ebook img

Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate PDF

2018·2.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate

UrbanClimate23(2018)287–308 ContentslistsavailableatScienceDirect Urban Climate journalhomepage:http://www.elsevier.com/locate/uclim Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate M.Daniela,⁎,A.Lemonsua,V.Viguiéb aMétéo-France/CNRS,Grouped'étudedel'atmopshèremétéorologique,42avenueGaspardCoriolis,31057Toulousecedex,France bCentreinternationalderecherchesurl'environnementetledéveloppement(CIRED),45bisavenuedelaBelleGabrielle,F-94736Nogentsur Marnecedex,France a r t i c l e i n f o a b s t r a c t Articlehistory: Increasingheat-waveriskduetoregionalclimateevolutions,exacerbat- Received31May2016 edbyurbanheatisland(UHI)effects,isamajorthreatfortheinhabi- Receivedinrevisedform27October2016 tantsof manycities.Adaptivepoliciessuchasgreeningtheurban Accepted5November2016 environmentareoftenproposedtolimitpopulationvulnerability,as vegetationenablestoregulatethemicroclimatebyevapotranspiration. Theefficiencyofsuchstrategiesdependsonwateravailabilityandraises Keywords: theissuesofwatersupplyforirrigationandofvegetationefficiency. Irrigation Threevegetationwateringalternativesandascenarioofpavement Pavementwatering wateringarestudiedandcomparedusingParis(France)urbanareaas Urbanheatislandeffect a case study. With an evolution of the city based on “business as Urbanclimate Climatechange usual”trends,urbanclimatemodelingenablestoevaluatebothUHI Adaptation and heat stress under heat-wave conditions in 2100. Vegetation wateringisefficientinreducingairtemperatureandthermalstress, butmostlyinresidentialareaswherevegetationdensityisimportant enough.Pavementwateringisrelevantinthedenselybuiltcitycenter onlywhereitimprovesthecoolingefficiencyandincreasesthewater consumptionby2%only.Thecombinationofbothsolutionsprovides thebestperformanceswithareduction(comparedtoanonirrigated scenario)ofthemaximumtemperatureanomalyby0.8°C(2.6°C)dur- ingtheday(night). ©2016ElsevierB.V.Allrightsreserved. ⁎ Correspondingauthor. E-mailaddresses:[email protected](M.Daniel),[email protected](A.Lemonsu),[email protected](V.Viguié) http://dx.doi.org/10.1016/j.uclim.2016.11.001 2212-0955/©2016ElsevierB.V.Allrightsreserved. 288 M.Danieletal./UrbanClimate23(2018)287–308 1.Introduction Climatechangeandglobalwarmingduetogreenhousegasemissionsarealreadyobservedandareinten- sifying(IPCC,2015).Oneoftheconsequencesisanincreaseofsummerheat-waves(IPCC,2015,Giorgi,2006). ThishasbeenhighlightedbyDéquéetal.(2007)forFranceatthenationallevelbyLemonsuetal.(2014)for theParisregion,whichcouldbeaffectedbymorethantendaysofheat-waveperyearonaveragebytheendof the21stcentury.Thissevereheat,exacerbatedincitiesbytheurbanheatisland(UHI)effect(Basaraetal., 2010;Tanetal.,2010;GabrielandEndlicher,2011;LiandBou-Zeid,2013),arealreadyaclearly-identified publichealthconcern,whichissteadilygrowing(Lemonsuetal.,2013)andalarminginstitutionalstake- holders(seeforinstance,StoneandRodgers,2001;Soleckietal.,2005;HaminandGurran,2009;Lambert- Habibetal.,2013). Tofacethisissue,itisessentialtodevise,evaluate,andimplementefficientclimatechangeadaptationand UHImitigationstrategies.Thecountermeasuresusuallyproposedtoreduceairtemperatureinurbanenviron- mentareeitherdesignedtomodulatethethermo-radiativeprocessesortheenergyexchangeswiththeatmo- sphere.Thefirstonesarerelatedtoamodificationoftheradiativepropertiesofurbanfacetsandbuilding envelopes,e.g.withreflectivematerials(SantamourisandKolokotsa,2013;Kolokotsaetal.,2011),orthecre- ationofshadingareasbyplayingwithurbanformortrees(Potchteretal.,2006,SouchandSouch,1993, Shashua-BarandHoffman,2000).Someothertechniquesaimatmodifyingthesurfaceenergybalancebyfa- voringwaterevaporation,inordertorefreshtheambientair,whilereducingheatconvectionandstorage. Thisispossiblewiththeuseofpervioussoilsandvegetation,orthroughthewettingofurbansurfaces. Urbangreening,i.e.addingvegetationinthecity,isasolutionmoreandmorestudiedandpromotedatdif- ferentspatialscales(Gaffinetal.,2012;Rosenzweigetal.,2011;Bowleretal.,2010):greenbeltsaroundthe city(Massonetal.,2013b,Adachietal.,2014),urbanparks(Potchteretal.,2006),orgreenbuildingenvelopes (WarkandWark,2003;AlexandriandJones,2008;Jaffaletal.,2012;Malysetal.,2014).Pavementwateringis amorerecentapproachthathasbeensofarinvestigatedessentiallythroughexperimentalworks(Takahashi etal.,2010;Hendeletal.,2015).Nonetheless,thesevariousmethodsusedtomagnifyevaporationarehighly dependentonwateravailability.Theymayrequireanimportantwatersupplythatmustbequantifiedtoob- jectivelyevaluatethestrategy'sviability.Totheauthors'knowledge,onlyfewworksraisethisissue.Shashua- baretal.