instrumentation, Aircraft/AerospaceandEnergyHarvesting;andTopicsinModalAnalysisandTesting. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin structural dynamics. Topics represent papers on enabling technologies, rotating machinery, vibro-acoustics and laser vibrometry,andadvancesinwindenergy. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Bristol,UK D.DiMaio v Contents 1 SummarizingResultsforScalingOMAModeShapesbytheOMAHTechnique................................ 1 AndersBrandt,MartaBerardengo,StefanoManzoni,MarcelloVanali,andAlfredoCigada 2 DelaminationIdentificationofLaminatedCompositePlatesUsingaContinuouslyScanningLaser DopplerVibrometerSystem............................................................................................ 9 Da-MingChen,Y.F.Xu,andW.D.Zhu 3 RapidandDense3DVibrationMeasurementbyThreeContinuouslyScanningLaserDoppler Vibrometers .............................................................................................................. 19 Da-MingChenandW.D.Zhu 4 ModalControlofMagneticSuspendedRotors ...................................................................... 31 Marcus Vinicius Fernandes de Oliveira, Felipe Carmo Carvalho, Adriano Borges Silva, AldemirApCavaliniJr.,andValderSteffenJr. 5 OntheImplementationofMetastructuresinRotordynamics...................................................... 43 CarloRosso,ElvioBonisoli,andFabioBruzzone 6 AnalysisoftheDynamicResponseofCoupledCoaxialRotors .................................................... 53 AlexanderH.Haslam,ChristophW.Schwingshackl,andAndrewI.J.Rix 7 OperationalModalAnalysisofRotatingMachinery................................................................ 67 S.Gres,P.Andersen,andL.Damkilde 8 CharacterizationofTorsionalVibrations:Torsional-OrderBasedModalAnalysis............................. 77 EmilioDiLorenzo,C.Colantoni,F.Bianciardi,S.Manzato,K.Janssens,andB.Peeters 9 Long-TermAutomaticTrackingoftheModalParametersofanOffshoreWindTurbineDrivetrain SysteminStandstillCondition......................................................................................... 91 MahmoudEl-Kafafy,NicolettaGioia,PatrickGuillaume,andJanHelsen 10 Dynamic Modelling and Vibration Control of a Turbomolecular Pump with Magnetic Bearings inthePresenceofBladeFlexibility.................................................................................... 101 AlyssonB.BarbosaMoreiraandFabriceThouverez 11 Pushing3DScanningLaserDopplerVibrometrytoCaptureTimeVaryingDynamicCharacteristics....... 111 BryanWittandBrandonZwink 12 DynamicMeasurementsonMiniatureSpringsforFlawandDamageDetection................................ 123 DanielP.Rohe 13 UsingHigh-ResolutionMeasurementstoUpdateFiniteElementSubstructureModels........................ 137 DanielP.Rohe 14 DeterminationofRepresentativeOffshoreWindTurbineLocationsforFatigueLoadMonitoring byMeansofHierarchicalClustering.................................................................................. 149 AndreasEhrmann,CristianGuillermoGebhardt,andRaimundRolfes vii viii Contents 15 EffectofFriction-InducedNonlinearityonOMA-IdentifiedDynamicCharacteristicsofOffshore PlatformModels......................................................................................................... 153 TobiasFriis,AntoniosOrfanos,EvangelosKatsanos,SandroAmador,andRuneBrincker 16 RemoteDamageDetectionofRotatingMachinery.................................................................. 163 PeterH.Fickenwirth,CharlesH.Liang,TyrelC.Rupp,EricB.Flynn,andAdamJ.Wachtor 17 ExperimentalDemonstrationofaTunableAcoustoelasticSystem ................................................ 179 DeborahFowler,GarrettLopp,DhirajBansal,RyanSchultz,MatthewBrake,andMicahShepherd 18 NumericalModelingofanEnclosedCylinder ....................................................................... 191 RyanSchultzandMicahShepherd 19 ExploitingLaserDopplerVibrometryinLargeDisplacementTests .............................................. 