ebook img

Role of 4-Hydroxybutyrate-CoA Synthetase in the CO2 Fixation Cycle in Thermoacidophilic Archaea PDF

12 Pages·2013·1.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Role of 4-Hydroxybutyrate-CoA Synthetase in the CO2 Fixation Cycle in Thermoacidophilic Archaea

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.288,NO.6,pp.4012–4022,February8,2013 ©2013byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PublishedintheU.S.A. Role of 4-Hydroxybutyrate-CoA Synthetase in the CO 2 Fixation Cycle in Thermoacidophilic Archaea* Receivedforpublication,August24,2012,andinrevisedform,October26,2012 Published,JBCPapersinPress,December20,2012,DOI10.1074/jbc.M112.413195 AaronS.Hawkins‡1,YejunHan‡,RobertK.Bennett‡,MichaelW.W.Adams§,andRobertM.Kelly‡2 Fromthe‡DepartmentofChemicalandBiomolecularEngineering,NorthCarolinaStateUniversity,Raleigh,NorthCarolina 27695-7905andthe§DepartmentofBiochemistryandMolecularBiology,UniversityofGeorgia,Athens,Georgia30602 Background: Thermoacidophilic Sulfolobales contain a novel CO fixation pathway; all enzymes but one have been 2 accountedforinMetallosphaerasedula. Results:EnzymesencodedinMsed_0394andMsed_0406eachexhibit4-hydroxybutyrate-CoAsynthetaseactivity,consistent withtranscriptomicevidence. Conclusion:Msed_0406islikelythephysiologicallyrelevantenzymeinthecycle. Significance:AllenzymesarenowaccountedforintheCO fixationcycleofM.sedula. 2 Metallosphaera sedula is an extremely thermoacidophilic Carbondioxideischemicallystableandunreactiveandmust archaeon that grows heterotrophically on peptides and chemo- be reduced to enable its incorporation into biological mole- lithoautotrophically on hydrogen, sulfur, or reduced metals as cules. Autotrophic microorganisms are able to utilize carbon energy sources. During autotrophic growth, carbon dioxide is dioxideastheirsolecarbonsource,andavarietyofpathways incorporatedintocellularcarbonviathe3-hydroxypropionate/4- are known to activate and incorporate it into biomolecules hydroxybutyratecycle(3HP/4HB).Todate,allofthestepsinthe essentialforgrowthandreplication.Recently,carbondioxide pathway have been connected to enzymes encoded in specific fixation pathways have received interest for biotechnological genes,exceptfortheoneresponsibleforligationofcoenzymeA applications, since this could provide biological routes for de novogenerationoffuelsandsmallorganicmolecules(1). (CoA)to4HB.Althoughseveralcandidatesforthisstephavebeen There are currently at least six natural pathways for the identifiedthroughbioinformaticanalysisoftheM.sedulagenome, incorporationofinorganiccarbondioxideintocellularcarbon nonehavebeenshowntocatalyzethisbiotransformation.Inthis (2,3).Themostrecentlydiscoveredofthesearefoundexclu- report,transcriptomicanalysisofcellsgrownunderstrictH -CO 2 2 sivelyinextremelythermophilicarchaeaasfollows:the3-hy- autotrophywasconsistentwiththeinvolvementofMsed_0406and droxypropionate/4-hydroxybutyrate(3HP3/4HB)carbonfixa- Msed_0394.Recombinantversionsoftheseenzymescatalyzedthe tion cycle, which operates in members of the crenarchaeal ligationofCoAto4HB,withsimilaraffinitiesfor4HB(K valuesof m orderSulfolobales(2,4–6),andthedicarboxylate/4-hydroxy- 1.9and1.5mMforMsed_0406andMsed_0394,respectively)but butyrate(DC/4HB)cycle,whichisusedbyanaerobicmembers with different rates (1.69 and 0.22 (cid:1)mol (cid:2) min(cid:3)1 (cid:2) mg(cid:3)1 for oftheordersThermoprotealesandDesulfurococcales(4,7).In Msed_0406andMsed_0394,respectively).NeitherMsed_0406nor bothcycles,twocarbondioxidemoleculesareaddedtoacetyl- Msed_0394haveclosehomologsinotherSulfolobales,although CoA(C2)toproducesuccinyl-CoA(C4),whichissubsequently lowsequencesimilarityisnotunusualforacyl-adenylate-forming rearrangedtoacetoacetyl-CoAandcleavedintotwomolecules enzymes.Thecapacityofthesetwoenzymestouse4HBasasub- of acetyl-CoA. These pathways differ primarily in regard to stratemayhavearisenfromsimplemodificationstoacyl-adeny- theirtolerancetooxygenandtheco-factorsusedforreducing late-formingenzymes.Forexample,asingleaminoacidsubstitu- equivalents as follows: NAD(P)H for the 3HP/4HB cycle and tion (W424G) in the active site of the acetate/propionate ferredoxin/NAD(P)H for the DC/4HB cycle (3, 8). The two synthetase (Msed_1353), an enzyme that is highly conserved archaealpathwaysalsodifferinhowtheylinktheCO fixation 2 amongtheSulfolobales,changeditssubstratespecificitytoinclude cycletocentralmetabolism.IntheDC/4HBpathway,pyruvate 4HB. The identification of the 4-HB CoA synthetase now com- is synthesized directly from acetyl-CoA using pyruvate syn- pletesthesetofenzymescomprisingthe3HP/4HBcycle. thase.Inthe3HP/4HBpathway,anotherhalf-turnisrequired tomakesuccinyl-CoA,whichisthenoxidizedviasuccinateto pyruvate(2,9,10). There are 13 enzymes proposed to catalyze the 16 reac- *Thisworkwassupported,inwholeorinpart,byNationalInstitutesofHealth tionsinthe3HP/4HBpathway.Thefirstthreeenzymescon- Grant R01GM90209. This work was also supported by Department of vert acetyl-CoA (C2) to 3HP (C3) via an ATP-dependent EnergyAdvancedResearchProjectsAgency-EnergyGrantDE-AR0000081 andDefenseThreatReductionAgencyGrantHDTRA1-09-1-0030. carboxylation step. Next, 3HP is converted and reduced to 1SupportedbyGraduateAssistanceinAreasonNationalNeedMolecular propionyl-CoA,carboxylatedasecondtime,andrearranged Biotechnology Fellowship P200A070582-09 from the United States DepartmentofEducation. 2To whom correspondence should be addressed: Dept. of Chemical and BiomolecularEngineering,NorthCarolinaStateUniversity,911Partners 3Theabbreviationsusedare:3HP,3-hydroxypropionate;4HB,4-hydroxybu- Way,EB-1,Box7905,Raleigh,NC27695-7905.Tel.:919-515-6396;Fax:919- tyrate;DC,dicarboxylate;ACL,autotrophiccarbon-limited;HTR,hetero- 515-3465;E-mail:[email protected]. trophic;ACS,acetyl-CoAsynthetase;ACR,autotrophiccarbon-rich. This is an Open Access article under the CC BY license. 