UrbanClimate23(2018)287–308 ContentslistsavailableatScienceDirect Urban Climate journalhomepage:http://www.elsevier.com/locate/uclim Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate M.Daniela,⁎,A.Lemonsua,V.Viguiéb aMétéo-France/CNRS,Grouped'étudedel'atmopshèremétéorologique,42avenueGaspardCoriolis,31057Toulousecedex,France bCentreinternationalderecherchesurl'environnementetledéveloppement(CIRED),45bisavenuedelaBelleGabrielle,F-94736Nogentsur Marnecedex,France a r t i c l e i n f o a b s t r a c t Articlehistory: Increasingheat-waveriskduetoregionalclimateevolutions,exacerbat- Received31May2016 edbyurbanheatisland(UHI)effects,isamajorthreatfortheinhabi- Receivedinrevisedform27October2016 tantsof manycities.Adaptivepoliciessuchasgreeningtheurban Accepted5November2016 environmentareoftenproposedtolimitpopulationvulnerability,as vegetationenablestoregulatethemicroclimatebyevapotranspiration. Theefficiencyofsuchstrategiesdependsonwateravailabilityandraises Keywords: theissuesofwatersupplyforirrigationandofvegetationefficiency. Irrigation Threevegetationwateringalternativesandascenarioofpavement Pavementwatering wateringarestudiedandcomparedusingParis(France)urbanareaas Urbanheatislandeffect a case study. With an evolution of the city based on “business as Urbanclimate Climatechange usual”trends,urbanclimatemodelingenablestoevaluatebothUHI Adaptation and heat stress under heat-wave conditions in 2100. Vegetation wateringisefficientinreducingairtemperatureandthermalstress, butmostlyinresidentialareaswherevegetationdensityisimportant enough.Pavementwateringisrelevantinthedenselybuiltcitycenter onlywhereitimprovesthecoolingefficiencyandincreasesthewater consumptionby2%only.Thecombinationofbothsolutionsprovides thebestperformanceswithareduction(comparedtoanonirrigated scenario)ofthemaximumtemperatureanomalyby0.8°C(2.6°C)dur- ingtheday(night). ©2016ElsevierB.V.Allrightsreserved. ⁎ Correspondingauthor. E-mailaddresses:[email protected](M.Daniel),[email protected](A.Lemonsu),[email protected](V.Viguié) http://dx.doi.org/10.1016/j.uclim.2016.11.001 2212-0955/©2016ElsevierB.V.Allrightsreserved. 288 M.Danieletal./UrbanClimate23(2018)287–308 1.Introduction Climatechangeandglobalwarmingduetogreenhousegasemissionsarealreadyobservedandareinten- sifying(IPCC,2015).Oneoftheconsequencesisanincreaseofsummerheat-waves(IPCC,2015,Giorgi,2006). ThishasbeenhighlightedbyDéquéetal.(2007)forFranceatthenationallevelbyLemonsuetal.(2014)for theParisregion,whichcouldbeaffectedbymorethantendaysofheat-waveperyearonaveragebytheendof the21stcentury.Thissevereheat,exacerbatedincitiesbytheurbanheatisland(UHI)effect(Basaraetal., 2010;Tanetal.,2010;GabrielandEndlicher,2011;LiandBou-Zeid,2013),arealreadyaclearly-identified publichealthconcern,whichissteadilygrowing(Lemonsuetal.,2013)andalarminginstitutionalstake- holders(seeforinstance,StoneandRodgers,2001;Soleckietal.,2005;HaminandGurran,2009;Lambert- Habibetal.,2013). Tofacethisissue,itisessentialtodevise,evaluate,andimplementefficientclimatechangeadaptationand UHImitigationstrategies.Thecountermeasuresusuallyproposedtoreduceairtemperatureinurbanenviron- mentareeitherdesignedtomodulatethethermo-radiativeprocessesortheenergyexchangeswiththeatmo- sphere.Thefirstonesarerelatedtoamodificationoftheradiativepropertiesofurbanfacetsandbuilding envelopes,e.g.withreflectivematerials(SantamourisandKolokotsa,2013;Kolokotsaetal.,2011),orthecre- ationofshadingareasbyplayingwithurbanformortrees(Potchteretal.,2006,SouchandSouch,1993, Shashua-BarandHoffman,2000).Someothertechniquesaimatmodifyingthesurfaceenergybalancebyfa- voringwaterevaporation,inordertorefreshtheambientair,whilereducingheatconvectionandstorage. Thisispossiblewiththeuseofpervioussoilsandvegetation,orthroughthewettingofurbansurfaces. Urbangreening,i.e.addingvegetationinthecity,isasolutionmoreandmorestudiedandpromotedatdif- ferentspatialscales(Gaffinetal.,2012;Rosenzweigetal.,2011;Bowleretal.,2010):greenbeltsaroundthe city(Massonetal.,2013b,Adachietal.,2014),urbanparks(Potchteretal.,2006),orgreenbuildingenvelopes (WarkandWark,2003;AlexandriandJones,2008;Jaffaletal.,2012;Malysetal.,2014).Pavementwateringis amorerecentapproachthathasbeensofarinvestigatedessentiallythroughexperimentalworks(Takahashi etal.,2010;Hendeletal.,2015).Nonetheless,thesevariousmethodsusedtomagnifyevaporationarehighly dependentonwateravailability.Theymayrequireanimportantwatersupplythatmustbequantifiedtoob- jectivelyevaluatethestrategy'sviability.Totheauthors'knowledge,onlyfewworksraisethisissue.Shashua- baretal.