199 E.Copertaro,P.Chiariotti,M.Martarelli,andP.Castellini 20 ARationalBasisforDeterminingVibrationSignatureofShaft/CouplingMisalignmentinRotating Machinery................................................................................................................ 207 ChangruiBai,Surendra(Suri)Ganeriwala,andNaderSawalhi 21 ParametricExperimentalModalAnalysisofaModernViolinBasedonaGuarneridelGesùModel ........ 219 ElvioBonisoli,MarcoCasazza,DomenicoLisitano,andLucaDimauro 22 InfluenceoftheHarmonicsontheModalBehaviorofWindTurbineDrivetrains............................... 231 N.Gioia,P. J.Daems,C.Peeters,M.El-Kafafy,P.Guillaume,andJ.Helsen 23 TheInfluenceofGeometricalCorrelationinModalValidationUsingAutomated3DMetrology ............. 239 TarunTejaMallareddy,DanielJ.Alarcón,SarahSchneider,andPeterG.Blaschke Chapter 1 Summarizing Results for Scaling OMA Mode Shapes by the OMAH Technique AndersBrandt,MartaBerardengo,StefanoManzoni,MarcelloVanali,andAlfredoCigada Abstract Methods for scaling mode shapes determined by operational modal analysis (OMA) have been extensively investigated in the last years. A recent addition to the range of methods for scaling OMA mode shapes is the so-called OMAHtechnique,whichisbasedonexcitingthestructurebyharmonicforcesappliedbyanactuator.Byapplyingharmonic forces in at least one degree-of-freedom (DOF), and measuring the response in at least one response DOF, while using at leastasmanyfrequenciesasthenumberofmodeshapestobescaled,themodeshapescaling(modalmass)ofallmodesof interestmaybedetermined.Inpreviouspublicationsonthemethodtheauthorshaveproventhatthetechniqueiseasyand robusttoapplytobothsmallscaleandlargescalestructures.Also,ithasbeenshownthatthetechniqueiscapableofscaling highlycoupledmodesbyusinganextendedmultiplereferenceformulation.Thepresentpapersummarizesthetheoryofthe OMAHmethodandgivesrecommendationsofhowtoimplementthemethodforbestresults.Itispointedout,ashasbeen shown in previous papers, that the accuracy of the mode scaling is increased by using more than one response DOF, and by selecting DOFs with high mode shape coefficients. To determine the harmonic force and responses, itis recommended to use the three-parameter sine fit method. It is shown that by using this method, the measurement time can be kept short byusinghighsamplingfrequencyandbandpassfilteringwhereasspectrumbasedmethodsrequirelongmeasurementtimes. This means that even for structures with low natural frequencies, the extra measurement time for scaling the mode shapes canbekeptrelativelyshort. Keywords Operationalmodalanalysis · OMA · Modeshapescaling · OMAH · Sineexcitation 1.1 Introduction Operationalmodalanalysis(OMA)naturallyleadstounscaledmodeshapes,sincetheforcesactingonthestructurearenot measured.Itisnotuncommonthatscaledmodeshapesaredesired,however.Insuchcases,severalmethodsexistbywhich themodeshapesobtainedbytheOMAparameterextractionmaybescaled.MostofthemethodsdevelopedtoscaleOMA modeshapescanbedividedintothefollowingcategories: 1. methodsbasedonseveralOMAtests,withdifferentmassorstiffnessconfigurations,seeforexample[1–4]; 2. methodsbasedonknowingthemassmatrixofthestructure,expandtheOMAmodeshapestothesizeofthemassmatrix, andscalethemodeshapesusingtheweightedmodevectororthogonalityproperty,see[5]; 3. methods based on exciting the structure by a known force, and use this force for scaling, usually referred to as OMAX, seeforexample[6,7]. Of the methods above, the last method has the advantage that it uses an actual measurement of the force, and is thus, in some sense, scaling the modal model to some calibrated force value. On the other hand, it is generally difficult to excite large structures with broadband force. The authors recently suggested to use harmonic forces for the excitation, since this requireslessperformanceoftheactuatorused[8].Themethod,calledOMAH,wasextendedwithaglobalformulationin A.Brandt((cid:2)) DepartmentofTechnologyandInnovation,UniversityofSouthernDenmark,OdenseM,Denmark e-mail:[email protected] M.Berardengo·M.Vanali