4012 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 TABLE1 Enzymesinthe3HP/4HBcycleinM.sedula Thefollowingabbreviationsareused:NCE,nativecellextract;NP,nativepurifiedenzyme;R,recombinantprotein. Cycleref.no. ORF Enzyme Ref. E1(cid:2) Msed_0147 Acetyl-CoA/propionyl-CoAcarboxylase NCE(11,41) E1(cid:1) Msed_0148 E1(cid:3) Msed_1375 E2 Msed_0709 Malonyl-CoA/succinyl-CoAreductase R(42) E3 Msed_1993 Malonatesemialdehydereductase R(42) E4 Msed_1456 3-Hydroxypropionate:CoAligase NP(5) E5 Msed_2001 3-Hydroxypropionyl-CoAdehydratase NP,R(43) E6 Msed_1426 Acryloyl-CoAreductase NP(43) E7 Msed_0639 Methylmalonyl-CoAepimerase R(13) E8(cid:2) Msed_0638 Methylmalonyl-CoAmutase R(13) E8(cid:1) Msed_2055 E9 Msed_1424 Succinatesemialdehydereductase NP,R(42) E10 Msed_0394 4-Hydroxybutyrate-CoAsynthetase R(thiswork) Msed_0406 E11 Msed_1321 4-Hydroxybutyryl-CoAdehydratase NCE(4) E12 Msed_0399 Crotonyl-CoAhydratase/(S)-3-hydroxybutyryl-CoAdehydrogenase R(9) E13 Msed_0656 Acetoacetyl-CoA(cid:1)-ketothiolase NCE(4) to make succinyl-CoA (C4). Succinyl-CoA is reduced to Msed_1291hadnoactivityonanyofthepreviouslymentioned 4HB,whichisconvertedtotwomoleculesofacetyl-CoAin organic acids. Thus, although cycle function has been con- the final reactions of the cycle. Flux analysis and labeling firmedbymetabolicfluxanalysis,andalthough4HB-CoAsyn- studieshaveconfirmedtheoperationofthispathwayinMet- thetase activity has been measured in cell extracts of allosphaerasedula(4,10). autotrophically grown M. sedula, the enzyme responsible for Alloftheenzymesthatcomprisethefirstportionofthecycle ligationofCoAto4HBremainsunclear. uptotheformationof4HBhavebeenidentifiedandcharacter- Toidentifythemissinglinkinthe3HP/4HBcycle,newmeth- izedbiochemicallyintheirnativeorrecombinantform,mostly odsforsemi-continuouscultivationofM.sedulainagas-inten- from the extremely thermoacidophilic archaeon M. sedula sivefermentationsystemweredevelopedtoteaseoutdifferen- (T (cid:1) 70°C, pH 2.0) (see Table 1) (4, 5, 11–13). The enzymes tialtranscriptionalresponseofautotrophy-relatedgenes.Strict involvedintheconversionof4HBtotwomoleculesofacetyl- carbon dioxide limitation was used to drive increased opera- CoA have not been characterized to the same extent (Fig. 1). tionalefficiencyoftheCO fixationenzymes,whichhypothet- 2 Activities corresponding to 4-hydroxybutyryl-CoA dehydra- ically would increase transcriptional levels of genes encoding taseandacetoacetyl-CoA(cid:1)-ketothiolasehavebeendetectedin key enzymes to maximize carbon incorporation. Using these cellextracts(4,14),althoughneitherenzymehasbeenpurified conditionsfortranscriptionalanalysis,amuchclearerpicture initsnativeformorrecombinantlyproduced.Identificationof emergedconcerningtheglobalregulatorychangesinM.sedula candidatesforbothoftheseenzymeshasbeenmadebasedon asitscellularmetabolismswitchesfromautotrophytohetero- genomeannotationandtranscriptomicanalysisofautotrophic trophy. This strategy produced new leads for the genes and growthcomparedwithheterotrophy(8,9).Althoughneitherof correspondingenzymesresponsibleforthe4HB-CoAligation the candidate genes for these enzymes has so far been con- step.Theenzymeswererecombinantlyproducedandshownto firmedbiochemically,theiridentityisnotindisputebecauseof catalyzetheligationofCoAto4HB. stronghomologytoknownversionsinlessthermophilicorgan- EXPERIMENTALPROCEDURES isms. The corresponding gene products in M. sedula are Msed_1321forthe4HB-CoAdehydrataseandMsed_0656for Growth of M. sedula in a Gas-intensive Bioreactor—M. theacetoacetyl-CoA(cid:1)-ketothiolase. sedula(DSMZ5348)wasgrownaerobicallyat70°Cinashak- The identity of the crotonyl-CoA hydratase and the (S)-3- ingoilbath(90rpm)underautotrophicorheterotrophiccon- hydroxybutyryl-CoA dehydrogenase was recently confirmed ditionsonDSMZmedium88atpH2.Heterotrophicallygrown whenitwasdiscoveredthatbothreactionswerecatalyzedbya cellsweresupplementedwith0.1%tryptone.Cellgrowthwas singlebifunctionalfusionprotein(9).Inthesamework,Ramos- scaledupfrom300mlinsealed1-literbottles(seeRef.8)to2 Vera et al. (9) tested three different candidates for the 4HB- litersinastirredbench-topglassfermentor(Applikon),alsoon CoAsynthetase,buttheyallfailedtoshowactivityon4HB.In DSMZmedium88,pH2,at70°C,andagitatedat250rpm.Two fact,theprimarycandidatesuggestedbytheautotrophictran- separately regulated gas feeds were used such that flow rates scriptomeanalysis(Msed_1422)showednoenzymaticactivity wereheldconstantforallconditionsat1ml/minforthehydro- on short chain linear unsubstituted or hydroxy acids, specifi- gen/CO gasmixtures(compositionvaried)and100ml/minfor 2 cally acetate, propionate, 3HP, 3-hydroxybutyrate, 4HB, and air (composition: 78% N , 21% O , 0.03% CO ). For the 2 2 2 crotonate. Two other candidates were selected, based on autotrophic carbon-rich (ACR) condition, the gas feed con- homology to 4HB-CoA synthetase from Thermoproteus neu- tained H (80%) and CO (20%); for the autotrophic carbon- 2 2 trophilus (Tneu_0420) and 3HP-CoA synthetase from M. limited(ACL)condition,thefeedwaschangedtoH (80%)and 2 sedula: Msed_1353 and Msed_1291 were recombinantly pro- N (20%);fortheheterotrophiccondition(HTR),themedium 2 ducedandtestedforligaseactivity.Msed_1353wasactiveon wassupplementedwith0.1%tryptone,andthegasfeedcompo- propionate and acetate, but not on 4HB. Furthermore, sitionwasN (80%)andCO (20%).Tandemfermentorswere 2 2 FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4013 CO -H AutotrophyinMetallosphaerasedula 2 2 FIGURE1.Enzymesandsubstratesinfinalreactionsof3HP/4HBcycleinM.sedula.Enzymesareasfollows:10,4-hydroxybutyrate-CoAsynthetase;11, 4-hydroxybutyryl-CoAdehydratase;12,crotonyl-CoAhydratase/(S)-3-hydroxybutyryl-CoAdehydrogenase;and13,acetoacetyl-CoA(cid:1)-ketothiolase. FIGURE2.Bioreactorschematicforgas-intensivefermentationofM.sedula.Tandem2Lbioreactors,startedatthesametimewiththesameseedinoculum, wereusedtogrowM.sedulainsideofachemicalfumehood.AsolenoidvalveontheH /CO tankprovidedpassive“fail-safe”operationbycuttingofftheflow 2 2 offlammablegasintheeventoffoodfailure.Gascompositionsforthethreedifferentconditionsareshownbottomright.ACR,autotrophiccarbon-rich;ACL, autotrophiccarbon-limited;HTR,heterotrophic. runsimultaneouslywiththesameinoculumtogeneratebiolog- photometricandoneusinghighperformanceliquidchroma- ical repeats (Fig. 2). Cells were harvested at mid-exponential tography(HPLC).Adiscontinuousassaywasusedtomeasure phasebyrapidcoolingwithdryiceandethanolandthencen- substrate-dependentdisappearanceofCoAat75°C.Thereac- trifugedat6000(cid:2)gfor15minat4°C. tionmixture(600(cid:4)l)contained100mMMOPS/KOH,pH7.9,5 M. sedula Oligonucleotide Microarray Transcriptional Re- mMMgCl ,2.5mMATP,0.15mMCoA,andpurifiedenzyme.At 2 sponse Analysis—A spotted whole-genome oligonucleotide eachtimepoint,80(cid:4)lofreactionmixturewasaddedto80(cid:4)lof microarray,basedon2256protein-codingopenreadingframes cold5,5(cid:4)-dithiobis-(2-nitrobenzoicacid).Atimepoint(0min) (ORFs),wasused,asdescribedpreviously(15).TotalRNAwas wastakenbeforeheating.Thereactionmixturewasincubated extracted and purified (RNeasy; Qiagen), reverse-transcribed for2minat75°C,followedbyadditionofsubstrate.Additional (Superscript III; Invitrogen), re-purified, labeled with either timepointsweretakenat30,60,90,120,and180safteraddi- Cy3orCy5dye(GEHealthcare),andhybridizedtothemicroar- tionofsubstrate.Absorbancewasmeasuredat412nmtodeter- rayslides(Corning).SlideswerescannedonaGenePix4000B mine free CoA concentration, based on the concentration of MicroarrayScanner(MolecularDevices,Sunnyvale,CA),and 2-nitro-5-thiobenzoate dianion ((cid:5) (cid:1) 14,150 M(cid:5)1 cm(cid:5)1) (1, 412 rawintensitieswerequantitatedusingGenePixProversion6.0. 