FieldCropsResearch122(2011)1–13 ContentslistsavailableatScienceDirect Field Crops Research journal homepage: www.elsevier.com/locate/fcr Review Root biology and genetic improvement for drought avoidance in rice VeereshR.P.Gowdaa,b,AmeliaHenrya,∗,AkiraYamauchic,H.E.Shashidharb,RachidSerraja,1 aInternationalRiceResearchInstitute,DAPOBox7777,MetroManila,Philippines bDepartmentofBiotechnology,CollegeofAgriculture,UniversityofAgriculturalSciences,GKVK,Bangalore560065,India cGraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Chikusa,Nagoya,Japan a r t i c l e i n f o a b s t r a c t Articlehistory: Ricerootgrowthencompassesaremarkablegeneticdiversityintermsofgrowthpatterns,architecture, Received24November2010 andenvironmentaladaptations.Inordertoharnessthisvaluablediversityforimprovingriceresponse Receivedinrevisedform1March2011 todrought,anunderstandingofkeyroottraitsandeffectivedroughtresponsemechanismsisnecessary. Accepted1March2011 Atrait-basedapproachwithpreciseunderstandingofthetargetenvironment,includingtemporaland spatialheterogeneity,isapossiblepathtowardtheuseofrootsanddehydrationavoidancetraitsfor Keywords: improveddroughtresistanceinrice.Theabilitytogrowdeeprootsiscurrentlythemostacceptedtarget Drought traitforimprovingdroughtresistance,butgeneticvariationhasbeenreportedforanumberoftraits Rice thatmayaffectdroughtresponse.Here,wereviewvariationinricerootresponsetodroughtfroma Roots Breeding physiologicalperspectiveintermsofmorphologyandfunctionwithrespecttothedifferentgrowth QTL environments(uplandandlowland)commonlyusedbyfarmers.Recentadvancesinlinkingphysiology Marker-assistedselection andbreedingarealsopresented. ©2011ElsevierB.V.Allrightsreserved. Contents 1. Introduction............................................................................................................................................ 2 2. Rootstructureandphysiology......................................................................................................................... 2 2.1. Morphologicaltraits............................................................................................................................ 2 2.2. Ricerootanatomyandmechanismsforwateruptake........................................................................................ 3 3. Geneticvariationofriceroottraitsinresponsetodrought........................................................................................... 4 3.1. Geneticvariationformorphologicaltraits..................................................................................................... 4 3.2. Geneticvariationforrootanatomy............................................................................................................ 5 3.3. Heritability..................................................................................................................................... 5 4. Rootsforimprovementofdroughtresistanceinrice................................................................................................. 5 4.1. Uplandrice..................................................................................................................................... 6 4.2. Rainfedlowlandrice............................................................................................................................ 6 4.3. PhenotypingandQTLs.......................................................................................................................... 7 4.4. Geneticimprovementfordroughtavoidance................................................................................................. 8 4.5. Genomicsandproteomics...................................................................................................................... 9 5. Conclusions............................................................................................................................................ 9 5.1. Rootfunctionforwateruptakeunderdrought................................................................................................ 9 5.2. EffectivenessoftheQTLmappingstrategyforroottraits.................................................................................... 10 5.3. Thewayforward.............................................................................................................................. 10 Acknowledgments.................................................................................................................................... 10 References............................................................................................................................................ 10 ∗ Correspondingauthorat:CropandEnvironmentalSciencesDivision,IRRI,DAPO Box7777,MetroManila,Philippines.Tel.:+63495362701;fax:+63495367995. E-mailaddress:[email protected](A.Henry). 1 Presentaddress:ICARDA,Aleppo,Syria. 0378-4290/$–seefrontmatter©2011ElsevierB.V.Allrightsreserved. doi:10.1016/j.fcr.2011.03.001 2 V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 1. Introduction whenitslengthreaches12cm(Hoshikawa,1989).Inthecaseof rice,thereisonlyoneseminalorembryonicrootanditisusually Drought is a major abiotic stress, affecting 20% of the total thelongestrootbeforethethird-leafperiod(Zhangetal.,2001).In rice-growingareainAsia(PandeyandBhandari,2008).Rootsare general,seminalrootshaveapoorconductingcapacity(Haradaand the principal plant organ for nutrient and water uptake. There- Yamazaki,1993)andtheirroleintheuptakeofwaterandnutrient fore, improving our understanding of the interactions between islimitedtothevegetativestage(aroundtheseven-leafstage). rootfunctionanddroughtinricecouldhaveasignificantimpact Mesocotylrootsarethosethatgrowfromthemesocotyl(the on global food security. This review aims to synthesize previ- axisbetweenthenodeofthecoleoptileandthebaseoftheradi- ous research on rice root biology for drought and to suggest cal)andtheydeveloponlyunderdeepseedingorwhentheseedis newdirectionsofresearchinordertoimprovericeproductionin treatedwithcertainchemicals(YoshidaandHasegawa,1982).Usu- drought-proneregions. ally,theyarenotcoarseandseldomhavelateralorbranchroots. Plants use different mechanisms to cope with drought stress, Nodal roots are postembryonic roots, which arise from nodes at namely,droughtescape,droughttolerance,droughtrecovery,and the base of the main stem and tillers. Functionally, nodal roots droughtavoidance(Levitt,1972;O’TooleandChang,1979).Among elongate deeply into soil, thus constituting a framework for the thesefourmechanisms,themodeofdroughtresistancewithwhich wholerootsystem.Whenrootlengthexceedsacertainsize,the rootsaremostlikelyassociatedisdroughtavoidance.Genotypes branchingprocessstartsbyinitiation,emergence,andgrowthof thathavedeep,coarserootswithahighabilityofbranchingand lateral roots from the root pericycle and epidermis (Morita and penetration,higherroottoshootratio,elasticityinleafrolling,early Yamazaki,1993).Lateralroots,whichcompriseagreaterpropor- stomatalclosure,andhighcuticularresistancearereportedascom- tionoftherootsystemintotallengthandnumber(Yamauchietal., ponenttraitsofdroughtavoidance(Blumetal.,1989;Samsonetal., 1987a,b;HaradaandYamazaki,1993),areresponsibleforthegreat- 2002;WangandYamauchi,2006). estamountofwaterandnutrientabsorption(Yoshidaetal.,1982). Achievingdroughtresistanceinricewillbenecessaryformeet- Itisstillunknownhowrootmassormaximumrootlengthrelates ing the growing water shortage of the world, and it requires tovariationinlateralbranchingorroothairs.Threediscretetypes a deeper understanding of the mechanisms that could facilitate oflateralrootshavebeenrecognizedinrice:theLtype,whichis drought resistance (Serraj et al., 2011). Understanding the phys- generally long and coarse (0.2–0.3mm), and capable of branch- iologyofdroughtresponsecancontributetoplantbreedingefforts ingintohigherorderlaterals;Mtypes,thosethatwerelongand towarddroughtresistance(FukaiandCooper,1995;Serrajetal., coarsebutwithoutabranch;andStypes,thosethatwereshort, 2009).Roottraitshavebeenclaimedtobecriticalforincreasing fine (0.035–0.1mm), and non-branching but usually numerous. yieldundersoil-relatedstresses(Lynch,2007;Serrajetal.,2004). Thedifferenttypesoflateralrootsvaryinanatomy,developmen- Previously,O’TooleandBland(1987)reviewedricerootgrowthat talcharacteristics,carbonandnitrogendynamics,developmental atimewhengeneticvariationforroottraitswasjustbeginningto responses to various soil environments (Yamauchi et al., 1996), beexplored.Giventherecentadvancesinphysiologicaltechniques, andgeneticregulationoftheirdevelopment(Wangetal.,2006a). genetics,andmolecularbiology,thisreviewaimstosynthesizethe Rebouillatetal.