(2011),especially,proposedanindicatorofcoolingefficiency,definedastheratiobetweentheday- timecoolingandtheequivalentlatentheatfromtheevapotranspirationofplants.Basedonmeasurements, differentvegetationcombinationshavebeenevaluated(Shashua-Baretal.,2011;Middeletal.,2012). Withtheprospectofacceleratingclimatechange,especiallyillustratedbyanincreaseandintensification ofheatwaves,associatedwiththeexpansionofcitiesandtheirpopulations,thepresentpaperaimsatinves- tigatingthepossiblestrategiesforcities'evolutionandadaptationatlargescale.Specialattentionispaidhere totheissueofcitygreening,andmoreimportantlytheassociatedwateringpractices,withtheambitionof assessingtheurbanplanningstrategiesonthebasisofadditionalconsiderationsthatarerarelytakenintoac- count.However,thequestionofwaterresourcesandoftheirsustainablemanagement,fromtheglobalscale tothelevelofmunicipalitiesandlocalauthorities,istodayaprevalentandessentialissue. 2.Paris2100asacasestudy 2.1.Previousstudies TheParisurbanarea(France)isusedhereasacasestudy,consideringthatParisconurbationisoneofthe mostpopulatedurbanareasintheEuropeanUnionwithmorethan12millioninhabitantsin2012according totheINSEEFrenchnationalstatisticsinstitute.IthasbeenparticularlyaffectedbytheEuropeanheat-waveof summer2003withabout5000casualties(Hémonetal.,2003),andhasbeenthesubjectofseveralstudies aboutUHImitigationstrategies(seeespeciallyMassonetal.,2013b;Lemonsuetal.,2013,2015;deMunck etal.,2013;deMunck,2013;Kounkou-Arnaudetal.,2014). TheworksofMassonetal.(2013b)haveshownthaturbanplanningatlargescalehasamajorroletoplay ontheUHIregulation.Inthiscase,theplantingofforestsandvegetablecropsaroundthecityleadsuptoa2°C decreaseofairtemperatureinsidethecityincaseofheatwaves.Moregenerally,theimplementationofgreen orbluebeltsmayinfluencelocal-scalemeteorologyandtheflowsaroundandabovethecity,andconsequent- lyrefreshthecityduringsummerperiods.Themodelingofthe2003heatwaveoverPariswiththeTEBurban M.Danieletal./UrbanClimate23(2018)287–308 289 climatemodelcoupledtotheMeso-NHatmosphericmodel(Laforeetal.,1998)hasenabledtoassessvarious actionleversatcityscale,moreespeciallytheimpactofgreeningandpavementwatering(deMunck,2013; Kounkou-Arnaudetal.,2014).DeMunck(2013)hasinvestigatedthecoolingpotentialofgreenroofsand ground-basedvegetation,onthebasisofrealisticscenariosforwhichvegetationisimplementedinthe existingcityonlywherepossible.Theyhaveshowedthatvegetationwatersupplyisessentialinordertoob- tainacoolingeffect.Inaddition,Kounkou-Arnaudetal.(2014)havetestedtheinnovativesolutionsofpave- mentwateringusingasimilarnumericalsetup.Theyobtainedaslightdecreaseinairtemperatureinthe streetsofabout0.5°Cintheafternoon,significantlysmallerthanthe2°Ccoolingobtainedwithwatered ground-basedvegetation. 2.2.TheVURCAproject Thisstudyisinthelineofthepreviousworksbutaimsatadoptingamoreprospectiveandintegrativeap- proachbyaccountingforevolutionofthecityitselfandmodificationofclimate.Thiswastheobjectiveofthe VURCAnationalresearchprojectwhichambitionedtoassessthevulnerabilityofParistofutureheatwaves andtoproposeadaptationstrategies.Byusinganinterdisciplinaryandsystemicmodelingsystemforthe city,wehadbeenabletoprovidequantitativeestimatesofthepotentialbenefitsofvariousstrategiesforevo- lutionofcityandofsomepractices.Theefficiencyofstrategieshasbeenassessedthroughdiagnosticsorin- dicators that cover different thematic areas: urban climate, thermal comfort, energy consumption of buildings,andwaterconsumption.Startingfromthemultiplescenariosstudied,afirststudyhasbeencon- ductedontheimpactofurbanexpansionscenariosonurbanheatislandandheatstressinParis(Lemonsu