(2011),especially,proposedanindicatorofcoolingefficiency,definedastheratiobetweentheday- timecoolingandtheequivalentlatentheatfromtheevapotranspirationofplants.Basedonmeasurements, differentvegetationcombinationshavebeenevaluated(Shashua-Baretal.,2011;Middeletal.,2012). Withtheprospectofacceleratingclimatechange,especiallyillustratedbyanincreaseandintensification ofheatwaves,associatedwiththeexpansionofcitiesandtheirpopulations,thepresentpaperaimsatinves- tigatingthepossiblestrategiesforcities'evolutionandadaptationatlargescale.Specialattentionispaidhere totheissueofcitygreening,andmoreimportantlytheassociatedwateringpractices,withtheambitionof assessingtheurbanplanningstrategiesonthebasisofadditionalconsiderationsthatarerarelytakenintoac- count.However,thequestionofwaterresourcesandoftheirsustainablemanagement,fromtheglobalscale tothelevelofmunicipalitiesandlocalauthorities,istodayaprevalentandessentialissue. 2.Paris2100asacasestudy 2.1.Previousstudies TheParisurbanarea(France)isusedhereasacasestudy,consideringthatParisconurbationisoneofthe mostpopulatedurbanareasintheEuropeanUnionwithmorethan12millioninhabitantsin2012according totheINSEEFrenchnationalstatisticsinstitute.IthasbeenparticularlyaffectedbytheEuropeanheat-waveof summer2003withabout5000casualties(Hémonetal.,2003),andhasbeenthesubjectofseveralstudies aboutUHImitigationstrategies(seeespeciallyMassonetal.,2013b;Lemonsuetal.,2013,2015;deMunck etal.,2013;deMunck,2013;Kounkou-Arnaudetal.,2014). TheworksofMassonetal.(2013b)haveshownthaturbanplanningatlargescalehasamajorroletoplay ontheUHIregulation.Inthiscase,theplantingofforestsandvegetablecropsaroundthecityleadsuptoa2°C decreaseofairtemperatureinsidethecityincaseofheatwaves.Moregenerally,theimplementationofgreen orbluebeltsmayinfluencelocal-scalemeteorologyandtheflowsaroundandabovethecity,andconsequent- lyrefreshthecityduringsummerperiods.Themodelingofthe2003heatwaveoverPariswiththeTEBurban M.Danieletal./UrbanClimate23(2018)287–308 289 climatemodelcoupledtotheMeso-NHatmosphericmodel(Laforeetal.,1998)hasenabledtoassessvarious actionleversatcityscale,moreespeciallytheimpactofgreeningandpavementwatering(deMunck,2013; Kounkou-Arnaudetal.,2014).DeMunck(2013)hasinvestigatedthecoolingpotentialofgreenroofsand ground-basedvegetation,onthebasisofrealisticscenariosforwhichvegetationisimplementedinthe existingcityonlywherepossible.Theyhaveshowedthatvegetationwatersupplyisessentialinordertoob- tainacoolingeffect.Inaddition,Kounkou-Arnaudetal.(2014)havetestedtheinnovativesolutionsofpave- mentwateringusingasimilarnumericalsetup.Theyobtainedaslightdecreaseinairtemperatureinthe streetsofabout0.5°Cintheafternoon,significantlysmallerthanthe2°Ccoolingobtainedwithwatered ground-basedvegetation. 2.2.TheVURCAproject Thisstudyisinthelineofthepreviousworksbutaimsatadoptingamoreprospectiveandintegrativeap- proachbyaccountingforevolutionofthecityitselfandmodificationofclimate.Thiswastheobjectiveofthe VURCAnationalresearchprojectwhichambitionedtoassessthevulnerabilityofParistofutureheatwaves andtoproposeadaptationstrategies.Byusinganinterdisciplinaryandsystemicmodelingsystemforthe city,wehadbeenabletoprovidequantitativeestimatesofthepotentialbenefitsofvariousstrategiesforevo- lutionofcityandofsomepractices.Theefficiencyofstrategieshasbeenassessedthroughdiagnosticsorin- dicators that cover different thematic areas: urban climate, thermal comfort, energy consumption of buildings,andwaterconsumption.Startingfromthemultiplescenariosstudied,afirststudyhasbeencon- ductedontheimpactofurbanexpansionscenariosonurbanheatislandandheatstressinParis(Lemonsu