(2009)haveprovidedathoroughreviewofriceroot currentknowledgeofricerootsystemssothatitcanbeusedto development. elucidatetheroleofrootsforimprovementsindroughtresistance. Hormone action on the development of root architecture has been summarized by Osmont et al. (2007). Auxin and abscisic 2. Rootstructureandphysiology acidpromotelateralrootformation,cytokininsuppresseslateral rootformation,ethylenehasinteractionswithauxinandmayplay 2.1. Morphologicaltraits a role in lateral root formation through cortical cell breakdown, and gibberellic acid acts with ethylene to promote adventitious Growthofthericeroot,intermsoftotaldrymatter,maximum root growth in flooded rice. Studies of hormone effects on rice rootdepth,androotlengthdensity,increasesuntilfloweringstage root growth report that ethylene mediates aerenchyma forma- and then decreases sharply to maturity (Yoshida and Hasegawa, tionandadventitiousrootgrowthunderfloodedconditionsinrice 1982).KawataandSoejima(1974)indicatedthatrootsproduced (Rzewuski and Sauter, 2008), but is not involved in the forma- afterfloweringmayplayanimportantroleduringthegrain-filling tion of barriers to radial oxygen loss (Colmer et al., 2006). Use period.Theshapeoftherootsystemdiffersgreatlywithsoiltexture ofanantisensetransgenicindicatedapositiveroleofcytokinins (particlesize),soilwaterstatus,andsoilcompaction(Hoshikawa, forricerootdevelopment(Liuetal.,2003).ABAwasobservedto 1989). Rice is characterized by a shallow root system compared playaroleinlateralrootformation,tipswelling,roothairforma- withothercerealcrops(Angusetal.,1983),havinglimitedwater tion, and water permeability in roots of variety Taichung native extraction below 60cm (Fukai and Inthapan, 1988). The form of 1 (Chen et al., 2006). Experiments with a mutant for the OsIAA3 thericerootsystemalsovarieswithcultivationmethods(Yoshida geneindicateanimportantroleofauxinforgravitropismandthe andHasegawa,1982;Tuongetal.,2002).Inuplandconditionswith growthofseminal,nodal,andlateralroots(Nakamuraetal.,2006). directsowing,therootsystemgenerallydevelopsdeeperthanin Root growth under drought is likely influenced by the interac- transplantedplantingsinlowlandconditions. tionofplanthormones,asreportedwithethylene,gibberellin,and The rice root system, a fibrous root system, can be divided abscisicacidforadventitiousrootsindeepwaterrice(Steffensetal., into different classes: seminal roots, mesocotyl roots, and nodal 2006). roots.Lateralrootsemergefromeachoftheseclasses.Thesethree Many studies have restricted their analyses to a set of root classesdifferinorigin,anatomy,andfunction.Whentheseedger- parametersthatincludesrootdevelopmentwithrespecttotiller minates,thecoleorhizaemergesfirstandthen,withinashorttime, development,maximumrootdepth,totalrootlength,rootsurface the first seminal root (radical) breaks through the covering. The area,rootvolume,rootdiameter,rootlengthdensity,rootdistribu- emergence of the root is the first sign of seed germination. The tionpatterninthesoilcolumn,roottoshootratio,rootbranching, seedcontainsarelativelylargereserveofstoragecarbohydrateand root hydraulic conductance, root anatomy, root elongation rate, nutrients(Marschner,1998),whichallowstheembryonicrootto total plant length, and hardpan penetrability, which are of var- growrapidly.Itgrows3–5cmlongin2–3daysaftergermination. ious functional significance (Table 1; Wang et al., 2006a). It has Usually,therateofelongationoftheseminalrootwillslowdown beenhypothesizedthatcoarserootshaveadirectroleindrought V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 3 Table1 RoottraitsandtheirfunctionalcharacteristicsthataremostcommonlycharacterizedinrootQTLmappingstudies. Roottraits Functionalcharacteristics Maximumrootdepth Potentialforabsorptionofsoilmoistureandnutrientsindeepersoillayer Roottoshootratio Assimilateallocation Rootvolume Theabilitytopermeatealargevolumeofsoil Rootnumber Physicalstrength,potentialforrootsystemarchitecture Rootdiameter Potentialforpenetrationability,branching,hydraulicconductivity Deeproottoshootratio Verticalrootgrowth,potentialforabsorptionofsoilmoistureandnutrientindeepersoillayers Rootlength/weightdensity Rateofwaterandnutrientuptake Rootbranching Powerofsoilexploration(themajorcontributiontototalrootlength) Totalrootlength/surfacearea Totalrootsystemsize:thesizeofcontactwithsoil(majordeterminantforwaterandnutrientuptakeasanentirerootsystem) Specificrootlength Degreeofbranching,densityofrootmaterials,porosityduetoaerenchymadevelopment Hardpanpenetrationability Abilitytopenetratesubsurfacehardpans resistance because larger diameter roots are related to penetra- ally toward the aerial parts of the plant. Steudle and Peterson tion ability (Materechera et al., 1992; Nguyen et al., 1997; Clark (1998) have summarized the “Composite Transport Model” for etal.,2008)andbranching(Fitter,1991;Ingrametal.,1994),and water uptake and transport in roots, in which apoplastic, sym- theyhavegreaterxylemvesselradiiandloweraxialresistanceto plastic,andtranscellularpathwayscontributetowateruptakeand waterflux(Yambaoetal.,1992).Themaximumdepththatroots transport. A combination of pathways can be used, for example, reachisgeneticallydeterminedanddifferssubstantiallybetween when water moves within the symplast for some distance and cultivarsgrownunderidenticalconditions,butatthesametime may then cross the plasma membrane to move within the cell isaffectedbyenvironmentalconditionsinthefield(Yoshidaand wall(Steudle,2000).Exchangebetweenpathwayspossiblyhelps Hasegawa, 1982). Maximum root depth of a particular genotype rootstoadjusttheirwateruptakeabilityaccordingtotranspiration isachievedonlywhenrootsdonotencounteraphysicallimitto demandofleaves. growth.Thequantityofrootlength(orweight)inlayerswithinthe Rice root anatomy characteristically exhibits cortical soilprofileisusuallyexpressedintermsofrootlength(orweight) aerenchyma, which are associated with gas transport to roots perunitvolumeofsoil,referredtoasrootlength(orweight)den- growing in anaerobic conditions. The effects of soil moisture on sity.Sincewaterismostlyabsorbedpassively,rootlengthdensity, aerenchymaformationhavebeendocumented,andthesereports which reflects the development of lateral roots, can be directly point to aerenchyma formation as prevalent in rice roots from related to water uptake ability of the plant. As root length den- all types of root growth media. Colmer (2003) studied 12 rice sity increases, water uptake usually increases, but up to a given varieties, including upland, paddy, and deepwater types, and all lengthonly,whichistermedcriticalrootlengthdensity.Inrice,like produced aerenchyma in both drained and flooded soil condi- othercrops,thecriticalrootlengthdensitydependsonsoilcondi- tions,aswellasinaeratedandstagnantsolutionculture.Greater tions, especially moisture (Siopongco et al., 2005), and roots are aerenchyma formation was observed in the flooded/stagnant distributedinsuchawaythattheirlengthandmasswilldecrease treatments, but no difference in aerenchyma formation among exponentially with depth. Root density at depth determines the cultural types was reported. Aerenchyma formation has been exploitationofwaterpresentatdeeperlevels. observed under drought conditions in both aerobic and lowland Roottoshootratioisameasureoftheallocationofresources genotypes,althoughtoalesserextentthanunderfloodedcondi- betweendifferentplantcomponents.Theallocationofresources tions (Suralta and Yamauchi, 2008). Internal gas space may not toward the root is high at early vegetative stages but decreases reflect aerenchyma formation; rice roots have a root porosity markedly at flowering and is almost negligible after anthesis of approximately 9% at 20–25mm behind the root tips even (Gregoryetal.,1996).Aschetal.(2004)reportedthatthepropor- with the absence of aerenchyma (Armstrong, 1971). Parren˜o-de tionoftotaldrymatterallocatedtorootorshootpartsdependedon Guzman and Zamora (2008) observed that a greater number therateofsoildry-down,withroot–shootratiosaveraging0.05–0.1 of aerenchyma lacunae were formed under intermittent and atfloweringinsoil-filledPVCpipes.Geneticvariationinroot–shoot upland water regimes than in flooded conditions. The authors ratioamongOryzaspecieswasalsoreported,andwasseenamong reported genotypic differences when the roots were observed subspeciesgroups(Kondoetal.,2003).Japonicaaccessionsrequire at tillering, but not at panicle initiation, which suggests genetic moreresourceallocationtowardrootsfortheformationofdeep differences in the onset of aerenchyma formation. Although rootlengththanindicaandausaccessions.Roottoshootratioalso droughthasbeenobservedtoaffectaerenchymaformation,itis varieswithcultivationsystem.Inuplandconditions,roottoshoot unknownwhetheraerenchymaformationaffectswateruptakein ratioincreases(BanbaandOokubo,1981;Kondoetal.,2000a;Price rice. etal.,2002;Singhetal.,2000),comparedwithroottoshootratioin Intheiradaptationtogrowthinfloodedconditions,riceroots lowlandconditions(Azhiri-Sigarietal.,2000;Ban˜ocetal.,2000a). displayauniqueformationofapoplasticbarrierscomparedwith This response may be due to mechanical impedance in lowland othercropplants.TheroleofsuberinandtheCasparianbandinlim- conditions,whichtypicallyfeatureahardpanfromsoilpuddling. itingwateruptakehasreceivedmixedreports.Indrought-stressed Valuesofdeeproottoshootratiohavealsobeenusedtocharacter- lowlandrice,theimplicationsofapoplasticrootbarrierformation izetheverticalrootgrowthofrice. are complex since the soil at the start of the season is flooded, then fluctuates or steadily decreases based on rainfall patterns. 