etal.,2015).Theresultshavehighlightedthattheexposureofinhabitantstoheatislowerincaseofacity lesscompactandgreener. However,thestartingassumptionwasthaturbanparksandgardensweresystematicallywatered,which isnotnecessarilyrealisticunderheatwavecondition.Amorespecificanalysisisconductedhereinorderto comparevariousstrategiesofwateruseeitherforvegetationirrigationorpavementwatering.Theobjective istoevaluatetheirefficiencybyputtinginperspectivethegainsintermsofUHImitigationandthermalcom- fortimprovement,andtheinducedwaterconsumption.Inaddition,onecanexpectthatthisefficiencyvaries dependingonintensityanddurationofheatwaves. AfteradescriptionoftheglobalmethodologyinSection3,thispaperinvestigatestheimpactsofdifferent scenariosofvegetationirrigationorpavementwateringonevaporation(Section4)andUHIpatterns(Section 5).Section6examinestheefficiencyofeachscenariointermsoftemperatureandthermalcomfort,andfinally Section7discussesthevariabilitiesanduncertaintiesofourresults,andSection8concludes. 3.Methodology 3.1.Generalmodelingmethodology ThestudypresentedhereusesthemethodologydevelopedwithintheframeworkoftheVURCAresearch project,describedindetailinLemonsuetal.(2015).TheurbanclimateofParisissimulatedusingaphysically- basedurbancanopymodel.Duetorecentdevelopments,thismodelissophisticatedenoughtosimulate,at thecityscale,airtemperaturesinsideandoutsidethebuildings,indexesofthermalcomfort,air-conditioning systems(energyconsumption,associatedheatreleaseandpotentialfeedbackonairtemperatureoutside),as wellasevapotranspirationofplantsinurbanenvironment. Insteadstudyingapastheatwavetoillustratewhatcouldbethefutureevents(Beniston,2004;Vautardet al.,2007),asetofsyntheticortheoreticalfutureheatwaveshasbeenbuilt.Theseeventsvaryinintensity (dailymaximumtemperature)andinduration(numberofdays)withvariationrangesdefinedfromtheanal- ysisofregionalclimatemodelprojections(Lemonsuetal.,2014). Byaddressingtheclimatechangeissueincities,andbyworkingonlongtimeframesuptotheendofthe 21stcentury,itisimportanttoalsotakeintoaccounttheevolutionofcitycharacteristics.Thesedifferentpro- cessesthatinteractlocallycansignificantlymodifytheurbantemperatures,energydemand,orwatercon- sumption,comparedtopresentsituation.Consequently,amongtheensembleofcityscenariosbuiltinthe VURCAproject,weusehereareferenceprospectivescenariowhichassumesevolutionsforcitycharacteristics thatfollowcurrenttrends(detailedhereafter). 290 M.Danieletal./UrbanClimate23(2018)287–308 3.1.1.Heat-waveandurbanclimatemodeling TheurbanclimateofParisissimulatedusingthephysically-basedurbancanopymodel,TownEnergyBal- ance(TEB),(Masson,2000;HamdiandMasson,2008).Thismodelsimulatesatthesametime,meteorological conditions,atstreet-levelandinsidebuildings,throughaspecificcoupledbuildingenergymodel(Buenoetal., 2012;Pigeonetal.,2014).Moreover,usingnear-surfaceairtemperature,humidity,windspeed,aswellasin- comingsolarandinfraredradiation,themodelalsocomputestheUniversalThermalClimateIndex(UTCI), (Fialaetal.,2012).Thisisamodelingoftheestimatedthermalcomfortofthehumanbody(seeCOSTAction 730,http://www.utci.org).ThisindexiscomputedbyTEBmodel,bothinsidethebuildingsandinthestreets, ateachgridcellofthemodelingdomain. Inordertobetterrepresenturbangreenareasandcatchtheinteractionsbetweenbuild-upandnatural covers(Lemonsuetal.,2012),TEBiscoupledwiththeInteractionSoilBiosphereAtmosphere(ISBA)model (NoilhanandPlanton,1989).ISBAisaSoilVegetationAtmosphereTransfermodelthatcomputesthesurface radiative(directanddiffusesolarradiationandinfraredradiation)andenergy(latent,sensibleandstorage heatfluxes)budgetsfornaturalsoilsandvegetation.Italsosimulateswaterexchangesthatincludeplants transpiration,evaporationofwaterinterceptedbythefoliage,evaporationfromtheground,aswellasseveral hydrologicalprocesses(drainage,infiltrationandcapillaryattractioninthesoil).Byaccountingforthese water exchanges and the hydrological properties of the ground, and based on a three-layer vertical discretizationofthesoilcolumn,themodelcomputestheevolutionwithtimeofthesoilwatercontents (Booneetal.,1999).ISBAisalsoabletosimulatedifferenttypesofvegetation,especiallybyvaryingtheveg- etationfraction,theleafareaindex,orthestomatalresistance.Theseprocessesareincludedintheurbancli- matemodeling,sothattheresultingmodelisabletoquantifytheircoolingeffectsonthecity.Itishowever importanttoemphasizethatthecurrentversionofTEB-ISBAdoesnotconsiderintheradiativebudgetthe shadoweffectsoftreesonwallsandground-basedsurfaces(Lemonsuetal.,2012). Onthebasisof1-kmspatialresolutionatmosphericsimulationsofthe2003heatwaveperformedbyde Muncketal.