14).Enzymeswerekineticallycharacterizedbyvaryingthecon- Normalizationofdataandstatisticalanalysiswereperformed centration of the acyl-CoA substrate from 0.05 to 12 mM, usingJMPGenomics5(SAS,Cary,NC).Ingeneral,significant although the other substrate concentrations were held con- differentialtranscriptionwasdefinedtobearelativechangeat stant.Measurementsforspecificactivityweretakenundersat- or above 2 (where a log value of (cid:3)1 equals a 2-fold change) urating substrate concentrations (10 mM). Formation of the 2 withsignificancevaluesatorabovetheBonferronicorrection; CoAesterwasalsoconfirmedusingHPLC(Waters).Thereac- forthesedata,thiswas5.4(equivalenttoapvalueof4.0(cid:2)106). tionmixture(0.15ml)contained100mMpotassiumphosphate, MicroarraydataareavailablethroughtheNCBIGeneExpres- pH 7.9, 10 mM MgCl , 2 mM ATP, 0.5 mM CoA, 10 mM sub- 2 sionOmnibus(GEO)underaccessionnumberGSE39944. strate,andpurifiedenzyme.Thereactionwasincubatedfor3 Enzyme Assays for 4-Hydroxybutyrate-CoA Synthetase— minat75°C,quenchedwith15(cid:4)lof1MHCl,filteredwitha Twoassayswereusedtomeasureligaseactivity,onespectro- 10-kDaspincolumn(AmiconYM-10)toremovetheprotein, 4014 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 and loaded onto a reversed-phase C18 silica-based column KOH(pH7.9)andeitherstoredat4°Cormixedwithglycerol (ShodexC18–4E,4.6(cid:2)250mm).Themobilephasewas50mM to20%andstoredat(cid:5)20°C. sodiumphosphatebuffer,pH6.7,with2%methanol. Site-directed Mutagenesis of Msed_1353—Msed_1353 was Heterologous Expression of M. sedula Genes in E.coli—M. mutated with the GENEART(cid:1) site-directed mutagenesis sys- sedula genes encoding acyl-CoA synthetases were amplified tem (Invitrogen), using AccuPrimeTM Pfx polymerase. from genomic DNA using primers synthesized by Integrated MutagenesisprimersweredesignedtochangeTrp424toglycine DNA Technologies (Coralville, IA). Msed_0394 and Msed_ (primer 1, 5(cid:4)-CCCTTTGGTAGCACTTGGGGAATGACT- 0406 were ligated into pET46-Ek/LIC, although Msed_1353 GAAACTGG-3(cid:4);primer2,reversecomplementofprimer1). wasligatedintopET21busingNdeIandXhoIrestrictionssites. Plasmids with Msed_1353-G424 were cloned into NovaBlue All constructs were designed to express with an N-terminal GigaSinglesE.colicompetentcellsandselectedbygrowthon His tag. Plasmids containing gene inserts were cloned into LB-agarsupplementedwithampicillin(100(cid:4)g/ml).Sequences 6 NovaBlue GigaSingles E.coli competent cells and selected by wereconfirmedbyEtonBiosciencesInc.(Durham,NC). growthonLB-agarsupplementedwithampicillin(100(cid:4)g/ml). Structural Modeling of Acyl-CoA Synthetases—Three-di- PlasmidDNAwasextractedusingaQIAprepspinminiprepkit. mensionalstructuralmodelsforM.sedulaacyl-CoAsyntheta- ses were made using the iterative threading assembly refine- SequenceswereconfirmedbyEtonBiosciences,Inc.(Durham, ment (I-TASSER) on-line server (2, 3, 16). The server first NC). For protein expression, the plasmids were transformed generates three-dimensional atomic models from multiple into Escherichia coli Rosetta 2 (DE3) cells and selected by growthonLB-agar,supplementedwithampicillin(100(cid:4)g/ml) threading alignments and iterative structural assembly and andchloramphenicol(50(cid:4)g/ml).Cellsharboringtherecombi- then infers function by structural matching to other known nantplasmidwereinducedwithisopropyl1-thio-(cid:1)-D-galacto- proteins.AllstructuresweregeneratedusingtheProteinData- baseentryforSalmonellaentericaACS(STM4275,1PG4)asa pyranoside (final concentration 0.1 mM) atA 0.4–0.6 and 600 threading template for additional restraint specification. culturedfor3hbeforeharvest. Amino acid sequence alignments were generated using the PurificationofRecombinantProteins—Cellswereharvested by centrifugation at 6000 (cid:2) g for 15 min at 4°C. Cell yields UCSFChimerapackagebysuperpositionofI-TASSERthree- dimensional structural models with the Protein Data Bank ranged from 1.6 to 3.8 g of cells/liter of LB medium (wet structureforS.entericaACS. weight). Cell pellets were resuspended in lysis buffer (50 mM Materials—Plasmidvectorsandstrainswereobtainedfrom sodiumphosphate,100mMNaCl,0.1%NonidetP-40,pH8.0) Novagen(SanDiego)andStratagene(LaJolla,CA).Chemicals, containing DNase and lysozyme at final concentrations of 10 devices, and reagents were obtained from Fisher, ACROS and 100 (cid:4)g/ml, respectively. Cells were lysed with a French Organics (Geel, Belgium), Sigma, New England Biolabs (Ips- press(twopassesat18,000p.s.i.),andthelysatewascentrifuged wich, MA), Qiagen (Valencia, CA), Millipore (Billerica, MA), at22,000(cid:2)gfor15minat4°Ctoremovedinsolublematerial. and Invitrogen. Gases were purchased from Airgas National Soluble,cell-freeextractwasheatedto65°Cfor20mintopre- Welders (Charlotte, NC). Protein purification columns were cipitatemesophilicproteins.Streptomycinsulfate(1%w/v)was obtained from GE Healthcare. The Bradford assay reagent addedtoprecipitatenucleicacids,followedbya1-hincubation wasobtainedfromBio-Rad.Site-directedmutagenesiskitwas at4°C.Afinalcentrifugationwasperformedat22,000(cid:2)gfor obtainedfromInvitrogen. 