2.2. Ricerootanatomyandmechanismsforwateruptake Hose et al. (2001) concluded that the extent and rate of Caspar- ianbandandsuberinlamellaformationdependonenvironmental Before water reaches transpiring leaves, it must penetrate conditions(drought,hypoxia,salt,heavymetal,andnutrientavail- throughaseriesofconcentriccelllayers.Inrice,theselayersinclude ability).Typically,agreaterdegreeofCasparianbandandsuberin therootepidermis,hypodermis(exodermis),schlerenchymalayer, lamella development resulted in less water permeability of the several layers of cortex cells, endodermis, pericycle, and xylem root. Formation of an exodermis in rice was induced by growth vessels.Oncewaterhasreachedthexylemvessels,itmovesaxi- instagnantsolution,andresultedinaneffectivebarriertoradial 4 V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 oxygenlossinrice(Colmeretal.,1998).Componentsofrootbarri- proteins(TIPs),Nod26-likeintrinsicproteins(NIPs),andsmalland ersincludealignifiedschlerenchymalayer,asuberizedexodermis basicintrinsicproteins(SIPs);Sakuraietal.,2005).Inrice,expres- (hypodermis),andarhizodermis(acelllayeroutsideoftheexo- sionofeachaquaporingeneinrootsvarieswithroottissue,but dermis). isgenerallymoreabundantattheroottipthaninotherpartsof The effects of apoplastic barriers on water uptake and trans- the root (Sakurai et al., 2008). This is due to the prevalence of portinriceareunclearsincegenotypesofricecanbeadaptedto aerenchymaalongthelengthofriceroots,asthereducedexpres- floodedornon-floodedconditions.Kondoetal.(2000a)reported sionawayfromthetipdiffersfromthatofothercrops(e.g.,maize; thatmaizereducedsoilwaterpotentialtolowerlevelsthanrice Hachezetal.,2006). underdroughtconditions,andthat,inadditiontohavingasmaller MostresearchinriceonaquaporinsanddroughtfocusesonPIPs. rootlengththanmaize,ricehadalowerabilitytotakeupwater Studiescomparingdrought-stresseduplandandlowlandricegen- perunitrootlength.Wateruptakeinricedeclinedmarkedlyunder erallyreportagreaterresponseinaquaporingeneexpressionfrom severedroughtstresscomparedwithmildstress,whereaswater upland rice. To date, all aquaporin studies in rice that included uptakeinmaizewassimilaratthetwostresslevels,possiblydue a drought treatment did so using polyethylene glycol (PEG) in tothedeeperrootgrowththatwasobservedinmaize.Consistent solution culture. Lian et al. (2004) observed an up-regulation of withtheseresults,Miyamotoetal.(2001)reportedamuchlower the PIP RCW3 in upland rice under drought, but not in lowland hydraulicconductivityofricerootscomparedwiththoseofother rice. When the RCW3 was inserted into the same lowland rice species, but with no visible differences in endodermis, exoder- background,however,greaterosmoticroothydraulicconductance, mis,oraerenchymaformationbetweenlowland(IR64)andupland leafwaterpotential,andtranspirationwereobserved.Lianetal. (Azucena)varietiesgrowninsolutionculture.However,theroot (2006)examinedtheexpressionofallricePIPs,andreporteddif- hydraulicconductivityofIR64wassignificantlylowerthanthatof ferentialexpressionbetweenuplandandlowlandrice,rootsand Azucenainaeroponicallygrownroots,whichisanexpectedtrend shoots,well-wateredanddroughtconditions,andnotablybetween giventheenvironmenttowhichthesevarietiesareadapted.This droughtandABAtreatments.Interestingly,somePIPsweredown- pointstotheimportanceofrootgrowthenvironmentforstudying regulatedunderdrought.Inawhole-genomecomparisonofgene hydraulicconductivity. expressionunderdroughtandwell-wateredconditions,allgenes Roothydraulicconductivityhasbeenfurthercharacterizedin showingincreasedexpressioninuplandricealsoexistedinlowland IR64(lowland)andAzucena(upland)rice,withemphasisonsepa- rice(Wangetal.,2007).Sinceuplandriceistypicallyunderstoodto ratingtheindividualrootcomponentsaffectingwatermovement. bemoredrought-resistantthanlowlandrice,thisledtheauthorsto Inbothstudiesdescribedbelow,nodifferencesbetweenvarieties suggestthatover-expressionofsomeofthesegenesmayimprove werereported.Ranathungeetal.(2003)observedhydrauliccon- thedroughtresistanceoflowlandvarieties. ductivityoftheouterpartofthericeroot(cortexandexodermis) to be 30 times that of the endodermis and stele. Subsequently, Ranathungeetal.(2004)usedinktoblocktheapoplastandHgCl to 3. Geneticvariationofriceroottraitsinresponseto 2 closeaquaporins,andconcludedthatwatermovementispredomi- drought nantlythroughtheapoplastsincetheinkhadabiggereffectonroot hydraulicconductivity.Theauthorsnotedalowresistanceofthe 3.1. Geneticvariationformorphologicaltraits exodermis,butdidnotnoticeanypatchinessofCasparianbands, whichmayhaveincreasedtheirpermeability.Thesestudieswere Significant genetic variation exists among different rice culti- laterquestionedforusingaeratedsolutionasagrowthmedium, varsforrootmorphologicaltraits(O’TooleandBland,1987)suchas whichlikelydidnotinducetheformationofatightbarrierinthe rootdiameter(Armenta-Sotoetal.,1983),rootdepth(Nicouetal., outerpartoftheroot(Garthwaiteetal.,2006). 1970;ReyniersandBinh,1978;Yadavetal.,1997;Mambaniand Hydraulicconductanceofwholerootsystemsinricehasbeen Lal,1983a;Nemotoetal.,1998;Katoetal.,2006),rootpullingforce recently reported in rice roots from both solution and soil cul- (O’Toole and Bland, 1987; Ekanayake et al., 1985a), deep root to ture (Matsuo et al., 2008). In solution culture, root hydraulic shootratio(YoshidaandHasegawa,1982),rootnumber(Armenta- conductance was greater in a lowland japonica variety (Koshi- Soto et al., 1983), root growth plasticity (O’Toole, 1982; Ingram hikari; previously classified as drought-susceptible) than in an etal.,1994;Priceetal.,2002),androotpenetrationability(Babu upland variety (Sensho; mildly drought-resistant). In soil, the etal.,2001;Clarketal.,2008,2000;Alietal.,2000). roothydraulicconductanceofanuplandindicavariety(Beodien; Studies on genetic variation for root traits in rice have been drought-tolerant)wasgreaterthanthatofKoshihikari.Theauthors ongoing for decades. In 1970, Nicou et al. reported significant concludedthatroothydraulicconductivitymaybemoreaffectedby geneticvariationforroottraitsamongbothuplandandlowland waterchannelsthanbyrootanatomy.Rootwateruptakeabilityand cultivarsofAsia,Africa,andSouthAmerica.Asianlowlandvarieties hydraulicconductancehavebeenevaluatedaccordingtorootpres- had finer and more highly branched roots, whereas African and sure,determinedbyrootsystemxylemsapfluxthroughcutstems South American cultivars had larger diameter and less branched (or“bleedingrate”).XylemsapfluxoflowlandvarietyKoshihikari roots.Changetal.(1972)comparedroottraitsofseveralupland decreasedwithdecreasingwateravailabilityinawater-savingtrial, andlowlandvarietiesandfoundthatdroughtresistancewasasso- but did not change in two upland varieties (Beodin and Shen- ciatedwithcoarse,longroots,adenserootsystem,andahighroot sho;MatsuoandMochizuki,2009b).Rootpressurehasalsobeen toshootratio.YoshidaandHasegawa(1982)alsoreportedgenetic attributedtorecoveryfromxylemcavitationinresponsetodrought variationinrootdepth,withatendencyforuplandricecultivarsto (Stilleretal.,2003).Beforebreederscanberecommendedtobreed havedeeperrootsthanlowlandricecultivars.Ingrametal.(1994) cultivarswithhighwateruptakeability,itisnecessarytoconfirm used cultivars belonging to different types of rice for root stud- the role of high root hydraulic conductivity in maximizing plant iesandfoundtropicaljaponicatypestohavelargerrootsystems growthandyieldunderdrought. than indica types. In another study, Lafitte et al. (2001) investi- Aquaporin expression has been reported to correlate directly gated the genotypic variation for root traits in different types of with root hydraulic conductance (e.g., Javot et al., 2003 in Ara- riceandreportedthatindicaricetypeshadfine,highlybranched bidopsis and Sakurai et al., 2005 in rice). Thirty-three aquaporin superficialrootswithnarrowxylemvesselsandlowroottoshoot genes have been identified in rice from all four major subfami- ratio, whereas japonica types had coarse roots with wider ves- lies(plasmamembraneintrinsicproteins(PIPs),tonoplastintrinsic sels,lessbranchedlongroots,andalargeroottoshootratio.Aus V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 5 types were reported to have intermediate root diameter, with a instancesthisvariationhasbeenlinkedwithabilitytoextractsoil rootdistributionprofilesimilartothatofjaponicatypesbutwith water.Additivegeneeffectswereimportantintheexpressionof finerroots.Othercomparisonsamongricevarieties(Thanhetal., rootxylemvesselareasothatsuchtraitscouldbestudiedefficiently 1999; Azhiri-Sigari et al., 2000; Kondo et al., 2003; Matsuo and inanearly-segregatinggeneration(Bashar,1987).Rootresistance Mochizuki, 2009a; Uga et al., 2009; Henry et al., 2011) further towaterflowcanbeconsideredintermsoftwocomponents:radial reflectthegeneticdiversityforroottraitsinrice.Yuetal.