(2013)andKounkou-Arnaudetal.(2014)forParisregion,wehavebuiltasetofsynthetic heatwavesofvariableintensitiesbymodulatingtherealmeteorologicalconditions(maximumdailytemper- ature,humidity,andincominglongwaveradiation).Thedurationoftheeventcanalsobeadjustedbyrepli- cating the daily meteorological conditions day after day. Four different intensities are considered, correspondingtoadailymaximumtemperatureof34,38,42,and46°C(referredtoasHW34,HW38, HW42,andHW46,respectively).Theseintensitieshavebeendefinedaccordingtoastatisticalanalysisoffu- tureheatwavesoverParisbasinsimulatedbyanensembleofregionalclimatemodels(Lemonsuetal.,2014). NotethatthesyntheticheatwaveHW38foradurationofsevendaysisquitecomparabletothereal2003heat wave.ThesemeteorologicalforcingsareusedtoruntheTEB-ISBAsurfacemodelinanofflinemode,toassess thesensitivityoftheurbanclimatetoirrigationpracticesforvariableheat-waveconditions.Inthispaper,we willmostlyfocusontheseven-dayHW38.However,asensitivitytoheat-wavesintensitiesanddurationsis carriedoutinSection7. Initialconditions,especiallythesoilwatercontenttowhichresultscanbequitesensitive,aredefinedthe samewayforeachirrigationscenarios,startingfromthecompletesimulationofthe2003heatwaveper- formedbydeMuncketal.(2013).NotethatthesimulationofdeMuncketal.(2013),conductedwiththe Meso-NHnon-hydrostaticmodel(Laforeetal.,1998)coupledtotheTEBmodel,hadbeenevaluatedusing localobservationsinParisregion.Inaddition,themethodologyofurbanclimatemodelingadoptedin VURCAproject,forwhichtheTEBurbancanopymodelisinitializedusingacitydescriptionprovidedbythe urbanexpansionsocio-economicmodel(seenextSection),hasbeenalsoevaluatedforonedayofthe2003 heatwave.DetailedresultsareavailableinLemonsuetal.(2015). 3.1.2.Urbanexpansionmodelingandcityevolution TEB-ISBAmodelisrunoveradomainof100km×100kmcenteredonPariscitycenterwithahorizontal resolutionof1km(seethedomaininFig.1).TofulfilltherequirementoftheVURCAproject,anurbanexpan- sionscenarioofParisurbanareaissimulateduntil2100usingtheNEDUM-2Dmodel(Viguiéetal.,2014).This socio-economicmodelsimulatesthespatialdistributionoflandandrealestatevaluesaswellasthemain characteristicsofthecitysuchaspopulationandbuildingdensity,greenandhousingareas.Itisbasedona dynamicextensionoftheurbaneconomictheory(Fujita,1989).Simulatedcityshapeevolutionandcharac- teristicshavebeencalibratedovertheperiod1900–2010,anddetailsofitscalibrationarepresentedin Viguiéetal.(2014). M.Danieletal./UrbanClimate23(2018)287–308 291 Fig.1.SpatialextentoftheParisconurbationsimulatedin2100bytheNEDUMmodel.Urbanareasareclassifiedinfourtypologies:his- toricalcitycenter(HCC),collectivehousing(COL)andresidentialhousing(RES),andofficebuildings(OFF). Beyond2010,theurbanexpansiondynamicsfollowsascenariobasedoncurrenttrendsofpopulationden- sitydecrease,andonamoderatetotalpopulationincreasescenario(+9%in2100)(seeAppendixA):wesup- posethatnospecificurbanpolicyorregulationisimplementedinordertolimiturbansprawl,sothatthecity stillgrowsfollowingthecurrenttrends.Thesimulatedcityin2100covers3090km2including1420km2of greenareas(gardensandpublicparks)forademographicprojectionof13,400,000inhabitants. Thebuildingsareclassifiedinfourarchitecturaltypologies(seemapinFig.1)historicalbuildingslocated inthecitycenter(Haussmannianarchitecturebuildingsdatingfrom19thcenturyandreferredtoasHCC),col- lectivehousing(COL),singlehousing(RES),andofficebuildings(OFF).Materialscharacteristicsofbuildings andrenovationtechniquesarespecifieddifferentlyforeachtypologyonthebasisofaninventoryofthecur- rentParisianbuildingsandtherenovationtrends. Projectedbuildingscharacteristicsin2100arebasedontheassumptionthattheenergeticperformancesof