15 min at 4°C to collect the soluble, heat-treated cell-free extract,whichwassterile-filtered(0.22(cid:4)m)andpurifiedusing RESULTS a 5 ml HisTrapTM nickel column (GE Healthcare). Proteins M. sedula Autotrophic Growth Is Hydrogen-limited—To wereboundtotheHisTrapTMcolumnusingbindingbuffer(50 exploretheoptimalgrowthconditionsforH -CO autotrophy 2 2 mMsodiumphosphate,500mMNaCl,20mMimidazole,pH7.4) inM.sedula,afermentationsystemwasdesignedtoallowcon- andelutedusingelutionbuffer(50mMsodiumphosphate,500 trolled definition of the gas feed. Previous autotrophic work mM NaCl, 300 mM imidazole, pH 7.4). SDS-PAGE was then withM.sedulawasdoneinbatchculturesinanorbitalshaking performedontheimmobilizedmetalaffinitychromatography bath at 70°C (2, 4–6, 8). In that case, gas-fed cultures were fractions to qualitatively determine the purity of the protein grown by replacing the air in a sealed volume with a gaseous beforefurtherpurification.Chromatographyfractionscontain- mixtureofaknowncomposition.MasstransferofH ,CO ,and 2 2 ingtheproteinwereconcentrated,exchangedintophosphate O intotheculturemediumwaslimitedtodiffusionacrossthe 2 buffer (50 mM potassium phosphate, 150 mM NaCl, pH 7.0) vapor-liquid interface. Gas limitation presumably affected using an Amicon YM10 (Millipore) centrifugal filter mem- thesecultures,andledtosuboptimalgrowth,asevidencedby brane, and centrifuged at 4000 (cid:2) g and 4°C. To quantify the theslowdoublingtimethatresultedforM.sedulaunderthese amountofprotein,aBradfordassaywasperformedonthecon- conditions(t (cid:1)11–13h). d centratedimmobilizedmetalaffinitychromatographyfractions TogrowM.sedulaautotrophicallywithmoreoptimaldeliv- usingknownserialdilutionsofbovineserumalbumin(BSA)by eryofgaseoussubstratetotheliquidmedium,asemi-continu- takingabsorbancereadingsat595nm.Proteinwasfurtherpuri- ousfermentationsystemwasdevelopedusinga3Lbioreactor. fiedusingaSuperdex20010/300GL(GEHealthcare)gelfiltra- The system was modified to have two separate gas feeds that tion column. The proteins were eluted from the gel filtration sparged directly into the media (sparging stone, 2-(cid:4)m pore columnusingelutionbuffer(50mMpotassiumphosphate,150 size).Microbubblespargingstoneswereusedtopromotedis- mMNaCl,pH7.0).Proteinsweredialyzedinto100mMMOPS- solutionofsparinglysolublegases,inparticularH .Thebiore- 2 FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4015 CO -H AutotrophyinMetallosphaerasedula 2 2 TABLE2 EnhancedtranscriptionresponseforM.sedulaautotrophy ACLversusACR ACLversusHTR ACRversusHTR AutoversusHetero(8) No.ofgenesup-regulated(2-foldormore) 52 467 433 229 No.ofgenesdown-regulated(2-foldormore) 124 517 464 252 actorandconsoleweresituatedinsideamodifiedfumehood, tion proteins in both the cytosolic hydrogenase operon withanairflowmonitoringsysteminplacetodetecthoodfail- (Msed_0921-0933) and the membrane-bound hydrogenase ure.Tandemfermentorswereseededwiththesameinoculum operon(Msed_0947–0950)werebothhighlyup-regulatedon andrunsimultaneouslytoprovideabiologicalrepeat. ACL-HTR,from3-to47-foldhigher. GrowthofM.sedulainanaerobic,autotrophicfermentation New Candidates for 4-Hydroxybutyrate-CoA Synthetase systemwasexpectedtobeH -andnotO -limited.Belowsat- Identified from Refined Transcriptomic Data—The refined 2 2 urating conditions, growth rates varied according to the transcriptomic data provided new insights into the putative amountofH fedtotheculture.ForhighH supplyrates(i.e.30 candidates for 4-hydroxybutyrate-CoA synthetase (Fig. 3). 2 2 ml/min), the growth rates were comparable with the fastest Basedonbioinformaticanalysis,thereareninecandidategenes growth rates previously observed under heterotrophy (t (cid:1) encoding acyl-CoA synthetases (not including Msed_1456, d 4.8h);concomitantly,theculturereachedacelldensityof2(cid:2) whichwasconfirmedasa3HP-CoAsynthetase).Thehighup- 109 cells/ml, the highest observed under autotrophic condi- regulationofMsed_1422underautotrophy(13-foldincrease) tions.AtanH supplyrateof15ml/min,thegrowthrateslowed thatwasobservedinthisworkisconsistentwithprevioustran- 2 (t (cid:1)6h),althoughthefinaldensitywascomparablewiththe scriptomic studies. On the basis of that initial study, d 30ml/mincase(1.5(cid:2)109cells/ml).A30-foldreductioninH Msed_1422waschosenforrecombinantexpressionandtesting 2 flowrates(1ml/min)causedthegrowthratetodecreasebyhalf (2, 9, 9, 10). In the same study, recombinant forms of (t (cid:1)9.7h)andthecellstoenterstationaryphaseat8(cid:2)108 Msed_1291 and Msed_1353 were also produced, which were d cells/ml. chosenbasedonhomologytoaconfirmed4HB-CoAsynthe- AsimilartrendemergedinresponsetolimitinglevelsofCO . tasefromT.neutrophilus(Tneu_0420).Noneoftheseenzymes 2 WhenCO wassupplementedinthegasfeed(referredtohere showedactivityon4HB.Msed_1422andMsed_1291showed 2 as“rich”autotrophy),thegrowthratewasfasterthanobserved noactivityonacetate,propionate,3HP,3HB,4HB,orcroton- forcellsgrownwithairastheonlysourceofCO (t (cid:1)6.8h ate,andMsed_1353hadactivityonlyonacetateandpropionate 2 d versus 9.4 h, respectively). The growth rate for heterotrophi- butnot4HB.Thus,itappearsthatMsed_1353isapromiscuous cally grown cells (t (cid:1) 6.7 h) was comparable with the rich acetate/propionatesynthetase,althoughthesubstratespecific- d autotrophycondition.Thissuggeststhat,undertherichautot- itiesofMsed_1422andMsed_1291remainunknown. rophycondition,thecellswerenotlimitedbyanyoneparticular Amongtheotherpotentialcandidatesthatwereannotatedas gaseoussubstrateandweredoublingatorneartheirmaximal acetate-CoAsynthetasesormediumchainfattyacid-CoAsyn- rate.Thedecreaseingrowthrateforthecarbon-limitedautot- thetases(Fig.3),mostshowednotranscriptionalresponse,had rophyarisesfromthelimitingamountsofCO availableinthe average or low levels of transcription, or were clearly down- 2 medium. regulatedunderautotrophy.Thenewtranscriptomicdatawere OptimizedH -CO AutotrophyConditionsLeadtoEnhanced consistentwiththeexpressionoftwopreviouslyunexamined 2 2 TranscriptomicResponse—Theoptimizedautotrophicgrowth candidates, Msed_0406 and Msed_0394, that are annotated conditionsenhancedtheglobaltranscriptionalresponsecom- asanacetyl-CoAsynthetase(ACS)andAMP-dependentsyn- paredwithpreviouswork(4,7,8).Ofthe2293protein-coding thetase and ligase, respectively. Although Msed_0406 and genesinthe2.2-kbM.sedulagenome,nearlyhalf(984genes) Msed_0394werebothconstitutivelytranscribed,withlessthan exhibitedchangesintranscription(eitherup-ordown-regula- a2-foldchangeintranscriptionlevelsbetweentheconditions tion)of2-foldorgreater,whencomparingheterotrophy(HTR) tested,bothofthemwereinthetop25%ofthetranscriptome. withtheACLcondition(seeTable2).Thenumberofgenesthat This served as the basis to investigate these two genes by were differentially transcribed was twice as high as observed recombinantexpressionandactivityassays,giventhatnoother previously (3, 8, 8), which could be attributed to the refined promisingcandidatesforthisstephademerged. conditions for autotrophic growth. Also, in the experiments KineticAnalysesofMsed_0394andMsed_0406—Recombi- reportedhere,itshouldbementionedthattheimprovedsensi- nant forms of Msed_0394 and Msed_0406 were produced in tivity of new equipment used for scanning microarray slides E.coli and purified to electrophoretic homogeneity. For both improvedtheresolutionanddynamicresponse. enzymes,theproductionof4HB-CoAfrom4HBandCoAwas Overall, the global transcriptional changes were