(1995) resistance and axial resistance (Landsberg and Fowkes, 1978). It reportedgenotypicvariationforrootpenetrationabilityofricecul- iscurrentlythoughtthatradialwaterflowismorelimitingthan tivarsbyusingthewaxlayermethod,inwhichdifferentparaffin axialwaterflow(SteudleandPeterson,1998),butseveralstudies waxesweremixedtoachieveaknownmechanicalimpedanceand havepromotedtheideaofselectinglargerxylemvesselsforbreed- includedintheroot-growthmedium.Usingthesamemethod,Babu ingdroughtresistance.Harajima(1936)reportedthattherewere etal.(2001)foundthatjaponicaaccessionshaveahigherrootpen- fewerprimaryxylemelementsinseminalrootsofuplandjaponica etration index (number of roots penetrating the wax layer/total varietiesthaninthoseoflowlandjaponicavarieties.Inexperiments numberofnodalandseminalroots)thanindicatypesinlinesused withbothsolutioncultureandlowlandfieldconditions,Kondoetal. todevelopdoubledhaploidmappingpopulations(CT9993/IR62266 (2000b) studied root anatomical traits, including stele diameter, andIR58821/IR52561)formappingandtaggingroottraits. metaxylemnumber,andmetaxylemdiameterinbothuplandand Many wild species in the genus Oryza may offer genetic lowlandricecultivars,andfoundthattraditionaluplandjaponica resources for drought resistance research since they have more cultivarshadthelargeststeleandmetaxylemdiameter. novelallelesthancultivatedrice(Zhangetal.,2006).Inanexperi- In another study by Yambao et al. (1992), root diameter was mentunderscreenhouseconditions,wildspeciesofOryza(mostly demonstratedtobeaneffectiveselectionindexforxylemsizein belongingtotheprimarygenepool)werecomparedforrootand roots with diameters up to about 1.2mm. The authors hypothe- otherdrought-adaptivetraits(Liuetal.,2004).Thatstudyrevealed sized that coarse roots would confer drought resistance because thatsomewildspecieshavesuperiorrootgrowthunderdrought theyhavegreaterxylemvesselradiiandloweraxialresistanceto stress.Oryzalongistaminataaccessionsandsomejaponicacultivars water flux, but it was concluded that this would not effectively showedeitheranincreaseintotalrootmassoranincreaseinthe contributetoimprovingdroughtresistance. proportionofrootmassinthedeepersoillayersunderdrought, whereas indica cultivars and Oryza rufipogon accessions did not 3.3. Heritability showanydifference. Evaluation of mutants for root traits can provide important Informationonheritabilityandgeneactionofaplanttraitisa insightsintorootgrowthanddevelopment.Inrice,somemutants prerequisiteforasuccessfulbreedingprogram.Suchstudiesrely withoutseminalrootsorwithoutlateralrootshavebeenidentified. heavilyuponarelativelylargenumberofplantstoarriveatsta- Sofar,tengeneshavebeenidentifiedinricerelatingtorootgrowth, tistically significant results, thus making root traits difficult to outofwhichmutantsofsixgenes,rm1andrm2(IchiiandIshikawa, incorporate.Assuch,informationonheritabilityandgeneaction 1997),rrl1andrrl2(Inukaietal.,2001a),srt5(Yaoetal.,2002),and ofriceroottraitsisstillverylimited.Earlierstudies(Changetal., srt6(Yaoetal.,2003),areinvolvedinareductioninseminalroot 1982; Armenta-Soto et al., 1983; Chang et al., 1986) using aero- elongation.Mutantsoftwogenes,crl1andcrl2(Inukaietal.,2001b), ponicsystemsfoundthatdominantgenescontrolrootnumber,root areinvolvedinareductioninnumberofnodalroots,one(rm109; depth,androotmass,whereasrootdiameteriscontrolledbyboth HaoandIchii,1999)isinvolvedinblockinglateralrootinitiation, dominantandrecessivegenes.Armenta-Sotoetal.(1983)reported andone(rh2;Ichiietal.,2000)isinvolvedinreducingroothairs. highernarrow-senseheritabilityestimatesforrootdiameter(62%), Othermutantsincludecrl4(Kitomietal.,2008),lrt1(lateralroot- rootlength(60%),androotnumber(44%). lessphenotype;Chhunetal.,2003a),arm1andarm2(lateralroot Ekanayakeetal.(1985a),usingF ,F ,andF populationsfrom numberdecreases;Chhunetal.,2003b),andlrt2(lateralrootless 1 2 3 acrossbetweenIR20(shallow,finerootsystem)andMGL-2(deep, phenotype;Wangetal.,2006b).Mostofthesegeneshavenotbeen coarserootsystem),reportedthatrootdiameter,rootdryweight, identifiedexceptforcrl1(Inukaietal.,2008). androotlengtharepolygenictraitswithsubstantialproportions Roothairsareextensionsofepidermiscellsofrootsthatarecon- ofadditivevariationandwithnarrow-senseheritabilitiesgreater sideredtobeanimportantstructurefornutrientuptakeasthey than50%.Theysuggestedthatselectionfortheseroottraitsbased coveralmost77%ofthesurfaceareaoftherootinanycrop(Jills on individual plant performance could be successful in early- etal.,2000).Experimentswiththeroothairlessmutantrh2indi- segregatinggenerations.Inanotherstudy,Ekanayakeetal.(1985b) catedthatroothairsdonothaveaprimaryroleinwateruptake observed low inheritance in lowland rice for root pulling force, at the seedling stage under drought and even their contribution whichistheverticalforcerequiredtoremoveoneplantfromthe tonutrientuptakediffersbyelementandculturemethod(Suzuki soil. Low heritability for some root traits is a common breeding etal.,2003).Moreresearchatdifferentstagesanddifferentdrought concern,buttheissuecanberesolvedbydevelopingsuitableselec- levelsisnecessarytoassessthepotentialroleforroothairsinwater tionmethodsthattakefulladvantageofgeneticvariabilityandalso uptakeunderdrought.Inaddition,lateralrootsgenerallyhavea makepossiblerapidselection,byincreasingbothheritabilityand largeeffectonoverallplantarchitecture(Yamauchietal.,1987a,b) selectionresponse(RichardsandPassioura,1981). andplaykeyrolesinwateruptake(Varneyetal.,1993),particularly underdroughtconditions(Ban˜ocetal.,2000b;Wangetal.,2009). Continuedresearchwithroottraitmutantscouldopenthewayto 4. Rootsforimprovementofdroughtresistanceinrice morethoroughgeneticandmolecularanalysisandcouldsupport molecularbreedersinbreedingcropswithimprovedrootarchitec- Therelationshipsbetweenrootgrowthandgrainyieldunder tureoncethephenotypesofthesetraitsarebetterunderstood. drought are complex. Positive associations between root length andgrainyieldhavebeendocumentedinrice(MambaniandLal, 3.2. Geneticvariationforrootanatomy 1983a; Lilley and Fukai, 1994). In contrast, Ingram et al. (1994) foundnosignificantassociationbetweenthetwotraits.Itmaybe In addition to root morphological features, considerable vari- thatasimplecorrelationbetweenrootgrowthandyieldcouldbe ation is also documented for root anatomical traits among rice expectedonlyinwell-definedtargetenvironments(Mambaniand varieties(Terashimaetal.,1987;Kondoetal.,2000b)andinsome Lal,1983a;Ekanayakeetal.,1985a).Venuprasadetal.(2002),in 6 V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 a study involving simultaneous evaluation of root character and 4.2. Rainfedlowlandrice grain yield, concluded that genotypes with a deep rooting habit had an advantage in stress conditions and that those genotypes Droughtresistancemechanismsthatareappropriateforupland thathadproduceddeeprootspriortotheonsetofstressshowed systemsmaynotbesuitableforrainfedlowlandconditionsandvice improvedproductivitycomparedwithagenotypethatdidnothave versa(Mackilletal.,1996),mainlybecauseoftheuniquehydrol- thecapacitytoproducerootspriortotheonsetofstress.Thestudy ogyofrainfedlowlandsinwhichsoiltransitionsfromfloodedand alsosuggested,basedonQTLmapping,thatthelociforproductivity anaerobictodroughtandaerobic(Wadeetal.,1999).Inadditionto traitswerenotcongruentwiththoserelatedtorootmorphology, thedifferencesinwaterstatusbetweenuplandandlowlandcon- exceptatonelocus.Subsequently,Toorchietal.(2006)andKanbar ditions,theeffectofcultivationonsoilpropertiesisamajorfactor et al. (2009), based on canonical correlation studies conducted determiningdifferencesinrootgrowthanddroughtadaptability undercontrastingmoistureregimes,suggestedthatmaximumroot betweenuplandandlowlandrice. depth,root–shootratio,androotdryweightconferredanadvan- Puddling,themechanicalbreakdownofsurfacesoilaggregates, tagetograinyieldunderstress. isthemostcommonlandpreparationmethodforlowlandricein Ricecultivationhastwomajorlandmanagementsystems,com- South and Southeast Asia. Hardpans that develop from puddling monlyreferredtoasuplandandlowland.Thesetwosystemsdiffer improvesoilwaterretentioncapacity(SharmaandDeDatta,1985) greatlyintheiryieldpotentialsbecauseofsoilcharacteristicsthat buthinderrootpenetrationtoreachmoistureindeeperzonesof affectrootgrowthandplantresponsetodrought,andaretherefore soilafterdryingoccurs(Ghildyal,1978;Hasegawaetal.,1985;Yu consideredinseparatesectionsinthisreview. et al., 1995; Clark et al., 2000, 2002; Babu et al., 2001; Samson et al., 2002). In a survey conducted in 35 rice-growing locations ofSouthandSoutheastAsiabySharmaetal.