buildingsaregoingtoimprovewithtimeduetothetechnologicalprogressesinconstructionandrenovation methods,followingcurrenttrends.Acompletedatabaseofbuildingscharacteristics,builtfortheVURCApro- ject(Marchadieretal.,2012),isusedhere.Itisassumedthatallcollectivehousing(COL)andsinglehousing (RES)buildingsfollowtheFrenchthermalregulationsof2012.Thelevelofrenovationishigherforoffice buildingswhichareequippedwithhigh-performancevacuuminsulationsystemsandreflectivematerials.In- versely,becauseofarchitecturalandaestheticalreasons,thehistoricalbuildings(HCC)aretheleastrenovated ones(asimpleinteriorthermalinsulationisimplementedinthiscase). 3.2.Evaporationprocessesandwateruseforrefreshing 3.2.1.Vegetationwatering Evapotranspiration-relatedthermal-regulationcapacityofvegetationinurbanenvironmentistightlyre- latedtowateravailability.Twomechanismsareinvolvedwithdifferentdynamics.First,soilwater,aswell asthewaterinterceptedbythefoliageafteraperiodofrainfallorwatering,canevaporate.Thisphysicalpro- cesscantakeplaceeitherdayornight.Theresponsetoapunctualwatersupplyisquickforwaterintercepted bythefoliageandslowerforsoilwater.Thisphenomenonisaffectedbyenvironmentalconditions,especially atmosphericwaterpressure.Waterexchangesarealsoinducedbyplantstranspiration.Thisphysiological mechanism,coupledtophotosynthesis,takesplaceduringtheday(formostofvegetalspecies)andis basedonwaterextractionfromthesoilbytherootsandwaterevaporationbytheleavesthroughthestomata. 292 M.Danieletal./UrbanClimate23(2018)287–308 TheISBAmodel-whichispartofSurfaceVegetationAtmosphereTansfer(SVAT)typemodels-simulates thephysiologicalprocessesthatmanageevapotranspirationofvegetation.Italsoincludesaphysically-based modelingofhydrologicalprocesses,sothatitsimulatesthesoilwaterstatusevolutionandtheretroactionon transpirationcapacityofplants.ThemodelingoftheseprocessesinISBAisdetailedinAppendixB.1.Usingthis model,thevegetationwateringpracticescanberepresented.Itcandealwithdifferentformsofwaterinputs eitheronvegetation,attheground,orinthesoil,andthewaythiswaterisusedbythesoil-plantsystem. 3.2.2.Pavementwatering Indensely-builturbanenvironment,pavementwateringcanbeasolutiontomitigateUHI.Thewater sprinkledonthepavementisrapidlyevaporatedduringhotconditions,whichcoolstheambientairwhile limitingsurfacewarming.Thisrefreshingstrategyofferstheadvantageofrespondingquicklytoapunctual watering.Theevaporationpotentialishoweverstronglyconstrainedbythemaximumcapacityofwaterstor- ageonroads.Beyondacertainwaterquantity,thesurplusislostbysurfacerunofftowardsewers. Basedonexperimentalworks,Takahashietal.(2010)studiedandquantifiedtheimpactofthispracticeon localairtemperature.Theyfoundthatincaseofhighairtemperaturesgreaterthan30°Cinthecity,airtem- peraturecandecreasebyabout2°Cinthemorningand4°Cintheafternoon.Variousexperimentalprotocols weretestedandthemostimportantcoolingeffectsweremeasuredwhensprinklingforthreeminutesevery 30minwitharateof0.33Lm−2min−1.Anotherexperimentalsensibilityanalysiswasperformedduring summer2013byHendeletal.(2015).Itwasfoundthatforsunnydayspavementwateringshouldbeactivat- edevery30minwitharateof0.31to0.41Lm−2h−1.Usingthisset-up,hefoundthatsurfacetemperature couldbereducedby4°Cinthemorningandupto13°Cintheafternoon.Healsofoundagainof2.3°Cto 5.9°Coftemperature5cmbelowthesurface,provingthatpavementwateringisefficientwhenaimingatde- creasingheatstorageinimpervioussurfaces. TheTEBmodelsareoneofthefewurbanclimatemodelsthatincludesurfacewaterexchanges.Thecurrent parameterizationisrathersimple,butenablestorepresentrainwaterinterceptiononroadsandroofs,evap- orationofavailablewater,andsurfacerunoff(seeAppendixB.2fordetails).Theimplementationofpavement wateringinTEBisbasedonthisparameterization,simplybytreatingthiswatersupplythesamewaythan rainfallonroads. 