DepartmentofEngineeringandArchitecture,UniversitàdegliStudidiParma,Parma,Italy S.Manzoni·A.Cigada DepartmentofMechanicalEngineering,PolitecnicodiMilano,Milan,Italy ©TheSocietyforExperimentalMechanics,Inc.2019 1 D.DiMaio(ed.),RotatingMachinery,Vibro-Acoustics&LaserVibrometry,Volume7,ConferenceProceedings oftheSocietyforExperimentalMechanicsSeries,https://doi.org/10.1007/978-3-319-74693-7_1 2 A.Brandtetal. [9],allowingtousemultipledegreesoffreedom(DOFs)forforceaswellasresponselocations.TheglobalOMAHmethod is therefore capable of scaling mode shapes also in cases where there is no single DOF to be chosen for excitation of all modes.Furthermore,usingseveralresponsepointsforthescalingreducesthevarianceintheestimatesofthemodalmassof thestructure. Using harmonic force to scale OMA mode shapes has the advantage that it puts little demand on the actuator, as the actuator only needs to produce a narrowband excitation. Relatively inexpensive actuators can readily be designed for harmonic excitation – even for exciting large structures at low frequencies with relatively high force levels. Furthermore, theestimationoftheharmonicsignal,hiddeninrandomnoisefromwind,traffic,andotherpossiblesources,canbeachieved underpoorsignal-to-noiseratios(SNRs),withwell-knownsignalprocessingmethods(mainlytheso-calledthree-parameter sinefitmethod),seeSect.1.2.2. 1.2 Theory ThetheoryoftheglobalformulationoftheOMAHmethodispresentedinthissection.First,inSect.1.2.1bylayingoutthe methodforscaling,basedonestimatesofthefrequencyresponseofthestructureatanumberoffrequencies.Secondly,in Sect.1.2.2themethodtoaccuratelydeterminetheharmonicforceandresponsesataparticularfrequency,isdiscussed. 1.2.1 OMAH ModeShapeScaling Scalingmodeshapesisidenticaltodeterminingthemodalmassofeachmode.Westartbyassumingafrequencyresponse function(FRF)inreceptanceformat(displacementoverforce)betweenexcitationinDOFqandresponseinDOFp,which canbewrittenasafunctionofangularfrequency,!,as XN q p H .j!/D r r (1.1) p;q m .j!(cid:2)s /.j!(cid:2)s(cid:2)/ rD1 r r r wherem denotesthemodalmassofmoder,and(cid:2) denotescomplexconjugate.Moreover, p and q aretheeigenvector r r r coefficients(fromtheOMA)formoder atDOFspandq,respectively.Thepoles,s ,aredefinedbytheundampednatural r frequencies(inrad/s),! ,andtherelativedampingratios,(cid:2) ,as r r q s D(cid:2)(cid:2) ! Cj! 1(cid:2)(cid:2)2: (1.2) r r r r r Finally,jistheimaginaryunit. After OMA parameter extraction all factors on the right-hand side are known, except the modal mass, and scaling the modalmodelthusrequirestodeterminethemodalmassofeachmode. The OMAH method relies on first making an OMA test, whereafter a number of frequency responses, H .j!/, are p;q estimatedatanumberofresponseDOFsp D p ;p ;:::;p andoneormoreexcitationDOFsq D q ;q ;:::;q .Then,an 1 2 m 1 2 v equation system is set up to estimate the modal masses and, potentially, residual terms accounting for out-of-band modes. Inthesimplestofcases,however,Eq.(1.1)canbeuseddirectlyemployingasingleFRFestimate,assumingasingle-DOF approximationandnoeffectsofsurroundingmodes. For the general case, we define a global scaling method by first assuming we wish to scale a number, g, modes, from modenumberhtohCg(cid:2)1,usingthesetofmeasuredFRFs.WealsodefineconstantresidualtermsC (formodesbelow pq themodesofinterest)andD (formodesabovethemodesofinterest)byapproximatingtheFRFby pq H .j!/(cid:3)hCXg(cid:3)1 rp rq C Cpq CD : (1.3) p;q m .j!(cid:2)s /.j!(cid:2)s(cid:2)/ !2 pq rDh r r r Next,wedefinetheFRFcolumnvectorfHg,containingmeasuredFRFs,by l (cid:2) fHg D H .j! / H .j! / ::: H .j! / H .j! / ::: l p1;q1 ex;1 p1;q1 ex;2 p2;q1 ex;1 p2;q1 ex;2 Hpm;q1.j!ex;1/ Hpm;q1.j!ex;2/ ::: Hp1;q2.j!ex;1/ Hp1;q2.j!ex;2/ ::: (1.4) (cid:3)T H .j! / H .j! / ::: pm;qv ex;1 pm;qv ex;2

Description:
Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, Volume 7: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the seveth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection pre
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.