(1994),resistanceto penetrationinthesurface10cmaveraged0.64MPaunderflooded 4.1. Uplandrice conditionsand1.7MPainpuddledfieldswithoutstandingwater. Elsewhere, root penetration declined (>50%) at soil strengths of Ricecultivarsadaptedexclusivelytouplandconditionsaretyp- 0.5–2MPa(O’Toole,1982)anddeclinedevenmoreat3MPaand icallycharacterizedbyadeepandcoarserootsystem,tallstature, above(BengoughandMullins,1990).Acrossspecies,morpholog- thickerstems,andfewertillers(Ge,1992;Lingetal.,2002),whereas ical and physiological changes in plant growth due to effects of lowlandricecultivarshaveshallowandfinerroots,alargenumber hardpansonrootsincludeareductionintranspirationrateandleaf ofroots,andmanytillers(Langetal.,2003).Inuplandfieldsdur- areaexpansion,andultimatelyadecreaseindrymatteraccumu- ingstress,themajorsourcesofwaterforgrowthanddevelopment lation (Masle and Passioura, 1987; Ludlow et al., 1989; Assaeed arerainthatisretainedbythesoilandgroundwater.Acoarseand etal.,1990;Masle,1992).Theseeffectsmaybeduetodirectconse- deeprootsystem,forsoilpenetrationandaccesstowaterreserves quencesofreducedrootaccesstowaterandnutrients.Thepresence deepinthesoil,isconsideredvaluableforimproveddroughtresis- ofahardpaninshallowsoillayersmayfurtherpromoteuneven tanceunderuplandconditions(O’TooleandChang,1979;Lingetal., moisturedistributioninthesoilprofile,sothatarootsystemtends 2002).Ricerootsystemsandtheirrelationshiptodroughtresis- tobepartiallyexposedtodrysoil,causingstomatestoclosewhile tancewerepreviouslyreviewedbyYoshidaandHasegawa(1982). therestoftherootsystemcanaccesswater(Siopongcoetal.,2008, Theauthorsnoticedlargevariationamonguplandricecultivarsfor 2009).Inadditiontothepresenceofahardpanandgreaterstratifi- rootlengthdensitybelow30cmandsuggestedthattheeffectof cationofsoilcharacteristicsduetopuddling,rainfedlowlandsoils droughtstressdependsontheabilityofplantstodevelopadeep differfromuplandsoilsinthatseveresoilcrackingoccursuponsoil rootsystem.Changetal.(1986)alsofoundthatricewithadeeproot drying.Soilcracking,whichcanpenetratehardpans,stronglyinflu- systemavoideddroughtbetterthanricewithashallowrootsystem. encesrainfallinfiltrationandwaterevaporationprocesses(Tuong Advantagesconferredbyadeeprootsystemdependonthree etal.,1996).Sanchez(1973)reportedthatsoilcrackingimpeded majorfactors:durationofthedroughtperiod,availabilityofwater rootdevelopmentbasedonvisualobservations;otherwiseverylit- atdepth,andrateofwateruptake.Ifwaterisnotlimitedinupper tleisknownoftheeffectsofsoilcrackingongrowthofriceroot layers of the soil, the plant may not benefit from the formation systems. ofdeeproots.Inuplandconditions,PuckridgeandO’Toole(1981) Resultsofseverallowlandexperiments(Hasegawaetal.,1985; foundthatdeep-rootedcultivarKinandangPatongextractedmore Sharma et al., 1987; Mambani et al., 1989; Nabheerong, 1993; wateratadepthof40–70cmthanshallow-rootedcultivars(IR20 Pantuwanetal.,1996;Samsonetal.,1995)indicatethat69–94% and IR36). Similar results were also obtained by Mambani and ofrootsarelocatedinthetop10cmofthesoilandveryfewroots Lal(1983b),LilleyandFukai(1994),andKatoetal.(2007).Such arefoundbelow30cm.Verticaldeeprootpenetrationwouldhelp comparisonsofwateruptakearedifficulttoestimateinlowland rice to avoid drought stress; however, root penetration is often conditionsduetothecomplexinteractionsofdeepdrainageand restricted by the presence of a hardpan. Genotypic variation in lateralwatermovementinthesubsoil. theabilityofricetopenetratecompactedsoillayersandsimulated A range of trends have been reported regarding root growth compactlayershasbeenshowntoexist(O’Toole,1982;Yuetal., response to drought stress in upland rice, including both root 1995;Rayetal.,1996;Alietal.,2000;Priceetal.,2000;Zhengetal., growth inhibition and root growth promotion in drought stress 2000;Babuetal.,2001;Clarketal.,2002;Samsonetal.,2002).Rice treatments.Katoetal.(2006)havereviewedtheeffectsofvarious showslesssoilpenetrationabilitythanotherspecies.Iijimaetal. water regimes on deep root growth and biomass partitioning to (1991)indicatedthatmaizerootswerebetterabletopenetratehard rootsinuplandrice.Theauthorsconcludedthatwhilemanystud- soilthanriceroots.Ingeneral,rootsofdicotyledonousplantshave iesreportanincreaseinroot:shootratioanddeeprootgrowthin ahigherpenetrationratethanmonocotroots(Materecheraetal., responsetodrought,conditionsastimingofthedroughtatseedling 1992), and upland rice cultivars have greater penetration ability stage,veryseveredroughtstress,andpresenceofhardpanshave thanlowlandcultivars(Yuetal.,1995).Changesinsoilconditions reducedresourcepartitioningtoroots.Conclusionsaboutdrought can greatly alter root distribution patterns. However, the mech- effectsonrootgrowthmayalsodifferbecauserootmassandroot anismbywhichrootspenetratecompactedsoillayersisnotwell length can show opposite trends, especially when root diameter understood.Itremainstobedemonstratedwhetherthepenetrated decreasesbecauseofdrought,resultingingreaterlengthbutless rootmasshasanyroleintheuptakeofmoistureandincreasing mass. grainyieldinlowlandconditions. V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 7 Somestudiesclaimthatrootplasticitymightbeanimportant androottoshootratio,whereastheenvironmentaleffectofnitro- physiologicaltraitingenotypicadaptationfordroughtstressunder gen treatment was relatively high for total dry weight and deep lowland conditions (Ingram et al., 1994; Yamauchi et al., 1996). rootlengthratio(lengthofrootsatdepth/totalrootlengthmea- Rootplasticitycanbedefinedastheabilityofagenotypetoadjust sured).Theseresultsemphasizetheimportanceofcharacterizing itsrootgrowthphenotypeaccordingtoenvironmentalconstraints experimentalconditionsforrootstudies. (O’TooleandBland,1987).Thetimingofrootgrowthinresponseto Root traits are generally controlled by many genes through theresupplyofwaterfollowingaperiodofdroughtstressisavital quantitativetraitloci(QTL).SincethefirststudybyChampouxetal. featureofrootgrowthplasticity(e.g.,Ban˜ocetal.,2000a).Genetic (1995)tolocategenescontrollingriceroottraitswithmolecular variation has been observed in rice for plasticity in several root markers,manyQTLsrelatedtoroottraitshavebeenidentifiedin traits,includingtheabilityoflateralrootstodevelopinresponse riceusing12differentmappingpopulations(Table2),withQTLs, to rewatering after soil drying (Ban˜oc et al., 2000b), and also in identifiedandanalyzedinriceformorethan30rootmorphological responsetosoildryingafterflooding(Suraltaetal.,2010).Genetic parameters.ThemoststudiedroottraitsinallQTLmappingstudies differenceshavealsobeenobservedintheabilityofseminalroots aremaximumrootdepth,rootdiameter,androottoshootratio. tocontinueelongationandformaerenchymaunderfloodedcon- ThemostnotablecontrastamongricerootQTLstudiesisthe ditionsafterdrought(SuraltaandYamauchi,2008;Suraltaetal., vastarrayofgrowthmediaandobservationmethodsused.Since 2008a,b, 2010). Another definition of root plasticity is the abil- the G×E effect on root growth is particularly important for rice itytoadjustrootarchitecture,suchastheratiooffinetocoarse underdroughtconditions,withlowlandsoilsbeingacomplexlay- rootsortheangleofrootgrowth.Underprogressivedrought(not eringofde-aggregatedsoiloverahardpanandrangingfromflooded intermittentdrought;Katoetal.,2006),thistypeofplasticitymay paddiestodrycrackedsoilsoverthesameseason,understanding be valuable for improved rice growth under drought by allocat- how growth and observation methods affect root QTL studies is ingresourcestoincreasedrootgrowthonlywhenneeded.These keyforusingourknowledgeofQTLstoimprovedroughtresistance abilities are quite important for rainfed lowland rice due to the inrice.MostoftheaboveQTLstudieshavemeasuredroottraits uniquesoilenvironmentasmentionedearlier,andthusthedesir- incontainersundercontrolledconditions,althoughithasyettobe ablerootstraitsarenotassimpleasthoseforuplandricesuchas provenwhethertheseresultsreflecttruegeneticdifferences(Steele deeporcoarseroots.Differentgenotypeshaveexhibiteddifferent etal.,2007).Althoughtherearemanycomprehensivereviewsof responsesinplasticitydependingontypeofdroughtstress(Kano methodsforrootstudythatdescribemethodscommonlyused(e.g., et al., 2011); this points to the importance of understanding the soil cores, monolith, minirhizotrons, pots, and solution culture; targetenvironmentforexploitingvariousdroughtresistancedonor Gregory,2006;Smitetal.,2000;Böhm,1979),somemethodshave germplasm. beenparticularlyusedforriceandareoutlinedhere. Other than the minirhizotron method, in which transparent tubesareinsertedintothesoilatanangleandaportablemicro- 4.3. PhenotypingandQTLs cameraisinsertedtovisualizetheroots,rootsaretypicallyassessed in the field using destructive methods, including soil cores and Many studies across crops have indicated considerable geno- type×environment (G×E) interactions for root traits, which is monoliths.Inlowlandricefieldswherefloodingcanimpedethe collectionofknownsoilvolumes,rootpullingforce,theforcethat expectedgiventhenumberofenvironmentalfactors(i.e.,soilphys- is required to uproot rice plants, has been used as a means of ical,chemical,andbiological)thataffectrootgrowth.Inrice,Kondo etal.