extensive. confirmed using reversed-phase HPLC. Msed_0394 and Transcripts for the characteristic enzymes of the 3HP/4HB Msed_0406wereactiveonarangeofsmallorganicacids(see pathway were significantly up-regulated on ACL-HTR. For Table3forasummaryofkineticdata).Fig.4showstherelative example,thegenesencoding(cid:2)-and(cid:1)-subunitsofacetyl-CoA/ specific activities on different substrates for Msed_0394 and propionyl-CoAcarboxylase(Msed_0147–0148)wereup-regu- Msed_0406,alongwithreporteddatafor3HP-CoAsynthetase lated18-and29-fold,respectively,whereasthe4-hydroxybu- (Msed_1456)forcomparison(4,5,10).Notethatthecalculated tyryl-CoA dehydratase gene (Msed_1321) was up-regulated molecularmassforthesethreeenzymesvariesslightly,62kDa 27-fold.Hydrogenasesandhydrogenaseassemblyandmatura- for Msed_0394, 64 kDa for Msed_0406, and 74 kDa for 4016 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 FIGURE3.4-Hydroxybutyrate-CoAsynthetasecandidatesinM.sedula.NormalizedtranscriptionlevelsforM.sedulagenesannotatedassmallorganicacid orfatty-acidligasesandsynthetases.Hightranscriptionlevelsareshowninredandlowtranscriptioningreen;thecorrespondingnumbersrepresentleast squaremeanvaluesofnormalizedlog2-transformedtranscriptionlevelsrelativetotheoverallaveragetranscriptionlevelof0(black).Conditionsshownareas follows:2010,Heterotrophic,Autotrophic,Mixotrophic;2012,ACL,ACR,HTR.LeastsquaremeanvaluesareshownhereforACLconditionforthesegenes,along withthefoldchangeofgenesunderACLrelativetoHTRandtheirstatisticalsignificance.AllothermicroarraydatacanbefoundintheGEOdepositGSE39944. Msed_1456;thesespecificactivitiesherearemeanttohighlight TABLE3 substratepreferencepatternsforeachenzyme. EnzymekineticdataforCoAsynthetasesfromM.sedula ThespecificactivitiesforMsed_0394showlittledifferencein Enzyme Substrate K V k k /K m max cat cat m themaximumreactionrateundersaturatingsubstrateconcen- (cid:4)M (cid:4)mol s(cid:5)1 s(cid:5)1 trationsforthedifferentsubstrates.Thehighestreactionrate mmign(cid:5)(cid:5)11 M(cid:5)1 observedwas(cid:6)0.2(cid:4)molmin(cid:5)1mg(cid:5)1forpropionate,4HB,and Msed_0394 Acetate 680 0.13 0.14 200 butyrate.However,ifthesubstratespecificitiesaretakeninto Propionate 540 0.2 0.21 390 3HP 1880 0.07 0.08 40 account,adifferentpictureemerges.Acomparisonofthecat- 4HB 1540 0.22 0.24 160 alytic specificity constants (k /K ) for each substrate tested Butyrate 60 0.21 0.23 3700 cat m Valerate 120 0.2 0.22 2000 withMsed_0394(Table3)showsthatthehighestvalueisfor Msed_0406 Acetate 2030 6.0 6.4 3200 butyrate(3700M(cid:5)1s(cid:5)1),followedbyvalerate(2000M(cid:5)1s(cid:5)1), Propionate 380 15.1 16.2 43000 propionate (390 M(cid:5)1 s(cid:5)1), acetate (200 M(cid:5)1 s(cid:5)1), and finally 3HP 810 2.4 2.6 3200 4HB (160 M(cid:5)1 s(cid:5)1). There is a clear preference for unsubsti- 4BHutByrate 2302000 17..79 18..84 92160000 tutedstraightchainorganicacidswithachainlengthoffouror Valerate 740 5.2 5.6 7500 five carbons. No activity was detected with the six-carbon Msed_1353-G424 4HB 1130 2.3 2.5 2180 hexanoicacid. ThespecificactivitiesforMsed_0406undersaturatingsub- limitsthesizeofsubstratethatcanbeaccommodatedwithin strateconcentrationsshowthehighestreactionratesforpro- theactivesite.Totesttheimportanceofthisresidueindeter- pionate(15.1(cid:4)molmin(cid:5)1mg(cid:5)1).Thecatalyticspecificitycon- miningsubstratespecificity,Trp424inMsed_1353wasmutated stantprofileforMsed_0406showsthatthisenzymeworksbest toaglycinetoproduceMsed_1353-G424.Thesinglesubstitu- onpropionate(43,000M(cid:5)1s(cid:5)1)andthenbutyrate(26,000M(cid:5)1 tionmutant(W424G)waspredictedtocontainalargerinterior s(cid:5)1),valerate(7500M(cid:5)1s(cid:5)1),acetate/3HP(3200M(cid:5)1s(cid:5)1),and binding pocket for the hydrophobic end of the substrate. 4HB(910M(cid:5)1s(cid:5)1).ThehighV valuesforacetate/propio- Accordingly, it showed a dramatic change in specificity (Fig. max nate,combinedwiththelowK valueforpropionate,suggest 5B). Activity for the mutant on acetate and propionate m that Msed_0406 is also a promiscuous acetate/propionate decreasedby60%,from8.9to3.6and8.8to3.5(cid:4)molmin(cid:5)1 ligase,althoughonethatalsoshowsactivityon4HB. mg(cid:5)1, respectively. However, Msed_1353-G424 also showed Site-directed Mutagenesis of Msed_1353—Msed_1353, a activityonC4-C8substrates,including4HB(1.8(cid:4)molmin(cid:5)1 highlyconservedgeneamongtheSulfolobales,waspreviously mg(cid:5)1). reportedtohaveactivityonlyonacetateandpropionate(4,5,5, Tocomparetheactivityofthesethreeenzymeson4HB,the 9,11,12,15).Initialeffortstoidentifytheunknown4HB-CoA Michaelis-MentencurvesareshowninFig.6.Fromthisfigure, synthetaseinM.sedulainvolvedpurificationofnativeenzyme itisclearthatthereisalargedifferenceincatalyticrateforthe activityandanalysisofmultipleSDS-polyacrylamidegelbands threeenzymes,andthisdifferenceholdsovertheentirerangeof using mass spectrometry. Msed_1353 was detected in these substrate concentration, including when [S]/K (cid:7)(cid:7)1. There- m experiments, and based on the very large up-regulation of fore, although it is possible that both Msed_0394 and Msed_1353underautotrophy,itwasrecombinantlyproduced Msed_0406 are catalytically active on 4HB in vivo, it is likely toconfirmitsactivity.Ourresultsconfirmedpreviousreports; that Msed_0406 is more physiologically relevant in terms of undersaturatingsubstrateconcentrations,Msed_1353hadthe catalyticperformance.Additionally,thesinglepointmutation highestactivityonacetate(8.9(cid:4)molmin(cid:5)1mg(cid:5)1,100%)and ofMsed_1353toMsed_1353-Gly424producesanenzymethat propionate (99%) but also on 3HP (8%) and butyrate (16%). is active on 4HB at even higher rates for all substrate However,noactivitywasfoundon4HBorlongerorganicacid concentrations. substrates(seeFig.5A). DISCUSSION Structural modeling of the binding pocket of Msed_1353 revealedaconservedtryptophanresidue,similartothatseenin Thesemi-continuousgas-intensivebioreactorsystemdevel- acetate-CoAsynthetase(ACS)fromS.enterica(4,14,17).This oped here was successfully used to refine the transcriptional tryptophanformsthebottomsurfaceofthebindingpocketand responseofautotrophy-relatedgenesinM.sedula.Thissystem FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4017 CO -H AutotrophyinMetallosphaerasedula 2 2 FIGURE4.Specificactivityofacyl-CoAligasesintheM.sedulacarbonfixationpathwayonvarioussubstrates.Specificactivitiesofthenewcandidatesfor 4-hydroxybutyrate-CoA ligase on a variety of substrates compared with reported data for Msed_1456, a 3-hydroxypropionate-CoA ligase, as follows: Msed_0394(A),Msed_0406(B),andMsed_1456(C).Msed_1456showed(cid:8)1%activityon3-hydroxybutyrate,butitwasnottestedon4-hydroxybutyrate. Substrateabbreviations:ACE,acetate;PRO,propionate;3HP,3-hydroxypropionate;4HB,4-hydroxybutyrate;BUT,butyrate;VAL,valerate. FIGURE5.SpecificactivityofnativeMsed_1353andMsed_1353-W424Gmutantonvarioussubstrates.ComparisonofactivityofMsed_1353(A)and Msed_1353-G424(B)onavarietyofshortchainlinearorganicacids.Substrateabbreviations:ACE,acetate;PRO,propionate;3HP,3-hydroxypropionate;4HB, 4-hydroxybutyrate;BUT,butyrate;VAL,valerate;HEX,hexanoate;OCT,octanoate. providedbetterdeliveryofgaseswithlowsolubilityandallowed limitsgrowth.Initsnaturalenvironment,thepicturemaybe more precise regulation of gas composition than could be somewhatdifferent.Hydrogenmeasurementsfromthe(largely achievedinserumbottles.At70°Cand1atm,thesolubilityof anoxic)acidichotspringsatYellowstoneindicatethatgaseous oxygen and hydrogen are comparable (0.6 mM), although the hydrogenmaybequiteabundant,withconcentrationsranging solubilityofcarbondioxideisabout20-foldhigher(12mM)(8, between10and300nM(8,19).Thesourceofthishydrogengas 9,18).Fortheseexperiments,thelowsolubilityofH wasoffset isprimarilygeochemical;althoughthemechanismisnotwell 2 bytheuseofmicrobubblersparingstones(2(cid:4)mporesize)to understood, it probably arises from subsurface interaction of increasethegasphasesurfaceareaandincreasedeliveryofH waterwithFe[II](15,20).Formostsubsurfaceenvironments, 2 tothemedium. oxygenisprobablylimiting(21).However,M.sedulawasiso- Stoichiometrically, at least four H molecules are required lated from aerobic (surface) samples of a hot water pond at 2 for every carbon atom fixed. Assuming that ATP generation PisciarelliSolfatara,Naples,Italy(22).Thus,bothhydrogenand requires the oxidation of two hydrogen molecules, then each oxygenmaybeavailableinabundanceforautotrophicgrowth. turnofthecyclerequires12moleculesofhydrogenforevery TheregulationofgrowthmodesinM.sedulainvolvesmas- twomoleculesofcarbondioxide.Assuch,thelimitinggrowth sive transcriptional changes between heterotrophic and factorforM.sedulainabioreactorislikelyacquisitionofthe autotrophicgrowth.Nearlyhalfthegenome(984genesoutof electrondonor,incontrasttomostaerobicmicrobialfermen- 2293) responded with transcriptional changes of 2-fold or tationswhereacquisitionofthefinalelectronacceptor,oxygen, greaterwhencomparingheterotrophytocarbondioxide-lim- 4018 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 ActivityofbothpurifiedMsed_0394andMsed_0406on4HB waswellabovethereportedactivitymeasuredinautotrophic cell extract (0.3 (cid:4)mol min(cid:5)1 mg(cid:5)1) (4). It appears that Msed_0406 is primarily a promiscuous propionate-CoA syn- thetase. Msed_0394, by contrast, has nearly equal levels of activityonacetate,propionate,and4-HB.Althoughtheoverall activity for Msed_0394 is lower by comparison, when taking into account the different substrate specificities, this enzyme shows a preference for C5-C6 linear unsubstituted organic acids. By comparison, the homologous 4-HB-CoA synthetase fromT.neutrophilus(Tneu_0420),ananaerobicarchaeonthat containstheDC/4HBcarbonfixationcycle,wasrecombinantly producedandshowntohavemaximalactivityon4HB,followed bycrotonate,acetate,3HP,and3HB(9).ThereportedK value m for Tneu_0420 was about 3-fold lower than that found for Msed_0406(700(cid:4)Mversus2000(cid:4)M),withcomparableactivity (1.6versus1.8(cid:4)molmin(cid:5)1mg(cid:5)1),whichsuggeststhatthecat- alyticactivitieson4HBarealsocomparable. FIGURE 6. Reaction rate profile for acyl-CoA ligases. Michaelis-Menten reactionratecurvesshownwithexperimentaldataforMsed_0394(squares), ItislikelythatMsed_0406ismoreeffectiveatcatalyzingthe Msed_0406(circles),andMsed_1353-G424(triangles)overarangeofsub- ligationofCoAto4HBinvivothanMsed_0394.Perhapsthese strateconcentrations. enzymeshaveevolvedfromhighlyspecificacetate/propionate synthetasestobesufficientforcatalyzingthenecessaryreaction itedautotrophy.Notmuchisknownabouttheregulationstrat- on4HBforthe3HP/4HBfixationcycle.Itisnotclearwhytwo egies employed by archaea to control gene transcription, but synthetases would be required, or whether both of them are between different forms of chemolithoautotrophy (reduced necessaryforautotrophicgrowth.However,theyaresofarthe metals,H ,etc.)andheterotrophy,M.sedulacanutilizeabroad onlyligasesinM.sedulathathavebeenshowntoactivate4HB 2 rangeofmetabolicsubstratesforgrowth. withCoA. Themissingstepinthe3HP/4HBpathwayhasbeentheacyl- Genes with high homology to Msed_0394 and Msed_0406 CoAsynthetasethatutilizes4HB.Previousattemptstoidentify existinthegenomeofthecloselyrelatedM.cuprina(67and thegenethatencodesthisenzymewereunsuccessful,andthe 73% amino acid identity, respectively), but it is less clear candidateenzymeshadnoactivityon4HB(9).Inthiswork,two whetherhomologsexistinthegenomesofotherSulfolobales, previouslyunexaminedsynthetasesfromM.sedula,consistent suchastheSulfolobusandAcidianusspp.Membersoftheacyl- with the new transcriptomic evidence, were recombinantly adenylate-forming enzyme family may share little identity or producedandcharacterized.BothMsed_0394andMsed_0406 similarityinaminoacidsequenceapartfromafewhighlycon- showed activity on 4HB as well as other small organic acids. servedcoremotifs(27).TherearehomologsofMsed_0406in Basedonthelackofothersynthetasecandidatessuggestedby otherspeciesofSulfolobalesthathave30–35%identityandone thetranscriptomicanalysisandpreviousbiochemicalevidence homologinS.acidocaldariuswith61%identity.Buttheeffort rulingoutMsed_1422andMsed_1291,weconcludethatoneor tofindtheM.sedula4HB-CoAsynthetasehasshownthatsub- bothoftheseenzymesarenecessaryforautotrophicgrowthin stratespecificitycannotbeinferredfromaminoacidsequence M.sedula. homologyalone.However,thelowhomologyoftheM.sedula Acetyl-CoAsynthetasesbelongtotheclassIsuperfamilyof 4HB-CoAsynthetasegenedoesstandoutamongalltheother adenylate-forming enzymes that includes acyl- and aryl-CoA genesinthe3HP/4HBcycle,whichhavedistincthomologsin synthetases,theadenylationdomainsofnonribosomalpeptide Sulfolobusspp.thatrangefrom50to80%identity. synthetases, and firefly luciferase (23). These enzymes use a Because4HBisametaboliteuniquetobutyratemetabolism two-stepmechanisminwhichfirstanacyl-AMPintermediate (28),including(cid:3)-aminobutyratefermentation(29)andpolyhy- isformed(withreleaseofpyrophosphate)followedbydisplace- droxyalkanoateproduction(30),itisunlikelytohaveanyother mentofAMPbyCoA(24).Mostacetyl-CoAsynthetaseshavea role in crenarchaeal metabolism outside of carbon fixation. limitedsubstraterange.Archaealacyl-CoAsynthetases,which Recent work with metabolic flux analysis has shown there is formaphylogeneticclusterdistinctfromotherbacterialsub- anotherexitrouteforcarbonfluxfromthecyclethroughsuc- groups (25), have been reported to exhibit broader substrate cinyl-CoAtosuccinate(10).Inthisstudytheauthorsestimate preferences. The acetyl-CoA synthetase from Pyrobaculum thattwo-thirdsofthecyclecarbonfluxpassestosuccinatevia aerophilum can work on acetate, propionate, butyrate, and succinyl-CoAorsuccinicsemialdehyde,althoughone-thirdof isobutyrate(26);anotheracetyl-CoAsynthetasefromArchaeo- thecyclecarbonfluxpassesthroughthelatterpartofthecycle globusfulgiduswasactiveonacetate,propionate,andbutyrate (via4HB)toregenerateacetyl-CoA.Ofcourse,thisfluxdistri- (27). Both Msed_0394 and Msed_0406 were found to have bution may be highly dependent on growth conditions and activityonabroadrangeofsmallorganicacidsubstratesofup could shift more to the 4HB branch depending on substrate tofivecarbonsinlength. availability. FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4019 CO -H AutotrophyinMetallosphaerasedula 2 2 FIGURE7.S.entericaACSandMsed_0394activesitecomparison.ACSisshowningoldandMsed_0394incyan.LigandfromACSstructure(adenosine-5(cid:4)- propylphosphate)shownwithcoloredheteroatoms.A,sideviewofbindingpocketwithinter-atomicdistancesgivenfromphosphorusatomofpropyl- phosphatemoietytoselectatomfromaminoacidresidues.B,axialviewfrombottomofsubstratebindingpocket. ItisclearthatallmembersoftheSulfolobalesorderhavea homologfor4hbdandthereforeshouldhaveacompletesetof enzymes for carbon fixation. However, previous studies have been mixed as to which Sulfolobus spp. are capable of autotrophicgrowth.EarlyreportsonSulfolobusacidocaldarius isolates claimed that they could grow chemolithoautotrophi- callyonelementalsulfur(31,32).Subsequentreportsclaimthat neither S. solfataricus nor S. acidocaldarius can grow FIGURE 8. Sequence alignment of S. enterica acetyl-CoA synthetase autotrophically on elemental sulfur alone (33), although it is (STM4275)andM.sedulaacyl-CoAligases.Aminoacidsequencealign- unclear whether they simply lost the ability to grow chemo- mentofactivesiteresiduesinputativeacyl-CoAligasesrevealsaconserved glycine(showninred)exceptforMsed_1353,whichhasatryptophanindic- lithoautotrophicallyorwereselectedfromwhatwereoriginally ativeofacetate-propionateCoAligases.AlignmentwasgeneratedusingChi- mixed cultures (34). Recent reports have shown autotrophic merabysuperpositionofI-TASSERthree-dimensionalstructuralmodels. growthofSulfolobusmetallicusonsulfurandSulfolobustoko- daiionbothsulfurandiron(35).Theonlyothermemberofthe thereforeonlyworkonacetateandpropionate,afactthathas Sulfolobales that has been reported to grow on hydrogen is beenconfirmedbiochemically(9).Here,therewassomeactiv- Acidianusambivalens,asulfur-reducingacidophile(36).Genes ity with Msed_1353 on 3HP and butyrate but no activity on encoding for hydrogenase and maturation enzymes with 4HB. Msed_0394 and Msed_0406 both have a glycine in this homologytoM.sedulahydrogenasegenesarepresentinone position,Gly333andGly346,respectively.However,therestof strainofSulfolobusislandicus(HVE10/4),butthisispredicted thegenesannotatedasacyl-CoAsynthetasesinM.sedulaalso to be involved in anaerobic fermentation (37). Clearly, some haveaglycineinthisposition,sothisglycineresiduealoneis Sulfolobusspp.musthaveafunctionalcarbonfixationpathway, notsufficienttoindicateactivityonC3-C5unsubstitutedlinear but others seem to possess an incomplete or nonfunctional organicacids.BothMsed_1422andMsed_1291wererecombi- pathway.ItmaybethattheCoA-activatingligasethatcanoper- nantly expressed and shown to be inactive on C2-C4 linear ateon4HBisessentialforcompletecyclefunction,andlossof organicacids(9). 4HB-CoAsynthetaseactivityrendersthecarbonfixationcycle AmutantofMsed_1353withaglycineinplaceofthecon- inoperable. served tryptophan (W424G) was made by site-directed Toinvestigatetheissueofsubstratespecificity,denovostruc- mutagenesisandexpressedinE.coli(Msed_1353-Gly424).The turalpredictionsofM.sedulaacyl-CoAsynthetaseswerecom- nativeenzymewasactiveonlyonacetateandpropionate,but pared with crystal structures of other known synthetases, themutantshowedactivityon3HP,4HB,valerate,hexanoate, includingacetyl-CoAsynthetasefrombothS.enterica(17)and and even octanoate (Fig. 5). The activity was just as high on Saccharomyces cerevisiae (38) and 4-chlorobenzonate-CoA C5-C8 substrates as on acetate and propionate but lower on synthetase from Alcaligenes sp. (39). The structure for ACS 3HP and 4HB. This suggests that the polar hydroxyl group fromS.entericarevealedthattherearefourresiduesthatform destabilizestheinteractionbetweenthesubstrateandtheresi- theacetatebindingpocketasfollows:Val310,Thr311,Val386,and duesoftheenlargedbindingpocket.Asimilartrendisevident Trp414(17).Theconservedtryptophanresiduecutsthebinding withMsed_0406(Fig.4).However,Msed_0394hasnearlyequal pocketshortandprecludesactivityonlongersubstrates(Fig.7). levelsofactivityonpropionate,butyrate,and4HB,suggesting ExtensivemutagenesisofbindingpocketresiduesinyeastACS thatitcanstabilizethehydroxylgroupon4HBbetterthanthat showedthatmutationofW416Gwassufficienttolengthenthe of3HP.Similarly,Msed_1456,whichcatalyzestheligationof binding pocket to accommodate C4-C8 organic acids (40). CoA to 3HP in the 3HP/4HB pathway, has equal activity on AminoacidsequencealignmentsshowthatMsed_1353hasa propionateand3HP,andthereforeitmighthaveresiduesinthe tryptophan in the same position (Trp424) (Fig. 8) and should activesitethathelpstabilizethehydroxylgroupof3HP. 4020 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 InMsed_1456,Val386,whichmakescontactswiththe(cid:3)-car- 13. Han,Y.,Hawkins,A.S.,Adams,M.W.,andKelly,R.M.(2012)Epimerase bon of the propyl moiety in the S. enterica ACS structure, is (Msed_0639)andmutase(Msed_0638,Msed_2055)convert(S)-methyl- replacedwithAsn390,whosepolaramidenitrogencouldhydro- malonyl-CoAtosuccinyl-CoAintheMetallosphaerasedula3-hydroxy- propionate/4-hydroxybutyrate cycle. Appl. Environ. Microbiol. 78, genbondwiththehydroxylgroupof3HPtostabilizesubstrate 6196–6202 binding.AsforMsed_0406,bothvalineresiduesintheacetate 14. Riddles,P.W.,Blakeley,R.L.,andZerner,B.(1983)ReassessmentofEll- binding pocket are replaced with alanine (Ala249 and Ala321) man’sreagent.MethodsEnzymol.91,49–60 andThr311isreplacedwithalysine(Lys250).InMsed_0394,all 15. Auernik,K.S.,andKelly,R.M.