3.2.3.Irrigationscenarios Theconfigurationusedhereasreferencescenarioisthesimulationperformedwithoutanthropicwater supplyforvegetationduringthewholeheatwave(simulationreferredtoasREF).Itisassumedthatno waterisavailableforotheractionsthandailylifeusages,sothatprivategardensandurbanparksarenot watered. Twoalternativesforvegetation(publicparksandprivategardens)watering,whichrepresent1419km2 (seeTable1),arethentestedandsimulated,inordertoassesstheirimpactsonsoilwaterstatus,surfaceen- ergy balance, localmicroclimate, andcomfort conditions. Watering aimsatmaintainingsufficientsoil Table1 Assessmentofwaterconsumptionsthedifferentirrigationscenarios:Unrestricted(R),Pavementwatering(P),Realistic(R)andCom- bined(C).Theseconsumptionsarecomparedwithwaterconsumptionin2009,themeanandlowflowsoftheSeineRiverandtheexpect- edSeinemeanflowin2100. (U) (P) (R) (C) Wateredsurfaces(km2) Gardens/parks 1419 0 1419 1419 Pavements 0 603 0 24 Waterdemand 5.5 1.5 4.9 5.0 (106m3.day−1) %2009waterconsumption 232.1 63.3 209.7 211.0 (2.37106m3.day−1) %Seinemeanflow 18.7 5.1 17.3 17.5 (328m3.s−1) %Seinelowflow 93.0 25.4 86.0 87.1 (66m3.s−1) %2100Seinemeanflow 26.7 7.3 24.6 25.0 (230m3.s−1) M.Danieletal./UrbanClimate23(2018)287–308 293 moistureforplantsbutitisdifficulttocomputethequantityofwaterneeded,asthetranspirationintensity andthewaterquantityexchangedwithatmospherearecontrolledbytheenvironmentalconditions(sunlight, temperature,wind…),thesoilwaterstatus,andtheplantintrinsicpropertiessuchasstomatalconductance andleafareaindex. Thefirstoneisarealisticirrigationalternative(referredtoasR),basedonthemostcommonwatering practicesinParisaccordingtodeMunck(2013).Anirrigationbysprinklingisactivatedatnightfrom11 pmto7amwithawatersupplyof1.210−7m3s−1(i.e.about3.46Lperdayandperm2ofgarden).Notes thatitisgenerallyrecommendedtowaterplantsatnightbecause,duringtheday,waterlossbyevaporation significantlyreducesthewatersupplyforthesoil,andthewaterdropletsontheleavesmagnifythesunlight andthreatentoburnthefoliage(seedeMunck,2013).Fromatechnicalpointofview,thisirrigationprocessis modeledinTEB-ISBAasaninputwaterfluxthatisreceivedbysoilandvegetation(asitisalreadydonefor rainfall,forinstance).Bymodelingwatersupplythisway,apartofwater(dependingonleafareaindexofveg- etation)isinterceptedbythefoliage,andconsequentlycanbedirectlyevaporated(seeAppendixB.1). Thesecondscenario(referredtoasU)representsan“unrestricted”watersupplyforurbanvegetation.Itis amaximalistscenario.Inthiscase,thesoilwatercontentw oftheISBAmodeliscontrolledandadjustedat g eachtimestepofthesimulation,sothatthesoilwaterreservoirisalwaysatleasthalf-filled.Thisisdoneby verifyingthatthesoilwetnessindex(SWI)isalwaysequalorgreaterto0.5.Thisindexiscomputedasfollows: w −w SWI¼ g wilt ≥0:5 ð1Þ w −w fc wilt withw thesoilwatercontentcomputedateachtimestep,andw andw ,thewatercontentsatthewilting g wilt fc pointandthefieldcapacity,respectively.Thisapproachisnotrealisticinaphysicalsensebutaimsatinsuring amaximalevapotranspirationofplantsandatassessingtheassociatedcoolingpotential.Notethatinthiscon- figuration,waterisdirectlyinjectedinthegroundsothatthereisnosurfaceevaporationasintheprevious case.Theissueisthatforthissimulation,nodiagnosticinthemodelallowedustocomputethewaterneeded tofillthesoillayer.Weassumedthenafterwardsthatthewatersupplyisatleastequaltotheevapotranspi- rationthatoccurred. Inaddition,ascenarioofpavementwatering(referredtoasP)issimulatedinthepresentstudy.Watering isset-upforsidewalksalone(603km2,seeTable1),assumingtheycovers50%ofthepavementsurfaces (1206km2,seeTable1).Thewatersupplyisbasedonasensitivitystudyconductedwithintheframeworks oftheEPICEAproject(Kounkou-Arnaudetal.,2014).Wesupposethatthepavementsiswateredatarate of1.110−6m3s−1duringthreeminutesatthebeginningofeveryhourbetween8amand8pm(i.e.about 2.77Lday−1andperm2ofroads).Forhighersprinklingrates,thewaterquantityisgreaterthanthemaxi- mumstoragecapacityoftheroadreservoirsimulatedinthemodel(Masson,2000,Lemonsuetal.,2007), sothewaterexcesswouldbelostbysurfacerunofftothesewer(seeAppendixB.2).Notethatinthisscenario, gardensandparksarenotirrigatedatallinordertobeabletoassessseparatelythedifferentpractices. 4.Impactsofwateringonevaporation Forclarityandsimplicity,theanalysisofprocessesisfirstlycarriedoutanddiscussedwithintheframe- workoftheheatwaveHW38withadurationofsevendays,quitecomparabletothereal2003heatwave asindicatedpreviously. 4.1.Referencecase Fig.2(top)shows,forscenario(REF)andfordayseven,thedailycycleoflatentheatflux(Q )inWm−2in E bothhistoricalcitycenter(HCC)andresidentialareas(RES)(cf.themapinFig.1).Withoutanywatersupply onimpervioussurfaces,thisfluxincludesonlycontributionsfromnaturalcoversthroughsoilevaporationand vegetationtranspiration. InRES,Q reachesamaximumof73Wm−2atmiddayaftersevendaysofheatwave,whereasitisnegli- E gibleatnightwhenvegetationisphotosyntheticallyinactive.Theabsenceofirrigationresultstheninanim- portantwaterstressforvegetationwhichsignificantlylimitstherelevanceofgreeningstrategies.InHCC,Q E doesnotexceed11Wm−2inthemiddleofthedayduetothepredominanceofimperviouscoversinthis area. 2 9 4 M .D a n iel e t a l. / U rb a n C lim a te 2 3 (2 0 1 8 ) 2 8 7 – 3 0 8 Fig.2.Top:dailycycleoflatentheatfluxforthereferencecase.Bottom:differencebetweendailycyclesoflatentheatfluxofeachwateringscenarioandreferencecase.Inbothcases,fluxesarespatially aggregatedoverRESarea(left)andHCCarea(right).Thedashedlinesdelimitthetimeperiodsofvegetationandpavementwatering. M.Danieletal./UrbanClimate23(2018)287–308 295 4.2.Benefitsofwateringstrategies Fig.2(bottom)showsthedifferenceinlatentheatfluxbetweeneveryscenarioandthereference(REF). InRES(Fig.2),thevegetationwateringbooststranspirationofplantssothatQ increasesby+274Wm−2 E and+138Wm−2for(U)and(R),respectively.Onenotesthatduringtheday,(U)maintainstheevaporation cycleuntil2100UTC,whereasitstopsmuchearlierin(R).Thishighlightsthentheneedforthevegetationto beirrigatedinordertoconserveitstranspirationpotential.Inversely,theevaporationofwaterinterceptedby leavesduringwatering(seeAppendixB.1)inducesanadditionalevaporationphasein(R)overnight,with fluxesupto60Wm−2.(P)doesnotseemtoprovideanyimprovementsexceptforthethreefirsthoursof wateringwithadditionalfluxesupto50Wm−2.Lookingatthedifferencesbetweenthescenarios,onecan concludethatirrigationismandatorytokeepasignificantvegetationevaporation. InHCC,theadditionalevapotranspirationislimitedinthetwoscenariosbasedonvegetationwatering(U) and(R)sincethevegetationcoverfractionislow.For(U),Q ishoweverdoubledintheafternoon(+10Wm E −2)comparedtothereference.Thepavementwatering(P)isheremoreefficient.ItleadstoanadditionalQ E upto+33Wm−2.Inthispartofthecity,theroadsprovideanimportantsurfaceareaforsprinkling,andcon- sequentlyofferahigherevaporationpotentialthanvegetation. 5.Impactsofwateringonurbanheatisland 5.1.Referencecase Forthereferencescenario,thedailymaximumdailytemperatureaftersevendaysofheatwaveisabout 40°Callovertheurbanarea.Atnight,theminimumdailytemperaturevariesbetween25.8°Cinresidential areasand28.4°Cinthecitycenter.Bywayofcomparison,onecanremindthatthetemperaturethresholds thatareprescribedforheatwavewarningoverParisregionare18°Cand34°Cforminimumandmaximum dailytemperatures,respectively(Lemonsuetal.,2014).Thishighlightstheextremeconditionsofthisheat wavewhichiscomparabletothe2003heatwave.MapsofUHIarecalculatedasthedifferencebetweenthe localairtemperature(temperaturesimulatedbyTEB-ISBAmodel2mabovetheground)andareferencetem- peraturecorrespondingtothetemperatureofruralareas,i.e.themeantemperatureofperipheralandunin- habitedgridcells.MoredetailsonthemethodcanbefoundinLemonsuetal.(2015).Mapsofdaytimeand nighttimeUHIareproducedbyaveragingthemodeloutputsbetween1400and1600UTC,andbetween 0200and0400UTC,respectively. Duringtheday(Fig.3,left),theUHIislarge(3040km2areimpactedbyanUHIgreaterthan1.5°C,i.e. about98%ofthecityarea)withpeaksofintensitythatoccurinthesuburbs.Indeed,shadingeffectofbuildings inthecitycenterreducestheintakeofsolarradiation.ThatgivesamaximalUHIinthecitycenterof1.3°C comparedto2.5°Cinthesuburbs.AsalreadymentionedbyLemonsuetal.(2015),atnight(Fig.3,right) theUHIhasadifferentpattern:itislessextendedthanduringthedaybutreacheshighervaluesinthe Fig.3.SpatialrepresentationofUHIfortheHW38aftersevendaysofheatwavebothfordaytime(left)andnighttime(right)hours. 296 M.Danieletal./UrbanClimate23(2018)287–308 mosturbanizedareas.ThemaximumUHIintensityof3.2°Cistobefoundinthecitycenterandthearea coversbyanUHIgreaterthan1.5°Cdiminishesto817km2,i.e.26%ofthecityarea. 5.2.Benefitsofwateringstrategies ThebenefitsofwateringstrategiesonUHIarecomputedasthedifferencebetweenthereferencescenario (REF)andeveryothersscenarios.ThemapsofUHImitigationarepresentedinFig.4fordaytimehoursandin Fig.5fornighttimehours. Duringtheday(Fig.4,left),intheunrestrictedirrigationscenario(U),thecityisalmostunaffectedbya 1.5°CUHI(only2%oftheurbanareaisaffected)thankstoanabundantevapotranspirationofgreenareas thatefficientlydecreasesairtemperature.Thecooling,whencomparedtothereferencescenario,reaches 1.0°Cinthecitycenterandupto3.8°Cinsuburbanareas.Ithenceconfirmstheimportanceofwateringveg- etationtomaintainapotentialcoolingeffect.Thepavementwatering(P)andrealisticirrigation(R)scenarios leadtoin-betweenresults.Eachofthemhasadistinctivepattern.Pavementwateringalternativeinducesa coolingthatgoesupto1.0°Cbutthatislocatedinthecitycenteronly.Thisisduetothefactthatthefraction ofthegroundoccupiedbyroadsissmallinsuburbanresidentialdistrict(roadsrepresent31%ofgroundsur- facesinresidentialareas).Resultsarealmostoppositeintherealisticirrigationscenario,withamitigationof theUHIinsuburbanareasof0.8°Candalimitedimpactinthecenter.Thisisduetothefactthattheproportion ofgreenspacesislowinthecitycenterandhighinsuburbanresidentialdistricts.Therefore,thesignificant evapotranspirationcoolingthatoccursinresidentialneighborhoodisnotallowedindenselybuiltareas. Atnight(Fig.5,right),thepavementwateringhasalimitedimpactsinceitisactivatedonlybetween8am and8pmandwaterevaporatesrapidlyonimpervioussurfaces.Aslightbutnotsignificantcooling(lessthan 0.5°C)ishowevernotedinthecitycentercomparedto(REF)becauseduringthedaytheroadsconsumea largepartoftheenergytheyreceivedbyevaporationandtheyconsequentlystorelessheat.Forbothscenarios (U)and(R),aUHImitigationbetween0.5and1.5°Cisdisplayedinresidentialareas,andtherealisticirriga- tionscenarioappearsevenmoreefficientthantheunrestrictedone.Actually,atthattimeoftheday,both typesofirrigationareactivatedbutdonotapplyinthesameway.Forunrestrictedirrigation,waterisdirectly injectedintheground(seeSection3.2.3)andtakenbytherootsfortranspirationofplantsmainlyduringthe day.Forrealisticirrigation,thevegetationiswateredbysprinkling,sothatapartofthewaterisinterceptedby thefoliageandcanbedirectlyevaporated,therebyinducinganocturnalcooling.Thereforethecooling(upto 2.2°C)observedfor(U)isduetoalowerdailyheatstoragewhilefor(R)coolingupto2.6°Cisexplainedby thelowerdailyheatstoragebutalsobythesignificantevaporationatnight(seeSection4.2). 5.3.Combinationofwateringpractices Thewateringofvegetationandpavementaretwosolutionsthatenablealocalcoolingeffect,eachbyop- eratingonaspecificenvironment(naturalorimperviouscovers)throughdifferentphysicalprocesses.They canconsequentlybecombinedtomaximizetheUHImitigation,byadaptingtheirimplementationaccording totheareaswheretheyarethemostefficient. Thecombinedscenario(referredtoasC),whichcombinesirrigationofurbangreenareas(accordingtothe sameprotocolthanfortherealisticirrigationscenario(R),seeSection3.2.3)andpavementwateringonlyfor roadsofthecitycenterandinnersuburbs,leadstothemaximalcoolingbothatdaytimeandnighttime, whetherinresidentialareasandcitycenter. AscanbeseenonFig.6,suchacombinedscenariocumulatesthebenefitsofthetwooptions.Duringthe dayandatnight,thetemperaturedecreasesbothinthecitycenter(withamaximumdecreaseduringtheday of1.1°C)andinsuburbanareas(withamaximumdecreaseatnightof2.6°C).Atnight,themaximumtem- peratureanomalyisnoticeablyloweredwithagainof0.6°C,0.3°Cand0.4°Ccompareto(REF),(R)and(P), respectively.Atthattimeoftheday,theareaofthecityaffectedbya1.5°CUHI(164km2)is79%smallerthan for(REF)butishowevernotsignificantlysmallerthanfor(R)(173km2).Duringtheday,themaximumtem- peratureanomalyisreducedby0.8°Ccompareto(REF).Thecomparisonof(C)with(R)(respectively(P)) leadstoareductionofUHIspatialextentof8%,i.e.79km2(respectively56%,i.e.1130km2)whilethemaxi- mumtemperatureanomalyisreducedby0.4°C(0.2°C). However,theseresultsmustbetempered.Intermsofrealairtemperature,thecombinedscenarioleadsto minimumdailytemperaturesof24.93°Conaverage,andmaximumdailytemperaturesof39.48°C.Despitea

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.