(2003)investigatedG×Einteractionsbyusingbothupland evaluating the relative size and depth of root systems (O’Toole andSoemartono,1981).Inthismethod,plantsareliftedfromthe andlowlandvarietiesatthreeuplandsitesinthePhilippines,where soil using a device that clamps to the base of the plant and is both site and nitrogen treatments contributed to environmental attachedtoaforcemeter.Rootpullingforceisdependentonroot variation. In that study, genotype accounted for the largest pro- length density of the portion of the root system that remains in portion of variation for specific root weight, nodal root number, Table2 QTLsrelatedtorootcharacteristicsinrice. Geneticbackground Parenttype NumberofQTLs Screeningmethodsandtreatments Reference (rangeof phenotypic variation(R2)) CO39×Moroberekan(RILs) I×TJ 56(6.0–33.0%) PVCcylinders;wellwateredanddroughtstress Champouxetal.(1995) 29(6.0–19.0%) Wax-petrolatumlayersystem;wellwatered Rayetal.(1996) IR64×Azucena(DH) I×TJ 39(4.0–22.3%) PVCcylinders;aerobic Yadavetal.(1997) 12(4.0–35.0%) Wax-petrolatumlayersystem;wellwatered Zhengetal.(2000) 3(12.9–30.7%) PVCcylinders;wellwateredanddroughtstress Venuprasadetal.(2002) 29(11.9–26.7%) PVCcylinders;droughtstress Hemamalinietal.(2000) CT9993×IR62266(DH) TJ×I 36(8.0–37.0%) Wax-petrolatumlayersystemandfield;aerobic Zhangetal.(2001) 38(3.6–51.8%) PVCcylinders;droughtstress Kamoshitaetal.(2002b) Bala×Azucena(F2) I×J 21(5.0–38.0%) Solutionculture PriceandTomos(1997) Bala×Azucena(RILs) I×TJ 17(5.0–18.0%) Waxlayersystem;wellwatered Priceetal.(2000) 25(5.4–28.0) Glass-sidedchambers;droughtstress Priceetal.(2002) 28(5.4–13.5%) Soilboxmethod;well-wateredanddroughtstress MacMillanetal.(2006) IR1552×Azucena(RILs) I×TJ 23(11.4–20.0%) Potculture,well-wateredanddroughtstress Zhengetal.(2003) IR58821×IR52561(RILs) I×I 28(6.0–27.0%) Waxpetroleumlayersystem;wellwatered Alietal.(2000) 20(5.7–29.9%) PVCcylinders;droughtstress Kamoshitaetal.(2002a) IAC165×Co39(RILs) TJ×I 29(6.3–24.4%) PVCcylinders;aerobic Courtoisetal.(2003) Akihikari×IRAT109(BIL) TJ×TJ 5(8–24%) Solutionculture Horiietal.(2006) IRAT109×Yuefu(DH) TJ×TJ 51(1.1–25.6%) PVCcylinders,lowlandfield;wellwateredanddrought Lietal.(2005) Zhenshan97×IRAT109(RILs) I×TJ 53(2.6–29.8%) LowlandfieldandPVCcylinders;well-wateredanddroughtstress Yueetal.(2008) Otomemochi×Yumenohatamochi J×J 20(7.0–31.2%) Lowlandfield;well-wateredanddroughtstress Ikedaetal.(2007) IR64×KinandangPatong(RILs) I×TJ 10(8.7–23.9%) Uplandfield;wellwatered Ugaetal.(2008) 8 V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 thesoil(Ekanayakeetal.,1986).Itwasreportedthatahighpulling inimprovedvarieties(Cattivellietal.,2008).Thisexplainstheneed forceisassociatedwiththeplant’sabilitytodevelopdeeperand forinter-specificcrossestoexplorenovelalleles,andreflectsthe largerdiameterrootswithgreatpenetrationability.However,her- backgrounddependencyofQTLs. itabilityofrootpullingforcewasrelativelylow(Ekanayakeetal., 1985b)sincemanyothersoilfactorsinadditiontorootdepthaffect 4.4. Geneticimprovementfordroughtavoidance rootpullingforce.Incontrolledenvironments,containersincluding largePVCcylinders,rhizotrons,andpotshavebeenusedforQTL Traditionalaccessionscanberesistanttodroughtbecauseofa studies.ThePVCcylindersystem(typically>15cmdiameterand longhistoryofnaturalselectioninthetargetenvironments.Trans- 1mheight)isconsideredanimprovementoverpotculturesince fer of primary or secondary traits, such as those associated with rootdepthislessrestricted,andsoilmoisturewithdepthandsoil root growth, to desirable backgrounds to enhance grain yield is dryingaremorerepresentativeoffieldconditions(Upchurchand complicated by a lack of clear understanding of the genetics of Taylor,1990).Somecontainerstudiesincludeawaxlayerforthe componenttraitsandtheirinteractions,andalackoftightlylinked assessmentofrootpenetrationability.Thewaxlayersystemwas markers.Recently,Ugaetal.(2011)andObaraetal.(2010)reported first applied for screening root penetration ability by Taylor and amajorQTLforrootingdepth(Dro1)androotlength(qRL6.1)using Gardner(1960).Waxlayersconsistedof60%waxand40%petrola- basket and solution culture (hydroponic) methods, respectively. tumwhitewitharesistanceof1.4MPaat27◦C.Later,thissystem DespitethelargenumberofminorandmajorQTLsidentified,only was used to simulate the hardpan present in lowland fields (Yu twoattemptshavebeenmadeinricetointrogressarootQTLinto et al., 1995; Ray et al., 1996; Ali et al., 2000; Babu et al., 2001; anotherbackground.BasedontheQTLinvestigationofYadavetal. Clarketal.,2002,2008).However,Clarketal.(2002)foundthat (1997),Shenetal.(2001)conductedastudyforintrogressingaroot cultivarswithgoodpenetrationunderthewaxlayerscreendidnot depthQTLfromadeep-rootedvariety,Azucena,intoIR64inthree consistentlyshowsuperiorperformanceinthefield.Growthofroot cyclesofmarker-assistedbackcrosses.However,fewlineswitha systemsinbasketshasbeenusedtopredictrootingdepthindirectly significantlyimprovedphenotype(deeperroots)resultedfromthat accordingtogrowthangle(Oyanagietal.,1993).Usingthebasket effort.Inanotherstudy,Steeleetal.(2006)introgressedfourQTLs method,Katoetal.(2006)demonstratedtherelationshipbetween relatedtorootlengthanddiameterandoneQTLrelatedtoaroma highrootgrowthangleandrootdepthinrice,andUgaetal.(2009) intoanIndianuplandvariety,KalingaIII,ina6-yearmarker-aided observedvariationinrootgrowthangleinriceaccessionsunder backcrossprogram.Onetargetsegment(RM242–RM201)onchro- uplandfieldconditions.Containerstudieshaveincludedtheinjec- mosome9significantlyincreasedrootlengthunderbothirrigated tionofherbicideatdepthtoscreenfordeeprootgrowth(Robertson anddroughtstresstreatments,confirmingthatthisrootlengthQTL etal.,1985).AeroponicandsolutionculturewithPEGstudieshave fromAzucenafunctionsinanovelgeneticbackground. also been conducted to assess root growth over time. Although Tightly linked markers for each root QTL are necessary for this wide range of phenotyping environments/systems used for improving root traits through marker-assisted selection. Sharma QTLstudiesmaycontributetoinconsistencyinthelociidentified, etal.(2002)identifiedtightlylinkedmarkersforroottraitsadopt- relatively large differences in root production among genotypes ing bulked segregant analysis and found two markers (OPBH14 canbeconsistentlyobservedregardlessofroot-zonecontainersize andRM201)tobecosegregatingwithmaximumrootdepthinthe (Shashidhar,personalcommunication). IR64/Azucenamappingpopulationandthesewerevalidatedacross ThetypeofprogenyusedforricerootQTLstudieshasincluded differentgermplasm(Chaitraetal.,2006).Vinodetal.(2006)iden- F (Price and Tomos, 1997; Price et al., 1997), backcross inbred tified candidate genes for root traits related to morphology and 2 lines(Katoetal.,2008),doubledhaploidlines(Yadavetal.,1997; physiology.ThesewerevalidatedintheCT9993/IR62266mapping Zhengetal.,2000;Hemamalinietal.,2000;Venuprasadetal.,2002; population,whichwasevaluatedforroottraitsundercontrasting Toorchietal.,2002;Babuetal.,2003;Kamoshitaetal.,2002a;Zhang moistureregimes.Prabuddhaetal.