etal.,2015).Theresultshavehighlightedthattheexposureofinhabitantstoheatislowerincaseofacity lesscompactandgreener. However,thestartingassumptionwasthaturbanparksandgardensweresystematicallywatered,which isnotnecessarilyrealisticunderheatwavecondition.Amorespecificanalysisisconductedhereinorderto comparevariousstrategiesofwateruseeitherforvegetationirrigationorpavementwatering.Theobjective istoevaluatetheirefficiencybyputtinginperspectivethegainsintermsofUHImitigationandthermalcom- fortimprovement,andtheinducedwaterconsumption.Inaddition,onecanexpectthatthisefficiencyvaries dependingonintensityanddurationofheatwaves. AfteradescriptionoftheglobalmethodologyinSection3,thispaperinvestigatestheimpactsofdifferent scenariosofvegetationirrigationorpavementwateringonevaporation(Section4)andUHIpatterns(Section 5).Section6examinestheefficiencyofeachscenariointermsoftemperatureandthermalcomfort,andfinally Section7discussesthevariabilitiesanduncertaintiesofourresults,andSection8concludes. 3.Methodology 3.1.Generalmodelingmethodology ThestudypresentedhereusesthemethodologydevelopedwithintheframeworkoftheVURCAresearch project,describedindetailinLemonsuetal.(2015).TheurbanclimateofParisissimulatedusingaphysically- basedurbancanopymodel.Duetorecentdevelopments,thismodelissophisticatedenoughtosimulate,at thecityscale,airtemperaturesinsideandoutsidethebuildings,indexesofthermalcomfort,air-conditioning systems(energyconsumption,associatedheatreleaseandpotentialfeedbackonairtemperatureoutside),as wellasevapotranspirationofplantsinurbanenvironment. Insteadstudyingapastheatwavetoillustratewhatcouldbethefutureevents(Beniston,2004;Vautardet al.,2007),asetofsyntheticortheoreticalfutureheatwaveshasbeenbuilt.Theseeventsvaryinintensity (dailymaximumtemperature)andinduration(numberofdays)withvariationrangesdefinedfromtheanal- ysisofregionalclimatemodelprojections(Lemonsuetal.,2014). Byaddressingtheclimatechangeissueincities,andbyworkingonlongtimeframesuptotheendofthe 21stcentury,itisimportanttoalsotakeintoaccounttheevolutionofcitycharacteristics.Thesedifferentpro- cessesthatinteractlocallycansignificantlymodifytheurbantemperatures,energydemand,orwatercon- sumption,comparedtopresentsituation.Consequently,amongtheensembleofcityscenariosbuiltinthe VURCAproject,weusehereareferenceprospectivescenariowhichassumesevolutionsforcitycharacteristics thatfollowcurrenttrends(detailedhereafter). 290 M.Danieletal./UrbanClimate23(2018)287–308 3.1.1.Heat-waveandurbanclimatemodeling TheurbanclimateofParisissimulatedusingthephysically-basedurbancanopymodel,TownEnergyBal- ance(TEB),(Masson,2000;HamdiandMasson,2008).Thismodelsimulatesatthesametime,meteorological conditions,atstreet-levelandinsidebuildings,throughaspecificcoupledbuildingenergymodel(Buenoetal., 2012;Pigeonetal.,2014).Moreover,usingnear-surfaceairtemperature,humidity,windspeed,aswellasin- comingsolarandinfraredradiation,themodelalsocomputestheUniversalThermalClimateIndex(UTCI), (Fialaetal.,2012).Thisisamodelingoftheestimatedthermalcomfortofthehumanbody(seeCOSTAction 730,http://www.utci.org).ThisindexiscomputedbyTEBmodel,bothinsidethebuildingsandinthestreets, ateachgridcellofthemodelingdomain. Inordertobetterrepresenturbangreenareasandcatchtheinteractionsbetweenbuild-upandnatural covers(Lemonsuetal.,2012),TEBiscoupledwiththeInteractionSoilBiosphereAtmosphere(ISBA)model (NoilhanandPlanton,1989).ISBAisaSoilVegetationAtmosphereTransfermodelthatcomputesthesurface radiative(directanddiffusesolarradiationandinfraredradiation)andenergy(latent,sensibleandstorage heatfluxes)budgetsfornaturalsoilsandvegetation.Italsosimulateswaterexchangesthatincludeplants transpiration,evaporationofwaterinterceptedbythefoliage,evaporationfromtheground,aswellasseveral hydrologicalprocesses(drainage,infiltrationandcapillaryattractioninthesoil).Byaccountingforthese water exchanges and the hydrological properties of the ground, and based on a three-layer vertical discretizationofthesoilcolumn,themodelcomputestheevolutionwithtimeofthesoilwatercontents (Booneetal.,1999).ISBAisalsoabletosimulatedifferenttypesofvegetation,especiallybyvaryingtheveg- etationfraction,theleafareaindex,orthestomatalresistance.Theseprocessesareincludedintheurbancli- matemodeling,sothattheresultingmodelisabletoquantifytheircoolingeffectsonthecity.Itishowever importanttoemphasizethatthecurrentversionofTEB-ISBAdoesnotconsiderintheradiativebudgetthe shadoweffectsoftreesonwallsandground-basedsurfaces(Lemonsuetal.,2012). Onthebasisof1-kmspatialresolutionatmosphericsimulationsofthe2003heatwaveperformedbyde Muncketal.(2013)andKounkou-Arnaudetal.(2014)forParisregion,wehavebuiltasetofsynthetic heatwavesofvariableintensitiesbymodulatingtherealmeteorologicalconditions(maximumdailytemper- ature,humidity,andincominglongwaveradiation).Thedurationoftheeventcanalsobeadjustedbyrepli- cating the daily meteorological conditions day after day. Four different intensities are considered, correspondingtoadailymaximumtemperatureof34,38,42,and46°C(referredtoasHW34,HW38, HW42,andHW46,respectively).Theseintensitieshavebeendefinedaccordingtoastatisticalanalysisoffu- tureheatwavesoverParisbasinsimulatedbyanensembleofregionalclimatemodels(Lemonsuetal.,2014). NotethatthesyntheticheatwaveHW38foradurationofsevendaysisquitecomparabletothereal2003heat wave.ThesemeteorologicalforcingsareusedtoruntheTEB-ISBAsurfacemodelinanofflinemode,toassess thesensitivityoftheurbanclimatetoirrigationpracticesforvariableheat-waveconditions.Inthispaper,we willmostlyfocusontheseven-dayHW38.However,asensitivitytoheat-wavesintensitiesanddurationsis carriedoutinSection7. Initialconditions,especiallythesoilwatercontenttowhichresultscanbequitesensitive,aredefinedthe samewayforeachirrigationscenarios,startingfromthecompletesimulationofthe2003heatwaveper- formedbydeMuncketal.(2013).NotethatthesimulationofdeMuncketal.(2013),conductedwiththe Meso-NHnon-hydrostaticmodel(Laforeetal.,1998)coupledtotheTEBmodel,hadbeenevaluatedusing localobservationsinParisregion.Inaddition,themethodologyofurbanclimatemodelingadoptedin VURCAproject,forwhichtheTEBurbancanopymodelisinitializedusingacitydescriptionprovidedbythe urbanexpansionsocio-economicmodel(seenextSection),hasbeenalsoevaluatedforonedayofthe2003 heatwave.DetailedresultsareavailableinLemonsuetal.(2015). 3.1.2.Urbanexpansionmodelingandcityevolution TEB-ISBAmodelisrunoveradomainof100km×100kmcenteredonPariscitycenterwithahorizontal resolutionof1km(seethedomaininFig.1).TofulfilltherequirementoftheVURCAproject,anurbanexpan- sionscenarioofParisurbanareaissimulateduntil2100usingtheNEDUM-2Dmodel(Viguiéetal.,2014).This socio-economicmodelsimulatesthespatialdistributionoflandandrealestatevaluesaswellasthemain characteristicsofthecitysuchaspopulationandbuildingdensity,greenandhousingareas.Itisbasedona dynamicextensionoftheurbaneconomictheory(Fujita,1989).Simulatedcityshapeevolutionandcharac- teristicshavebeencalibratedovertheperiod1900–2010,anddetailsofitscalibrationarepresentedin Viguiéetal.(2014). M.Danieletal./UrbanClimate23(2018)287–308 291 Fig.1.SpatialextentoftheParisconurbationsimulatedin2100bytheNEDUMmodel.Urbanareasareclassifiedinfourtypologies:his- toricalcitycenter(HCC),collectivehousing(COL)andresidentialhousing(RES),andofficebuildings(OFF). Beyond2010,theurbanexpansiondynamicsfollowsascenariobasedoncurrenttrendsofpopulationden- sitydecrease,andonamoderatetotalpopulationincreasescenario(+9%in2100)(seeAppendixA):wesup- posethatnospecificurbanpolicyorregulationisimplementedinordertolimiturbansprawl,sothatthecity stillgrowsfollowingthecurrenttrends.Thesimulatedcityin2100covers3090km2including1420km2of greenareas(gardensandpublicparks)forademographicprojectionof13,400,000inhabitants. Thebuildingsareclassifiedinfourarchitecturaltypologies(seemapinFig.1)historicalbuildingslocated inthecitycenter(Haussmannianarchitecturebuildingsdatingfrom19thcenturyandreferredtoasHCC),col- lectivehousing(COL),singlehousing(RES),andofficebuildings(OFF).Materialscharacteristicsofbuildings andrenovationtechniquesarespecifieddifferentlyforeachtypologyonthebasisofaninventoryofthecur- rentParisianbuildingsandtherenovationtrends. Projectedbuildingscharacteristicsin2100arebasedontheassumptionthattheenergeticperformancesof buildingsaregoingtoimprovewithtimeduetothetechnologicalprogressesinconstructionandrenovation methods,followingcurrenttrends.Acompletedatabaseofbuildingscharacteristics,builtfortheVURCApro- ject(Marchadieretal.,2012),isusedhere.Itisassumedthatallcollectivehousing(COL)andsinglehousing (RES)buildingsfollowtheFrenchthermalregulationsof2012.Thelevelofrenovationishigherforoffice buildingswhichareequippedwithhigh-performancevacuuminsulationsystemsandreflectivematerials.In- versely,becauseofarchitecturalandaestheticalreasons,thehistoricalbuildings(HCC)aretheleastrenovated ones(asimpleinteriorthermalinsulationisimplementedinthiscase). 3.2.Evaporationprocessesandwateruseforrefreshing 3.2.1.Vegetationwatering Evapotranspiration-relatedthermal-regulationcapacityofvegetationinurbanenvironmentistightlyre- latedtowateravailability.Twomechanismsareinvolvedwithdifferentdynamics.First,soilwater,aswell asthewaterinterceptedbythefoliageafteraperiodofrainfallorwatering,canevaporate.Thisphysicalpro- cesscantakeplaceeitherdayornight.Theresponsetoapunctualwatersupplyisquickforwaterintercepted bythefoliageandslowerforsoilwater.Thisphenomenonisaffectedbyenvironmentalconditions,especially atmosphericwaterpressure.Waterexchangesarealsoinducedbyplantstranspiration.Thisphysiological mechanism,coupledtophotosynthesis,takesplaceduringtheday(formostofvegetalspecies)andis basedonwaterextractionfromthesoilbytherootsandwaterevaporationbytheleavesthroughthestomata. 292 M.Danieletal./UrbanClimate23(2018)287–308 TheISBAmodel-whichispartofSurfaceVegetationAtmosphereTansfer(SVAT)typemodels-simulates thephysiologicalprocessesthatmanageevapotranspirationofvegetation.Italsoincludesaphysically-based modelingofhydrologicalprocesses,sothatitsimulatesthesoilwaterstatusevolutionandtheretroactionon transpirationcapacityofplants.ThemodelingoftheseprocessesinISBAisdetailedinAppendixB.1.Usingthis model,thevegetationwateringpracticescanberepresented.Itcandealwithdifferentformsofwaterinputs eitheronvegetation,attheground,orinthesoil,andthewaythiswaterisusedbythesoil-plantsystem. 3.2.2.Pavementwatering Indensely-builturbanenvironment,pavementwateringcanbeasolutiontomitigateUHI.Thewater sprinkledonthepavementisrapidlyevaporatedduringhotconditions,whichcoolstheambientairwhile limitingsurfacewarming.Thisrefreshingstrategyofferstheadvantageofrespondingquicklytoapunctual watering.Theevaporationpotentialishoweverstronglyconstrainedbythemaximumcapacityofwaterstor- ageonroads.Beyondacertainwaterquantity,thesurplusislostbysurfacerunofftowardsewers. Basedonexperimentalworks,Takahashietal.(2010)studiedandquantifiedtheimpactofthispracticeon localairtemperature.Theyfoundthatincaseofhighairtemperaturesgreaterthan30°Cinthecity,airtem- peraturecandecreasebyabout2°Cinthemorningand4°Cintheafternoon.Variousexperimentalprotocols weretestedandthemostimportantcoolingeffectsweremeasuredwhensprinklingforthreeminutesevery 30minwitharateof0.33Lm−2min−1.Anotherexperimentalsensibilityanalysiswasperformedduring summer2013byHendeletal.(2015).Itwasfoundthatforsunnydayspavementwateringshouldbeactivat- edevery30minwitharateof0.31to0.41Lm−2h−1.Usingthisset-up,hefoundthatsurfacetemperature couldbereducedby4°Cinthemorningandupto13°Cintheafternoon.Healsofoundagainof2.3°Cto 5.9°Coftemperature5cmbelowthesurface,provingthatpavementwateringisefficientwhenaimingatde- creasingheatstorageinimpervioussurfaces. TheTEBmodelsareoneofthefewurbanclimatemodelsthatincludesurfacewaterexchanges.Thecurrent parameterizationisrathersimple,butenablestorepresentrainwaterinterceptiononroadsandroofs,evap- orationofavailablewater,andsurfacerunoff(seeAppendixB.2fordetails).Theimplementationofpavement wateringinTEBisbasedonthisparameterization,simplybytreatingthiswatersupplythesamewaythan rainfallonroads. 3.2.3.Irrigationscenarios Theconfigurationusedhereasreferencescenarioisthesimulationperformedwithoutanthropicwater supplyforvegetationduringthewholeheatwave(simulationreferredtoasREF).Itisassumedthatno waterisavailableforotheractionsthandailylifeusages,sothatprivategardensandurbanparksarenot watered. Twoalternativesforvegetation(publicparksandprivategardens)watering,whichrepresent1419km2 (seeTable1),arethentestedandsimulated,inordertoassesstheirimpactsonsoilwaterstatus,surfaceen- ergy balance, localmicroclimate, andcomfort conditions. Watering aimsatmaintainingsufficientsoil Table1 Assessmentofwaterconsumptionsthedifferentirrigationscenarios:Unrestricted(R),Pavementwatering(P),Realistic(R)andCom- bined(C).Theseconsumptionsarecomparedwithwaterconsumptionin2009,themeanandlowflowsoftheSeineRiverandtheexpect- edSeinemeanflowin2100. (U) (P) (R) (C) Wateredsurfaces(km2) Gardens/parks 1419 0 1419 1419 Pavements 0 603 0 24 Waterdemand 5.5 1.5 4.9 5.0 (106m3.day−1) %2009waterconsumption 232.1 63.3 209.7 211.0 (2.37106m3.day−1) %Seinemeanflow 18.7 5.1 17.3 17.5 (328m3.s−1) %Seinelowflow 93.0 25.4 86.0 87.1 (66m3.s−1) %2100Seinemeanflow 26.7 7.3 24.6 25.0 (230m3.s−1) M.Danieletal./UrbanClimate23(2018)287–308 293 moistureforplantsbutitisdifficulttocomputethequantityofwaterneeded,asthetranspirationintensity andthewaterquantityexchangedwithatmospherearecontrolledbytheenvironmentalconditions(sunlight, temperature,wind…),thesoilwaterstatus,andtheplantintrinsicpropertiessuchasstomatalconductance andleafareaindex. Thefirstoneisarealisticirrigationalternative(referredtoasR),basedonthemostcommonwatering practicesinParisaccordingtodeMunck(2013).Anirrigationbysprinklingisactivatedatnightfrom11 pmto7amwithawatersupplyof1.210−7m3s−1(i.e.about3.46Lperdayandperm2ofgarden).Notes thatitisgenerallyrecommendedtowaterplantsatnightbecause,duringtheday,waterlossbyevaporation significantlyreducesthewatersupplyforthesoil,andthewaterdropletsontheleavesmagnifythesunlight andthreatentoburnthefoliage(seedeMunck,2013).Fromatechnicalpointofview,thisirrigationprocessis modeledinTEB-ISBAasaninputwaterfluxthatisreceivedbysoilandvegetation(asitisalreadydonefor rainfall,forinstance).Bymodelingwatersupplythisway,apartofwater(dependingonleafareaindexofveg- etation)isinterceptedbythefoliage,andconsequentlycanbedirectlyevaporated(seeAppendixB.1). Thesecondscenario(referredtoasU)representsan“unrestricted”watersupplyforurbanvegetation.Itis amaximalistscenario.Inthiscase,thesoilwatercontentw oftheISBAmodeliscontrolledandadjustedat g eachtimestepofthesimulation,sothatthesoilwaterreservoirisalwaysatleasthalf-filled.Thisisdoneby verifyingthatthesoilwetnessindex(SWI)isalwaysequalorgreaterto0.5.Thisindexiscomputedasfollows: w −w SWI¼ g wilt ≥0:5 ð1Þ w −w fc wilt withw thesoilwatercontentcomputedateachtimestep,andw andw ,thewatercontentsatthewilting g wilt fc pointandthefieldcapacity,respectively.Thisapproachisnotrealisticinaphysicalsensebutaimsatinsuring amaximalevapotranspirationofplantsandatassessingtheassociatedcoolingpotential.Notethatinthiscon- figuration,waterisdirectlyinjectedinthegroundsothatthereisnosurfaceevaporationasintheprevious case.Theissueisthatforthissimulation,nodiagnosticinthemodelallowedustocomputethewaterneeded tofillthesoillayer.Weassumedthenafterwardsthatthewatersupplyisatleastequaltotheevapotranspi- rationthatoccurred. Inaddition,ascenarioofpavementwatering(referredtoasP)issimulatedinthepresentstudy.Watering isset-upforsidewalksalone(603km2,seeTable1),assumingtheycovers50%ofthepavementsurfaces (1206km2,seeTable1).Thewatersupplyisbasedonasensitivitystudyconductedwithintheframeworks oftheEPICEAproject(Kounkou-Arnaudetal.,2014).Wesupposethatthepavementsiswateredatarate of1.110−6m3s−1duringthreeminutesatthebeginningofeveryhourbetween8amand8pm(i.e.about 2.77Lday−1andperm2ofroads).Forhighersprinklingrates,thewaterquantityisgreaterthanthemaxi- mumstoragecapacityoftheroadreservoirsimulatedinthemodel(Masson,2000,Lemonsuetal.,2007), sothewaterexcesswouldbelostbysurfacerunofftothesewer(seeAppendixB.2).Notethatinthisscenario, gardensandparksarenotirrigatedatallinordertobeabletoassessseparatelythedifferentpractices. 4.Impactsofwateringonevaporation Forclarityandsimplicity,theanalysisofprocessesisfirstlycarriedoutanddiscussedwithintheframe- workoftheheatwaveHW38withadurationofsevendays,quitecomparabletothereal2003heatwave asindicatedpreviously. 