(2008)Identificationofcomponentsof threeoftheseresiduesarealanine(Ala240,Ala241,andAla309). electron transport chains in the extremely thermoacidophilic crenar- chaeonMetallosphaerasedulathroughironandsulfurcompoundoxida- Potentialcandidateresiduesforstabilizingthehydroxylgroup tiontranscriptomes.Appl.Environ.Microbiol.74,7723–7732 of4HBinMsed_0394includeHis341andTyr338. 16. Roy,A.,Kucukural,A.,andZhang,Y.(2010)I-TASSER.Aunifiedplat- Thisworkhelpstoclosethegapsonthemissingpieceofthe formforautomatedproteinstructureandfunctionprediction.Nat.Pro- 3HP/4HB pathway in M. sedula. It is still unclear why only toc.5,725–738 certain members of the Sulfolobales operate the 3HP-4HB 17. Gulick,A.M.,Starai,V.J.,Horswill,A.R.,Homick,K.M.,andEscalante- cycle,butthismayreflecttheenvironmentalhistoryofspecific Semerena,J.C.(2003)The1.75Åcrystalstructureofacetyl-CoAsynthe- taseboundtoadenosine-5(cid:4)-propylphosphateandcoenzymeA.Biochem- species.Furthermore,alongwithotherrecentsuccessesobtain- istry42,2866–2873 ingrecombinantversionsofdifficulttoproduceenzymesfrom 18. Wilhelm,E.,Battino,R.,andWilcock,R.J.(1977)Lowpressuresolubility the pathway (13), complete characterization of all cycle ofgasesinliquidwater.Chem.Rev.77,219–262 enzymes is close at hand. The information obtained for cycle 19. Spear,J.R.,Walker,J.J.,McCollom,T.M.,andPace,N.R.(2005)Hydro- function will be invaluable for the creation of a metabolically gen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. engineeredplatformcapableofproducingchemicalsandfuels Natl.Acad.Sci.U.S.A.102,2555–2560 20. Sleep,N.H.(2004)H-richfluidsfromserpentinization.Geochemicaland fromcarbondioxide(1). 2 bioticimplications.Proc.Natl.Acad.Sci.U.S.A.101,12818–12823 21. Gold,T.(1992)Thedeep,hotbiosphere.Proc.Natl.Acad.Sci.U.S.A.89, REFERENCES 6045–6049 1. Hawkins,A.,Han,Y.,Lian,H.,Loder,A.,Menon,A.,Iwuchukwu,I., 22. Huber,G.,andSpinnler,C.(1989)Metallosphaerasedulagen.,andsp. Keller,M.,Leuko,T.,Adams,M.W.,andKelly,R.M.(2011)Extremely nov.,representsanewgenusofaerobic,metal-mobilizing,thermoacido- thermophilic routes to microbial electrofuels. ACS Catal. 1, philicarchaebacteria.Syst.Appl.Microbiol.12,38–47 1043–1050 23. Schmelz,S.,andNaismith,J.H.(2009)Adenylate-formingenzymes.Curr. 2. Berg,I.A.(2011)Ecologicalaspectsofthedistributionofdifferentau- Opin.Struct.Biol.19,666–671 totrophic CO fixation pathways. Appl. Environ. Microbiol. 77, 24. Gulick,A.M.(2009)Conformationaldynamicsintheacyl-CoAsyntheta- 2 1925–1936 ses,adenylationdomainsofnon-ribosomalpeptidesynthetases,andfirefly 3. Berg,I.A.,Kockelkorn,D.,Ramos-Vera,W.H.,Say,R.F.,Zarzycki,J., luciferase.ACSChem.Biol.4,811–827 Hügler,M.,Alber,B.E.,andFuchs,G.(2010)Autotrophiccarbonfixation 25. Bräsen,C.,andSchönheit,P.(2005)AMP-formingacetyl-CoAsynthetase inarchaea.Nat.Rev.Microbiol.8,447–460 fromtheextremelyhalophilicarchaeonHaloarculamarismortui.Purifi- 4. Berg,I.A.,Kockelkorn,D.,Buckel,W.,andFuchs,G.(2007)A3-hydroxy- cation,identification,andexpressionoftheencodinggeneandphyloge- propionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation neticaffiliation.Extremophiles9,355–365 pathwayinarchaea.Science318,1782–1786 26. Bräsen,C.,Urbanke,C.,andSchönheit,P.(2005)AnoveloctamericAMP- 5. Alber,B.E.,Kung,J.W.,andFuchs,G.(2008)3-Hydroxypropionyl-coen- forming acetyl-CoA synthetase from the hyperthermophilic crenar- zymeAsynthetasefromMetallosphaerasedula,anenzymeinvolvedin chaeonPyrobaculumaerophilum.FEBSLett.579,477–482 autotrophicCO fixation.J.Bacteriol.190,1383–1389 27. Ingram-Smith,C.,andSmith,K.S.(2007)AMP-formingacetyl-CoAsyn- 2 6. Hügler,M.,Huber,H.,Stetter,K.O.,andFuchs,G.(2003)Autotrophic thetasesinArchaeashowunexpecteddiversityinsubstrateutilization. CO fixationpathwaysinarchaea(Crenarchaeota).Arch.Microbiol.179, Archaea2,95–107 2 160–173 28. Pryde,S.E.,Duncan,S.H.,Hold,G.L.,Stewart,C.S.,andFlint,H.J.(2002) 7. Huber,H.,Gallenberger,M.,andJahn,U.(2008)Adicarboxylate/4-hy- Themicrobiologyofbutyrateformationinthehumancolon.FEMSMi- droxybutyrateautotrophiccarbonassimilationcycleinthehyperthermo- crobiol.Lett.217,133–139 philicarchaeumIgnicoccushospitalis.Proc.Natl.Acad.Sci.U.S.A.105, 29. Gerhardt,A.,Cinkaya,I.,Linder,D.,Huisman,G.,andBuckel,W.(2000) 7851–7856 Fermentationof4-aminobutyratebyClostridiumaminobutyricum.Clon- 8. Auernik,K.S.,andKelly,R.M.(2010)Physiologicalversatilityoftheex- ingoftwogenesinvolvedintheformationanddehydrationof4-hydroxy- tremelythermoacidophilicarchaeonMetallosphaerasedulasupportedby butyryl-CoA.Arch.Microbiol.174,189–199 transcriptomicanalysisofheterotrophic,autotrophic,andmixotrophic 30. Valentin, H. E., Zwingmann, G., Schönebaum, A., and Steinbüchel, A. growth.Appl.Environ.Microbiol.76,931–935 (1995)Metabolicpathwayforbiosynthesisofpoly(3-hydroxybutyrate-co- 9. Ramos-Vera, W. H., Weiss, M., Strittmatter, E., Kockelkorn, D., and 4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. Fuchs, G. (2011) Identification of missing genes and enzymes for au- Eur.J.Biochem.227,43–60 totrophiccarbonfixationincrenarchaeota.J.Bacteriol.193,1201–1211 31. Brock,T.D.,Brock,K.M.,Belly,R.T.,andWeiss,R.L.(1972)Sulfolobus. 10. Estelmann,S.,Hügler,M.,Eisenreich,W.,Werner,K.,Berg,I.A.,Ramos- Anewgenusofsulfur-oxidizingbacterialivingatlowpHandhightem- Vera,W.H.,Say,R.F.,Kockelkorn,D.,Gad’on,N.,andFuchs,G.(2011) perature.Arch.Microbiol.84,54–68 LabelingandenzymestudiesofthecentralcarbonmetabolisminMetal- 32. Shivvers,D.W.,andBrock,T.D.(1973)Oxidationofelementalsulfurby losphaerasedula.J.Bacteriol.193,1191–1200 Sulfolobusacidocaldarius.J.Bacteriol.114,706–710 11. Hügler,M.,Krieger,R.S.,Jahn,M.,andFuchs,G.(2003)Characterization 33. Grogan,D.W.(1989)Phenotypiccharacterizationofthearchaebacterial ofacetyl-CoA/propionyl-CoAcarboxylaseinMetallosphaerasedula.Eur. genusSulfolobus.Comparisonoffivewild-typestrains.J.Bacteriol.171, J.Biochem.270,736–744 6710–6719 12. Alber,B.,Olinger,M.,Rieder,A.,Kockelkorn,D.,Jobst,B.,Hügler,M.,and 34. Kletzin, A., Urich, T., Müller, F., Bandeiras, T. M., and Gomes, C. M. Fuchs,G.(2006)Malonyl-coenzymeareductaseinthemodified3-hy- (2004)Dissimilatoryoxidationandreductionofelementalsulfurinther- droxypropionatecycleforautotrophiccarbonfixationinarchaealmetal- mophilicarchaea.J.Bioenerg.Biomembr.36,77–91 losphaeraandsulfolobusspp.J.Bacteriol.188,8551–8559 35. Bathe,S.,andNorris,P.R.(2007)Ferrousiron-andsulfur-inducedgenes FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4021

Description:
Results: Enzymes encoded in Msed_0394 and Msed_0406 each exhibit propionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.