(2008)identifiednear-isogenic etal.,2001),andmostlyrecombinantinbredlines(Champouxetal., linesforseveralroottraits,andcandidategenesthatwerefoundto 1995; Ray et al., 1996; Price et al., 2000, 2002; Ali et al., 2000; beassociatedwithaparticularroottraitwerealsovalidatedwith Kamoshitaetal.,2002b;Courtoisetal.,2003;Zhengetal.,2003). thenear-isogeniclines. The number of progeny has ranged from 56 (Hemamalini et al., Problems associated with these studies were: (1) QTLs 2000)to220(Kamoshitaetal.,2002a).ThenumberofQTLsiden- introgressed were not fine-mapped with appropriate selectable tified for root traits has ranged from 1 to 19 and the amount of markers, so the desired gene might have been lost in the selec- phenotypicvariabilityexplainedamongtheprogenyexaminedby tionprocess;and(2)theQTLsidentifiedhadasmalleffectonthe anyoneQTLrangedfromabout4%toasmuchas66.6%(Ugaetal., phenotypeitself.Thus,thechallengeformolecularbreedersisto 2011).ItisalsoimportanttonotethatthenumberofQTLsidentified discoverheritablystablemajorQTLsthatfunctionindependentlyof dependsonthethresholdvaluespecified.Inmostofthestudies,all geneticbackground,andtodevelopaneffectivebreedingmethod QTLsshowingapositiveeffectonroottraitswerederivedfroma fortheapplicationofsuchQTLs.OnceamajorQTLisidentifiedand drought-resistantparent. validated,positionalcloningistheapproachmostcommonlyused MostoftheQTLmappingstudiesforriceroottraitsconferring toclosethegenotype-phenotypegap(SalviandTuberosa,2005). droughttolerancehavebeenconductedusingprogeniesderivedby Inspiteofsuchgreateffort,noQTLcloninghasbeenachievedso crossingvarietiesbelongingtoadifferentsubspeciesgroup(japon- far in rice for root traits. In QTL mapping, the main factor limit- ica×indica;asreviewedinKamoshitaetal.,2008)ratherthanby ing the precision of QTL localization is the number of progenies usingprogeniesderivedbycrossingvarietiesbelongingtothesame usedinthestudy,moresothanotherfactorssuchasusingmore subspecies group, that is, indica×indica or japonica×japonica. molecularmarkersorusingbetterstatisticaltechniques(Kearsey Often,theseparentallinesexhibitslightmorphologicaldifferences, andFarquhar,1998).Associationmappingisapromisingmethod buttheirprogenyexhibitconsiderablegeneticvariabilityformany for complex trait dissection and it focuses on association within roottraits(transgressivesegregation).ObtainingvaluableQTLsor populationsofunrelatedindividuals.Usingassociationmapping,it genesforbreedingbasicallydependsontraitdiversitybetweenthe ispossibletolocateQTLswithbetterprecisionthanusingamap- donorandtherecurrentparents.Allthesegregatingpopulationsof pingpopulation(Courtoisetal.,2009).Linkingourknowledgeof theaboveQTLstudieshaveonemodern(improved)andonetra- QTLmappingwithprecisionphenotypingthatisrepresentativeof ditionalvariety.Undersuchcircumstances,mostlypositivealleles the target drought environment is critical for future progress in arederivedfromthemoderncultivarandtheyarealreadypresent droughtresistanceforrice. V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 9 Anothernecessaryapproachforprogressindroughtresistance have been reported across crops that are responsible for the throughriceroottraitsisanintegrationoftheknowledgegenerated regulation of signal transduction and the expression of stress- thusfar.Kamoshitaetal.(2008)havesummarizedthelargenumber related genes that impart stress resistance to plants. Transgenic ofstudiesinricefordroughtresistanceinQTLmappingstudiesofat rice with the transcription factor AtDREB1A or its orthologue least15differentpopulations.RicerootQTLsfordroughthavebeen OsDREB1A(Dehydration-ResponsiveElementBindinggene)tested compiledusingQTLmeta-analysisinmultiplepopulations(Norton inpotsdemonstratedimprovedresistancetosimulateddrought, etal.,2008;Courtoisetal.,2009).MultipleQTLstudiesfromasingle highsalt,andlow-temperaturestresses(Yamaguchi-Shinozakiand population(Bala×Azucena:Khowajaetal.,2009)havealsobeen Shinozaki,2004).TransgeniclinescarryingtheOsNAC045transcrip- conductedthatidentifiedseveraldenseclustersofrootQTLs.This tion factor, whose functions include a role in the development integrativeapproachacrossalargenumberofstudiesconducted of lateral roots, were reported to have a greater survival rate in inmultipleenvironments/phenotypingsystemsismorelikelyto rice after drought and salt treatments (Zheng et al., 2009) and identifyimportantareasofthegenomeforricerootresponseto OsNAC10lineswitharoot-specificpromotedshowedgreateryield droughtthananysingleQTLstudyalone. thanthewildtypeunderdroughtinthefield(Jeongetal.,2010). Asabreedingstrategy,incorporatingdroughtresistancefora Improvedperformanceunderdroughtwasobservedintransgenic particularstageofdevelopment(i.e.,vegetativeorfloweringstage) plantsofthegeneOsMT1a(metallothionein)thatispredominantly wouldbecounter-productiveshouldstressoccuratanon-targeted expressed in roots and is induced by dehydration (Yang et al., stage. When the stage of occurrence, duration, and intensity of 2009).RootgrowthwasenhancedintransgenicsofBRX(BREVIS stressisunpredictable,breedingfordroughtresistanceirrespec- RADIX-like homologous genes; Liu et al., 2010a) and OsVP1 (H+ tiveofgrowthstageislikelytobemosteffective.Roottraitsthat pyrophosphataseintonoplasts)andOsNHX1(Na+/H+exchangers; resultinimprovedplantwaterstatusthroughastress-pronegrow- Liuetal.,2010b)thatwerereportedtoconferdroughttolerance. ingseasoncouldconfernon-stage-specificdroughtresistance.For ExceptfortheOsNAC10studybyJeongetal.(2010),root-related example,conventionalbreedingforroot-relateddroughtresistance droughtresistanceintermsofgrainyieldinricetransgenicsinfield in rice was conducted using farmer-participatory plant breeding studieshavenotbeenreported. approaches(Shashidhar,2008).Bycrossingatraditionaldrought- Proteomicsisalsoadvancingasatoolforidentifyingdrought- tolerant accession (Budda) with IR64 and forwarding the filial tolerancecharacters,yetitspotentialisnotexploitedfullyinplant generationssimultaneouslyunderseverestressandwell-watered research,especiallycomparedwithotherorganismssuchasyeast conditions,severaladvancedlineswereobtained.Waterreceived andhumans(Jorrinetal.,2007).Anumberofproteomicstudies by each segregating line was budgeted. Screening for root mor- on drought have been conducted on rice leaves (Salekdeh et al., phology using large container studies was adopted in advanced 2002a,b; Ali and Komatsu, 2006; Ke et al., 2009), but less work generations.Theadvancedlines(ARBseries)werenominatedfor hasbeenconductedonroots.Aproteomicevaluationofriceunder trials along with the accession from other breeders in India and saltstressbySalekdehetal.(2002b)revealedalargenumberof materialfromIRRI.TrialswereconductedacrossIndiaunderthree differences in root proteins between salt-tolerant and sensitive hydrologiesateachsiteandrepeatedoverthreeyears,andselected varieties,includingproteinswithantioxidantpropertiesandpro- linesperformedwellacrossthreeyearsinseverestress(Verulkar teinsinvolvedinlignification.Rabelloetal.(2008)comparedgene et al., 2010). The lines have been released for cultivation in the expressionandproteomeprofilesinrootsofdrought-tolerantand drought-pronedistrictsofKarnatakainIndia. drought-sensitiveuplandricevarieties,andreportedthetolerant varietytohaveincreasedexpressionofgenesorproteinsinvolved 4.5. Genomicsandproteomics inturgor,cellintegrity,andoxidativestress.Coupledwithphysio- logicallyrelevantdroughtstresstreatments,thefunctionalinsights Somegenesandsignalingpathwaysinvolvedintheanatomical fromproteomicsarepromisingforimprovingourunderstandingof and morphological development of rice roots have been identi- ricerootphysiologyunderdrought. fied(seereviewsbyCoudertetal.,2010;Rebouillatetal.,2009), particularly for crown root initiation. Although advancements in understandingthegeneticbasisofricerootattributeshavebeen 5. Conclusions made,itisstillunclearexactlyhowtheseattributesaffectwater uptakeunderdrought.Geneexpressionanalysishelpsinidentify- 5.1. Rootfunctionforwateruptakeunderdrought ingthefunctionallyimportantgenesandpathwaysinvolvedinroot architectureunderwater-deficitconditions(Breyneetal.,2003). Oryza sativa L. includes large genetic diversity for root archi- Yangetal.(2004)conductedatissue-specificgeneexpressionstudy tecture, but the environmental response of root growth among indrought-stressedriceroots,inwhich66transcriptswereidenti- genotypesisjustasdiverse.Thishighlightstheimportanceofchar- fiedandclonedinrootsofAzucena.Fourtranscriptsweremapped acterizing the growing environment in all rice root studies. To within an interval containing QTLs for root growth under water improve our understanding of the role of roots in rice response deficitintheAzucena/IR1552population.Inanotherstudy,Wang todrought,itisnecessarytorethinkcarefullysomeofthecom- et al. (2007) observed that the majority of genes expressed in monparadigmsaboutricerootbiology.Earlyreportsondrought uplandriceandlowlandricearealmostidenticalandthat13%of and rice roots generalized the idea that rice has shallow root alltheexpressedsequencetags(ESTs)detectedinleavesand7%of growth (maximum root depth of 30cm), and that improvement thoseinrootswereexpresseddifferentiallyintranscriptsbetween fordroughtshouldemphasizedeep,coarserootgrowth.Wenow thetwocultivartypes.Combiningourknowledgeofgenesinvolved knowthatmanyricegenotypeshavethepotentialfordeeproot inrootdevelopmentwiththosethataredifferentiallyexpressed growth(comparedwithotherricegenotypes;notcomparedwith underdroughtcouldhelpidentifyimportanttargettraitsormech- otherdeep-rootedspecies),butthisisstronglycontrolledbythe anismsfordroughtresistance. environment (i.e., presence of hardpans, severity of the drought Recent studies have indicated that, apart from conventional stress). Coarse nodal roots may be critical for penetrating hard- andmarker-assistedselection,potentialexistsforthetransgenic pans,butnotalldroughtenvironmentscontaindistincthardpans. approachtoenhancedroughtresistanceinplantsbyincorporat- Furthermore, fine roots present a large percentage of total root ing genes that are involved in stress tolerance (Agarwal et al., length in almost all conditions and thus are strongly expected 2006; Hervé and Serraj, 2009). Numerous transcription factors to contribute greatly to water uptake by the entire root system, 10 V.R.P.Gowdaetal./FieldCropsResearch122(2011)1–13 but their relative contribution to water uptake compared with Assaeed,A.M.,McGowan,M.,Hebblethwaite,P.D.,Brereton,J.C.,1990.Effectofsoil coarserootsisnotyetpreciselydetermined.Finally,thediscrepan- compactionongrowth,yieldandlightinterceptionofselectedcrops.Ann.Appl. Biol.117,653–666. ciesbetweenspatialdistributionandfunctionofricerootsunder Azhiri-Sigari,T.A.,Yamauchi,A.,Kamoshita,A.,Wade,L.J.,2000.Genotypicvariation drought are poorly understood, and need to be addressed with inresponseofrainfedlowlandricetodroughtandrewatering.2.Rootgrowth. more focus on the biology of root function under water-limited PlantProd.Sci.3,180–188. Babu,R.C.,Shashidhar,H.E.,Lilley,J.M.,Ray,J.D.,Sadasivam,S.,Sarkarung,S.,etal., conditions. 