4.1.Referencecase Fig.2(top)shows,forscenario(REF)andfordayseven,thedailycycleoflatentheatflux(Q )inWm−2in E bothhistoricalcitycenter(HCC)andresidentialareas(RES)(cf.themapinFig.1).Withoutanywatersupply onimpervioussurfaces,thisfluxincludesonlycontributionsfromnaturalcoversthroughsoilevaporationand vegetationtranspiration. InRES,Q reachesamaximumof73Wm−2atmiddayaftersevendaysofheatwave,whereasitisnegli- E gibleatnightwhenvegetationisphotosyntheticallyinactive.Theabsenceofirrigationresultstheninanim- portantwaterstressforvegetationwhichsignificantlylimitstherelevanceofgreeningstrategies.InHCC,Q E doesnotexceed11Wm−2inthemiddleofthedayduetothepredominanceofimperviouscoversinthis area. 2 9 4 M .D a n iel e t a l. / U rb a n C lim a te 2 3 (2 0 1 8 ) 2 8 7 – 3 0 8 Fig.2.Top:dailycycleoflatentheatfluxforthereferencecase.Bottom:differencebetweendailycyclesoflatentheatfluxofeachwateringscenarioandreferencecase.Inbothcases,fluxesarespatially aggregatedoverRESarea(left)andHCCarea(right).Thedashedlinesdelimitthetimeperiodsofvegetationandpavementwatering. M.Danieletal./UrbanClimate23(2018)287–308 295 4.2.Benefitsofwateringstrategies Fig.2(bottom)showsthedifferenceinlatentheatfluxbetweeneveryscenarioandthereference(REF). InRES(Fig.2),thevegetationwateringbooststranspirationofplantssothatQ increasesby+274Wm−2 E and+138Wm−2for(U)and(R),respectively.Onenotesthatduringtheday,(U)maintainstheevaporation cycleuntil2100UTC,whereasitstopsmuchearlierin(R).Thishighlightsthentheneedforthevegetationto beirrigatedinordertoconserveitstranspirationpotential.Inversely,theevaporationofwaterinterceptedby leavesduringwatering(seeAppendixB.1)inducesanadditionalevaporationphasein(R)overnight,with fluxesupto60Wm−2.(P)doesnotseemtoprovideanyimprovementsexceptforthethreefirsthoursof wateringwithadditionalfluxesupto50Wm−2.Lookingatthedifferencesbetweenthescenarios,onecan concludethatirrigationismandatorytokeepasignificantvegetationevaporation. InHCC,theadditionalevapotranspirationislimitedinthetwoscenariosbasedonvegetationwatering(U) and(R)sincethevegetationcoverfractionislow.For(U),Q ishoweverdoubledintheafternoon(+10Wm E −2)comparedtothereference.Thepavementwatering(P)isheremoreefficient.ItleadstoanadditionalQ E upto+33Wm−2.Inthispartofthecity,theroadsprovideanimportantsurfaceareaforsprinkling,andcon- sequentlyofferahigherevaporationpotentialthanvegetation. 5.Impactsofwateringonurbanheatisland 5.1.Referencecase Forthereferencescenario,thedailymaximumdailytemperatureaftersevendaysofheatwaveisabout 40°Callovertheurbanarea.Atnight,theminimumdailytemperaturevariesbetween25.8°Cinresidential areasand28.4°Cinthecitycenter.Bywayofcomparison,onecanremindthatthetemperaturethresholds thatareprescribedforheatwavewarningoverParisregionare18°Cand34°Cforminimumandmaximum dailytemperatures,respectively(Lemonsuetal.,2014).Thishighlightstheextremeconditionsofthisheat wavewhichiscomparabletothe2003heatwave.MapsofUHIarecalculatedasthedifferencebetweenthe localairtemperature(temperaturesimulatedbyTEB-ISBAmodel2mabovetheground)andareferencetem- peraturecorrespondingtothetemperatureofruralareas,i.e.themeantemperatureofperipheralandunin- habitedgridcells.MoredetailsonthemethodcanbefoundinLemonsuetal.(2015).Mapsofdaytimeand nighttimeUHIareproducedbyaveragingthemodeloutputsbetween1400and1600UTC,andbetween 0200and0400UTC,respectively. Duringtheday(Fig.3,left),theUHIislarge(3040km2areimpactedbyanUHIgreaterthan1.5°C,i.e. about98%ofthecityarea)withpeaksofintensitythatoccurinthesuburbs.Indeed,shadingeffectofbuildings inthecitycenterreducestheintakeofsolarradiation.ThatgivesamaximalUHIinthecitycenterof1.3°C comparedto2.5°Cinthesuburbs.AsalreadymentionedbyLemonsuetal.(2015),atnight(Fig.3,right) theUHIhasadifferentpattern:itislessextendedthanduringthedaybutreacheshighervaluesinthe Fig.3.SpatialrepresentationofUHIfortheHW38aftersevendaysofheatwavebothfordaytime(left)andnighttime(right)hours. 296 M.Danieletal./UrbanClimate23(2018)287–308 mosturbanizedareas.ThemaximumUHIintensityof3.2°Cistobefoundinthecitycenterandthearea coversbyanUHIgreaterthan1.5°Cdiminishesto817km2,i.e.26%ofthecityarea. 5.2.Benefitsofwateringstrategies ThebenefitsofwateringstrategiesonUHIarecomputedasthedifferencebetweenthereferencescenario (REF)andeveryothersscenarios.ThemapsofUHImitigationarepresentedinFig.4fordaytimehoursandin Fig.5fornighttimehours. Duringtheday(Fig.4,left),intheunrestrictedirrigationscenario(U),thecityisalmostunaffectedbya 1.5°CUHI(only2%oftheurbanareaisaffected)thankstoanabundantevapotranspirationofgreenareas thatefficientlydecreasesairtemperature.Thecooling,whencomparedtothereferencescenario,reaches 1.0°Cinthecitycenterandupto3.8°Cinsuburbanareas.Ithenceconfirmstheimportanceofwateringveg- etationtomaintainapotentialcoolingeffect.Thepavementwatering(P)andrealisticirrigation(R)scenarios leadtoin-betweenresults.Eachofthemhasadistinctivepattern.Pavementwateringalternativeinducesa coolingthatgoesupto1.0°Cbutthatislocatedinthecitycenteronly.Thisisduetothefactthatthefraction ofthegroundoccupiedbyroadsissmallinsuburbanresidentialdistrict(roadsrepresent31%ofgroundsur- facesinresidentialareas).Resultsarealmostoppositeintherealisticirrigationscenario,withamitigationof theUHIinsuburbanareasof0.8°Candalimitedimpactinthecenter.Thisisduetothefactthattheproportion ofgreenspacesislowinthecitycenterandhighinsuburbanresidentialdistricts.Therefore,thesignificant evapotranspirationcoolingthatoccursinresidentialneighborhoodisnotallowedindenselybuiltareas. Atnight(Fig.5,right),thepavementwateringhasalimitedimpactsinceitisactivatedonlybetween8am and8pmandwaterevaporatesrapidlyonimpervioussurfaces.Aslightbutnotsignificantcooling(lessthan 0.5°C)ishowevernotedinthecitycentercomparedto(REF)becauseduringthedaytheroadsconsumea largepartoftheenergytheyreceivedbyevaporationandtheyconsequentlystorelessheat.Forbothscenarios (U)and(R),aUHImitigationbetween0.5and1.5°Cisdisplayedinresidentialareas,andtherealisticirriga- tionscenarioappearsevenmoreefficientthantheunrestrictedone.Actually,atthattimeoftheday,both typesofirrigationareactivatedbutdonotapplyinthesameway.Forunrestrictedirrigation,waterisdirectly injectedintheground(seeSection3.2.3)andtakenbytherootsfortranspirationofplantsmainlyduringthe day.Forrealisticirrigation,thevegetationiswateredbysprinkling,sothatapartofthewaterisinterceptedby thefoliageandcanbedirectlyevaporated,therebyinducinganocturnalcooling.Thereforethecooling(upto 2.2°C)observedfor(U)isduetoalowerdailyheatstoragewhilefor(R)coolingupto2.6°Cisexplainedby thelowerdailyheatstoragebutalsobythesignificantevaporationatnight(seeSection4.2). 5.3.Combinationofwateringpractices Thewateringofvegetationandpavementaretwosolutionsthatenablealocalcoolingeffect,eachbyop- eratingonaspecificenvironment(naturalorimperviouscovers)throughdifferentphysicalprocesses.They canconsequentlybecombinedtomaximizetheUHImitigation,byadaptingtheirimplementationaccording totheareaswheretheyarethemostefficient. Thecombinedscenario(referredtoasC),whichcombinesirrigationofurbangreenareas(accordingtothe sameprotocolthanfortherealisticirrigationscenario(R),seeSection3.2.3)andpavementwateringonlyfor roadsofthecitycenterandinnersuburbs,leadstothemaximalcoolingbothatdaytimeandnighttime, whetherinresidentialareasandcitycenter. AscanbeseenonFig.6,suchacombinedscenariocumulatesthebenefitsofthetwooptions.Duringthe dayandatnight,thetemperaturedecreasesbothinthecitycenter(withamaximumdecreaseduringtheday of1.1°C)andinsuburbanareas(withamaximumdecreaseatnightof2.6°C).Atnight,themaximumtem- peratureanomalyisnoticeablyloweredwithagainof0.6°C,0.3°Cand0.4°Ccompareto(REF),(R)and(P), respectively.Atthattimeoftheday,theareaofthecityaffectedbya1.5°CUHI(164km2)is79%smallerthan for(REF)butishowevernotsignificantlysmallerthanfor(R)(173km2).Duringtheday,themaximumtem- peratureanomalyisreducedby0.8°Ccompareto(REF).Thecomparisonof(C)with(R)(respectively(P)) leadstoareductionofUHIspatialextentof8%,i.e.79km2(respectively56%,i.e.1130km2)whilethemaxi- mumtemperatureanomalyisreducedby0.4°C(0.2°C). However,theseresultsmustbetempered.Intermsofrealairtemperature,thecombinedscenarioleadsto minimumdailytemperaturesof24.93°Conaverage,andmaximumdailytemperaturesof39.48°C.Despitea