2001.Variationinrootpenetrationability,osmoticadjustmentanddehydra- tiontoleranceamongaccessionsofriceadaptedtorainfedlowlandandupland 5.2. EffectivenessoftheQTLmappingstrategyforroottraits ecosystems.PlantBreed.120,233–238. Babu, R.C., Nguyen, B.D., Chamarerk, V., Shanmugasundaram, P., Chezhian, P., Jeyaprakash,P.,etal.,2003.Geneticanalysisofdroughtresistanceinriceby Field-manageddroughtstressconditionsarenecessaryforreli- molecularmarkers:associationbetweensecondarytraitsandfieldperformance. able phenotyping of root traits for drought resistance, as are CropSci.43,1457–1469. physiologicallyrelevantstressconditions(i.e.,timetodry-down). Banba,K.,Ookubo,T.,1981.Relationshipbetweenrootdistributionofuplandcrops andtheiryield.3.Influenceofsoilmoisturelevelsonrootdistributionandroot AgreatnumberofrootQTLsfordroughthavebeenidentified,and, drymatterofupland-culturedpaddyrice,anduplandrice.Jpn.J.CropSci.50, althoughtherearealimitednumberofsuccessfulintrogressionsof 1–7. theseQTLsusedtoimprovedroughtresistance,thelargenumberof Ban˜oc,D.M.,Yamauchi,A.,Kamoshita,A.,Wade,L.J.,Pardales,J.R.,2000a.Drymatter productionandrootsystemdevelopmentofricecultivarsunderfluctuatingsoil QTLsandpopulationsmakeitdifficultforbreederstovalidatethese moisture.PlantProd.Sci.3,197–207. lociandusetheminmarker-assistedbreeding.Twostrategiesstand Ban˜oc,D.M.,Yamauchi,A.,Kamoshita,A.,Wade,L.J.,Pardales,J.R.,2000b.Genotypic outasmostpromisingforthefuture:finemappingoflarge-effect variationsinresponseoflateralrootdevelopmenttofluctuatingsoilmoisture inrice.PlantProd.Sci.3,335–343. QTLstonarrowdownthegenomicregionresponsibleforaspecific Bashar,M.K.,1987.Geneticstudiesofricerootxylemvesselsandrelatedcharac- roottrait;andQTLmeta-analysis,toidentifythemostconsistent tersinrelationtodroughtavoidancemechanisms.MSThesis,Universityofthe andrelevantlociovermanystudiesandpopulations.Regardlessof PhilippinesatLosBan˜os. Bengough,A.G.,Mullins,C.E.,1990.Mechanicalimpedancetorootgrowth:areview thestrategy,environmentaleffectsandpositioneffectswithinthe ofexperimentaltechniquesandrootgrowthresponses.J.SoilSci.41,341–358. genomearelikelyobstaclestoastraightforwardintrogressionor Blum,A.,Mayer,S.,Galon,G.,1989.Agronomicandphysiologicalassessmentsof marker-assistedbreedingforimprovingdroughtavoidance. genotypicvariationfordroughtresistanceinsorghum.Aust.J.Agric.40,49–61. Böhm,W.,1979.MethodsofStudyingRootSystems.Springer,Berlin. Breyne, P., Dreesen, R., Cannoot, B., Rombaut, D., Vandepoele, K., Rombauts, S., 5.3. Thewayforward 2003.QuantitativecDNA-AFLPanalysisforgenome-wideexpressionstudies. Mol.Genet.Genomics269,173–179. Giventheurgentneedforimproveddroughtresistanceinrice, Cattivelli,L.,Rizza,F.,Badeck,F.W.,Mazzucotelli,E.,Mastrangelo,A.M.,Francia,E., etal.,2008.Droughttoleranceimprovementincropplants:anintegratedview strategic use of our knowledge about rice root architecture and frombreedingtogenomics.FieldCropsRes.105,1–14. biologyisnecessary.Atrait-basedapproachwithpreciseunder- Chaitra,J.,Vinod,M.S.,Sharma,N.,Hittalmani,S.,Shashidhar,H.E.,2006.Validation standingofthetargetenvironment,includingtemporalandspatial ofmarkerslinkedtomaximumrootlengthinrice(OryzasativaL.).Curr.Sci. India90,835–838. heterogeneity, is a possible path toward the use of roots and Champoux,M.C.,Wang,G.,Sarkarung,S.,Mackill,D.J.,O’Toole,J.C.,Huang,N.,etal., dehydrationavoidancetraitsforimproveddrought-resistantrice. 1995.Locatinggenesassociatedforrootmorphologyanddroughtavoidancein Potentialtogrowdeeprootsiscurrentlythemostacceptedtarget ricevialinkagetomolecularmarkers.Theor.Appl.Genet.90,969–981. Chang,T.T.,Loresto,G.C.,Tagumpay,O.,1972.Agronomicandgrowthcharacteris- trait,andothertraitswilllikelybeelucidatedasourunderstand- ticsofuplandandlowlandricevarieties.In:RiceBreeding.InternationalRice ingofplant-soilinteractionsimproves.Meanwhile,thelarge-effect ResearchInstitute,Manila,Philippines. markerslinkedtodroughtresistance/rootQTLscouldbeusedcare- Chang,T.T.,Loresto,G.C.,O’Toole,J.C.,Armenta-Soto,J.L.,1982.Strategyandmethod- ology of breeding rice for drought prone areas. In: Drought Resistance in fully to dissect the genetic basis of resistance, while improving Crops,withEmphasisonRice.InternationalRiceResearchInstitute,Manila, theunderstandingofthephysiologicalprocessesthatcontrolroot Philippines. functionanditsimpactoncropperformanceinthefield. Chang,T.T.,Armenta-Soto,J.L.,Mao,C.X.,Peiris,R.,Loresto,G.C.,1986.Geneticstud- iesonthecomponentsofdroughtresistanceinrice(OryzasativaL.).In:Rice Genetics.InternationalRiceResearchInstitute,Manila,Philippines. Acknowledgments Chen,C.W.,Yang,Y.W.,Lur,H.S.,Tsai,Y.G.,Chang,M.C.,2006.Anovelfunctionof abscisicacidintheregulationofrice(OryzasativaL.)rootgrowthanddevelop- This work was funded by the Generation Challenge Program ment.PlantCellPhysiol.47,1–13. Chhun,T.,Taketa,S.,Tsurumi,S.,Ichii,M.,2003a.Theeffectsofauxinonlateralroot project“TargetingDrought-AvoidanceRootTraitstoEnhanceRice initiationandrootgravitropisminalateralrootlessmutantLrt1ofrice(Oryza ProductivityunderWater-LimitedEnvironments,”theGatesFoun- sativaL.).PlantGrowthRegul.39,161–170. dation project “Stress-Tolerant Rice for Poor Farmers in Africa Chhun,T.,Taketa,S.,Tsurumi,S.,Ichii,M.,2003b.Interactionbetweentwoauxin- resistantmutantsandtheireffectsonlateralrootformationinrice(Oryzasativa and South Asia,” and a Grant-in-Aid for Scientific Research (No. L.).J.Exp.Bot.54,2701–2708. 22380013)fromtheJapanSocietyforthePromotionofScienceto Clark,L.J.,Aphalé,S.L.,Barraclough,P.B.,2000.Screeningtheabilityofricerootsto A.Y. overcomethemechanicalimpedanceofwaxlayers:importanceoftestcondi- tionsandmeasurementcriteria.PlantSoil219,187–196. Clark,L.J.,Cope,R.E.,Whalley,W.R.,Barraclough,P.B.,Wade,L.J.,2002.Rootpene- References trationofstrongsoilinrainfedlowlandrice:comparisonoflaboratoryscreens withfieldperformance.FieldCropsRes.76,189–198. Agarwal,P.K.,Agarwal,P.,Reddy,M.K.,Sopory,S.K.,2006.RoleofDREBtranscrip- Clark,L.J.,Price,A.H.,Steele,K.A.,Whalley,W.R.,2008.Evidencefromnear-isogenic tionfactorsinabioticandbioticstresstoleranceinplants.PlantCellRep.25, linesthatrootpenetrationincreaseswithrootdiameterandbendingstiffness 1263–1274. inrice.Funct.PlantBiol.35,1163–1171. Ali,M.L.,Pathan,M.,Zhang,J.,Bai,G.,Sarkarung,S.,Nguyen,H.T.,2000.MappingQTL Colmer,T.D.,Gibberd,M.R.,Wiengweera,A.,Tinh,T.K.,1998.Thebarriertoradial forroottraitsinarecombinantinbredpopulationfromtwoindicaecotypesin oxygenlossfromrootsofrice(OryzasativaL.)isinducedbygrowthinstagnant rice.Theor.Appl.Genet.101,756–766. solution.J.Exp.Bot.49,1431–1436. Ali,G.M.,Komatsu,S.,2006.Proteomicanalysisofriceleafsheathduringdrought Colmer,T.D.,2003.Aerenchymaandaninduciblebarriertoradialoxygenlossfacil- stress.J.ProteomeRes.5,396–403. itaterootaereationinupland,paddyanddeep-waterrice(OryzasativaL.).Ann. Angus,J.F.S.,Hasegawa,S.,Hsiao,T.C.,Liboon,S.P.,Zandstra,H.G.,1983.Thewater Bot.91,301–309. balanceofpost-monsoonaldrylandcrops.J.Agric.Sci.101,699–710. Colmer,T.D.,Cox,M.C.H.,Voesnek,L.A.C.J.,2006.Rootaereationinrice(Oryzasativa): Armenta-Soto,J.,Chang,T.T.,Loresto,G.C.,O’Toole,J.,1983.Geneticanalysisofroot evaluationofoxygen,carbondioxide,andethyleneaspossibleregulatorsofroot characteristicsinrice.SABRAOJ.15,103–118. acclimatizations.NewPhytol.170,767–778. Armstrong,W.,1971.Radialoxygenlossesfromintactricerootsasaffectedbydis- Coudert,Y.,Périn,C.,Courtois,B.,Khong,N.G.,Gantet,P.,2010.Geneticcontrolof tancefromtheapex,respiration,andwaterlogging.Physiol.Plant.25,192–197. rootdevelopmentinrice,themodelcereal.TrendsPlantSci.15,219–226. Asch,F.,Dingkuhn,M.,Sow,A.,Audebert,A.,2004.Drought-inducedchangesin Courtois,B.,Shen,L.,Petalcorin,W.,Carandang,S.,Mauleon,R.,Li,Z.,2003.Locating rootingpatternsandassimilatepartitioningbetweenrootandshootinupland QTLscontrollingconstitutiveroottraitsinthericepopulationIAC165×Co39. rice.FieldCropsRes.93,223–236. Euphytica134,335–345.
Description: