THEJOURNALOFBIOLOGICALCHEMISTRYVOL.288,NO.6,pp.4012–4022,February8,2013 ©2013byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PublishedintheU.S.A. Role of 4-Hydroxybutyrate-CoA Synthetase in the CO 2 Fixation Cycle in Thermoacidophilic Archaea* Receivedforpublication,August24,2012,andinrevisedform,October26,2012 Published,JBCPapersinPress,December20,2012,DOI10.1074/jbc.M112.413195 AaronS.Hawkins‡1,YejunHan‡,RobertK.Bennett‡,MichaelW.W.Adams§,andRobertM.Kelly‡2 Fromthe‡DepartmentofChemicalandBiomolecularEngineering,NorthCarolinaStateUniversity,Raleigh,NorthCarolina 27695-7905andthe§DepartmentofBiochemistryandMolecularBiology,UniversityofGeorgia,Athens,Georgia30602 Background: Thermoacidophilic Sulfolobales contain a novel CO fixation pathway; all enzymes but one have been 2 accountedforinMetallosphaerasedula. Results:EnzymesencodedinMsed_0394andMsed_0406eachexhibit4-hydroxybutyrate-CoAsynthetaseactivity,consistent withtranscriptomicevidence. Conclusion:Msed_0406islikelythephysiologicallyrelevantenzymeinthecycle. Significance:AllenzymesarenowaccountedforintheCO fixationcycleofM.sedula. 2 Metallosphaera sedula is an extremely thermoacidophilic Carbondioxideischemicallystableandunreactiveandmust archaeon that grows heterotrophically on peptides and chemo- be reduced to enable its incorporation into biological mole- lithoautotrophically on hydrogen, sulfur, or reduced metals as cules. Autotrophic microorganisms are able to utilize carbon energy sources. During autotrophic growth, carbon dioxide is dioxideastheirsolecarbonsource,andavarietyofpathways incorporatedintocellularcarbonviathe3-hydroxypropionate/4- are known to activate and incorporate it into biomolecules hydroxybutyratecycle(3HP/4HB).Todate,allofthestepsinthe essentialforgrowthandreplication.Recently,carbondioxide pathway have been connected to enzymes encoded in specific fixation pathways have received interest for biotechnological genes,exceptfortheoneresponsibleforligationofcoenzymeA applications, since this could provide biological routes for de novogenerationoffuelsandsmallorganicmolecules(1). (CoA)to4HB.Althoughseveralcandidatesforthisstephavebeen There are currently at least six natural pathways for the identifiedthroughbioinformaticanalysisoftheM.sedulagenome, incorporationofinorganiccarbondioxideintocellularcarbon nonehavebeenshowntocatalyzethisbiotransformation.Inthis (2,3).Themostrecentlydiscoveredofthesearefoundexclu- report,transcriptomicanalysisofcellsgrownunderstrictH -CO 2 2 sivelyinextremelythermophilicarchaeaasfollows:the3-hy- autotrophywasconsistentwiththeinvolvementofMsed_0406and droxypropionate/4-hydroxybutyrate(3HP3/4HB)carbonfixa- Msed_0394.Recombinantversionsoftheseenzymescatalyzedthe tion cycle, which operates in members of the crenarchaeal ligationofCoAto4HB,withsimilaraffinitiesfor4HB(K valuesof m orderSulfolobales(2,4–6),andthedicarboxylate/4-hydroxy- 1.9and1.5mMforMsed_0406andMsed_0394,respectively)but butyrate(DC/4HB)cycle,whichisusedbyanaerobicmembers with different rates (1.69 and 0.22 (cid:1)mol (cid:2) min(cid:3)1 (cid:2) mg(cid:3)1 for oftheordersThermoprotealesandDesulfurococcales(4,7).In Msed_0406andMsed_0394,respectively).NeitherMsed_0406nor bothcycles,twocarbondioxidemoleculesareaddedtoacetyl- Msed_0394haveclosehomologsinotherSulfolobales,although CoA(C2)toproducesuccinyl-CoA(C4),whichissubsequently lowsequencesimilarityisnotunusualforacyl-adenylate-forming rearrangedtoacetoacetyl-CoAandcleavedintotwomolecules enzymes.Thecapacityofthesetwoenzymestouse4HBasasub- of acetyl-CoA. These pathways differ primarily in regard to stratemayhavearisenfromsimplemodificationstoacyl-adeny- theirtolerancetooxygenandtheco-factorsusedforreducing late-formingenzymes.Forexample,asingleaminoacidsubstitu- equivalents as follows: NAD(P)H for the 3HP/4HB cycle and tion (W424G) in the active site of the acetate/propionate ferredoxin/NAD(P)H for the DC/4HB cycle (3, 8). The two synthetase (Msed_1353), an enzyme that is highly conserved archaealpathwaysalsodifferinhowtheylinktheCO fixation 2 amongtheSulfolobales,changeditssubstratespecificitytoinclude cycletocentralmetabolism.IntheDC/4HBpathway,pyruvate 4HB. The identification of the 4-HB CoA synthetase now com- is synthesized directly from acetyl-CoA using pyruvate syn- pletesthesetofenzymescomprisingthe3HP/4HBcycle. thase.Inthe3HP/4HBpathway,anotherhalf-turnisrequired tomakesuccinyl-CoA,whichisthenoxidizedviasuccinateto pyruvate(2,9,10). There are 13 enzymes proposed to catalyze the 16 reac- *Thisworkwassupported,inwholeorinpart,byNationalInstitutesofHealth tionsinthe3HP/4HBpathway.Thefirstthreeenzymescon- Grant R01GM90209. This work was also supported by Department of vert acetyl-CoA (C2) to 3HP (C3) via an ATP-dependent EnergyAdvancedResearchProjectsAgency-EnergyGrantDE-AR0000081 andDefenseThreatReductionAgencyGrantHDTRA1-09-1-0030. carboxylation step. Next, 3HP is converted and reduced to 1SupportedbyGraduateAssistanceinAreasonNationalNeedMolecular propionyl-CoA,carboxylatedasecondtime,andrearranged Biotechnology Fellowship P200A070582-09 from the United States DepartmentofEducation. 2To whom correspondence should be addressed: Dept. of Chemical and BiomolecularEngineering,NorthCarolinaStateUniversity,911Partners 3Theabbreviationsusedare:3HP,3-hydroxypropionate;4HB,4-hydroxybu- Way,EB-1,Box7905,Raleigh,NC27695-7905.Tel.:919-515-6396;Fax:919- tyrate;DC,dicarboxylate;ACL,autotrophiccarbon-limited;HTR,hetero- 515-3465;E-mail:[email protected]. trophic;ACS,acetyl-CoAsynthetase;ACR,autotrophiccarbon-rich. This is an Open Access article under the CC BY license. 4012 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 TABLE1 Enzymesinthe3HP/4HBcycleinM.sedula Thefollowingabbreviationsareused:NCE,nativecellextract;NP,nativepurifiedenzyme;R,recombinantprotein. Cycleref.no. ORF Enzyme Ref. E1(cid:2) Msed_0147 Acetyl-CoA/propionyl-CoAcarboxylase NCE(11,41) E1(cid:1) Msed_0148 E1(cid:3) Msed_1375 E2 Msed_0709 Malonyl-CoA/succinyl-CoAreductase R(42) E3 Msed_1993 Malonatesemialdehydereductase R(42) E4 Msed_1456 3-Hydroxypropionate:CoAligase NP(5) E5 Msed_2001 3-Hydroxypropionyl-CoAdehydratase NP,R(43) E6 Msed_1426 Acryloyl-CoAreductase NP(43) E7 Msed_0639 Methylmalonyl-CoAepimerase R(13) E8(cid:2) Msed_0638 Methylmalonyl-CoAmutase R(13) E8(cid:1) Msed_2055 E9 Msed_1424 Succinatesemialdehydereductase NP,R(42) E10 Msed_0394 4-Hydroxybutyrate-CoAsynthetase R(thiswork) Msed_0406 E11 Msed_1321 4-Hydroxybutyryl-CoAdehydratase NCE(4) E12 Msed_0399 Crotonyl-CoAhydratase/(S)-3-hydroxybutyryl-CoAdehydrogenase R(9) E13 Msed_0656 Acetoacetyl-CoA(cid:1)-ketothiolase NCE(4) to make succinyl-CoA (C4). Succinyl-CoA is reduced to Msed_1291hadnoactivityonanyofthepreviouslymentioned 4HB,whichisconvertedtotwomoleculesofacetyl-CoAin organic acids. Thus, although cycle function has been con- the final reactions of the cycle. Flux analysis and labeling firmedbymetabolicfluxanalysis,andalthough4HB-CoAsyn- studieshaveconfirmedtheoperationofthispathwayinMet- thetase activity has been measured in cell extracts of allosphaerasedula(4,10). autotrophically grown M. sedula, the enzyme responsible for Alloftheenzymesthatcomprisethefirstportionofthecycle ligationofCoAto4HBremainsunclear. uptotheformationof4HBhavebeenidentifiedandcharacter- Toidentifythemissinglinkinthe3HP/4HBcycle,newmeth- izedbiochemicallyintheirnativeorrecombinantform,mostly odsforsemi-continuouscultivationofM.sedulainagas-inten- from the extremely thermoacidophilic archaeon M. sedula sivefermentationsystemweredevelopedtoteaseoutdifferen- (T (cid:1) 70°C, pH 2.0) (see Table 1) (4, 5, 11–13). The enzymes tialtranscriptionalresponseofautotrophy-relatedgenes.Strict involvedintheconversionof4HBtotwomoleculesofacetyl- carbon dioxide limitation was used to drive increased opera- CoA have not been characterized to the same extent (Fig. 1). tionalefficiencyoftheCO fixationenzymes,whichhypothet- 2 Activities corresponding to 4-hydroxybutyryl-CoA dehydra- ically would increase transcriptional levels of genes encoding taseandacetoacetyl-CoA(cid:1)-ketothiolasehavebeendetectedin key enzymes to maximize carbon incorporation. Using these cellextracts(4,14),althoughneitherenzymehasbeenpurified conditionsfortranscriptionalanalysis,amuchclearerpicture initsnativeformorrecombinantlyproduced.Identificationof emergedconcerningtheglobalregulatorychangesinM.sedula candidatesforbothoftheseenzymeshasbeenmadebasedon asitscellularmetabolismswitchesfromautotrophytohetero- genomeannotationandtranscriptomicanalysisofautotrophic trophy. This strategy produced new leads for the genes and growthcomparedwithheterotrophy(8,9).Althoughneitherof correspondingenzymesresponsibleforthe4HB-CoAligation the candidate genes for these enzymes has so far been con- step.Theenzymeswererecombinantlyproducedandshownto firmedbiochemically,theiridentityisnotindisputebecauseof catalyzetheligationofCoAto4HB. stronghomologytoknownversionsinlessthermophilicorgan- EXPERIMENTALPROCEDURES isms. The corresponding gene products in M. sedula are Msed_1321forthe4HB-CoAdehydrataseandMsed_0656for Growth of M. sedula in a Gas-intensive Bioreactor—M. theacetoacetyl-CoA(cid:1)-ketothiolase. sedula(DSMZ5348)wasgrownaerobicallyat70°Cinashak- The identity of the crotonyl-CoA hydratase and the (S)-3- ingoilbath(90rpm)underautotrophicorheterotrophiccon- hydroxybutyryl-CoA dehydrogenase was recently confirmed ditionsonDSMZmedium88atpH2.Heterotrophicallygrown whenitwasdiscoveredthatbothreactionswerecatalyzedbya cellsweresupplementedwith0.1%tryptone.Cellgrowthwas singlebifunctionalfusionprotein(9).Inthesamework,Ramos- scaledupfrom300mlinsealed1-literbottles(seeRef.8)to2 Vera et al. (9) tested three different candidates for the 4HB- litersinastirredbench-topglassfermentor(Applikon),alsoon CoAsynthetase,buttheyallfailedtoshowactivityon4HB.In DSMZmedium88,pH2,at70°C,andagitatedat250rpm.Two fact,theprimarycandidatesuggestedbytheautotrophictran- separately regulated gas feeds were used such that flow rates scriptomeanalysis(Msed_1422)showednoenzymaticactivity wereheldconstantforallconditionsat1ml/minforthehydro- on short chain linear unsubstituted or hydroxy acids, specifi- gen/CO gasmixtures(compositionvaried)and100ml/minfor 2 cally acetate, propionate, 3HP, 3-hydroxybutyrate, 4HB, and air (composition: 78% N , 21% O , 0.03% CO ). For the 2 2 2 crotonate. Two other candidates were selected, based on autotrophic carbon-rich (ACR) condition, the gas feed con- homology to 4HB-CoA synthetase from Thermoproteus neu- tained H (80%) and CO (20%); for the autotrophic carbon- 2 2 trophilus (Tneu_0420) and 3HP-CoA synthetase from M. limited(ACL)condition,thefeedwaschangedtoH (80%)and 2 sedula: Msed_1353 and Msed_1291 were recombinantly pro- N (20%);fortheheterotrophiccondition(HTR),themedium 2 ducedandtestedforligaseactivity.Msed_1353wasactiveon wassupplementedwith0.1%tryptone,andthegasfeedcompo- propionate and acetate, but not on 4HB. Furthermore, sitionwasN (80%)andCO (20%).Tandemfermentorswere 2 2 FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4013 CO -H AutotrophyinMetallosphaerasedula 2 2 FIGURE1.Enzymesandsubstratesinfinalreactionsof3HP/4HBcycleinM.sedula.Enzymesareasfollows:10,4-hydroxybutyrate-CoAsynthetase;11, 4-hydroxybutyryl-CoAdehydratase;12,crotonyl-CoAhydratase/(S)-3-hydroxybutyryl-CoAdehydrogenase;and13,acetoacetyl-CoA(cid:1)-ketothiolase. FIGURE2.Bioreactorschematicforgas-intensivefermentationofM.sedula.Tandem2Lbioreactors,startedatthesametimewiththesameseedinoculum, wereusedtogrowM.sedulainsideofachemicalfumehood.AsolenoidvalveontheH /CO tankprovidedpassive“fail-safe”operationbycuttingofftheflow 2 2 offlammablegasintheeventoffoodfailure.Gascompositionsforthethreedifferentconditionsareshownbottomright.ACR,autotrophiccarbon-rich;ACL, autotrophiccarbon-limited;HTR,heterotrophic. runsimultaneouslywiththesameinoculumtogeneratebiolog- photometricandoneusinghighperformanceliquidchroma- ical repeats (Fig. 2). Cells were harvested at mid-exponential tography(HPLC).Adiscontinuousassaywasusedtomeasure phasebyrapidcoolingwithdryiceandethanolandthencen- substrate-dependentdisappearanceofCoAat75°C.Thereac- trifugedat6000(cid:2)gfor15minat4°C. tionmixture(600(cid:4)l)contained100mMMOPS/KOH,pH7.9,5 M. sedula Oligonucleotide Microarray Transcriptional Re- mMMgCl ,2.5mMATP,0.15mMCoA,andpurifiedenzyme.At 2 sponse Analysis—A spotted whole-genome oligonucleotide eachtimepoint,80(cid:4)lofreactionmixturewasaddedto80(cid:4)lof microarray,basedon2256protein-codingopenreadingframes cold5,5(cid:4)-dithiobis-(2-nitrobenzoicacid).Atimepoint(0min) (ORFs),wasused,asdescribedpreviously(15).TotalRNAwas wastakenbeforeheating.Thereactionmixturewasincubated extracted and purified (RNeasy; Qiagen), reverse-transcribed for2minat75°C,followedbyadditionofsubstrate.Additional (Superscript III; Invitrogen), re-purified, labeled with either timepointsweretakenat30,60,90,120,and180safteraddi- Cy3orCy5dye(GEHealthcare),andhybridizedtothemicroar- tionofsubstrate.Absorbancewasmeasuredat412nmtodeter- rayslides(Corning).SlideswerescannedonaGenePix4000B mine free CoA concentration, based on the concentration of MicroarrayScanner(MolecularDevices,Sunnyvale,CA),and 2-nitro-5-thiobenzoate dianion ((cid:5) (cid:1) 14,150 M(cid:5)1 cm(cid:5)1) (1, 412 rawintensitieswerequantitatedusingGenePixProversion6.0. 14).Enzymeswerekineticallycharacterizedbyvaryingthecon- Normalizationofdataandstatisticalanalysiswereperformed centration of the acyl-CoA substrate from 0.05 to 12 mM, usingJMPGenomics5(SAS,Cary,NC).Ingeneral,significant although the other substrate concentrations were held con- differentialtranscriptionwasdefinedtobearelativechangeat stant.Measurementsforspecificactivityweretakenundersat- or above 2 (where a log value of (cid:3)1 equals a 2-fold change) urating substrate concentrations (10 mM). Formation of the 2 withsignificancevaluesatorabovetheBonferronicorrection; CoAesterwasalsoconfirmedusingHPLC(Waters).Thereac- forthesedata,thiswas5.4(equivalenttoapvalueof4.0(cid:2)106). tionmixture(0.15ml)contained100mMpotassiumphosphate, MicroarraydataareavailablethroughtheNCBIGeneExpres- pH 7.9, 10 mM MgCl , 2 mM ATP, 0.5 mM CoA, 10 mM sub- 2 sionOmnibus(GEO)underaccessionnumberGSE39944. strate,andpurifiedenzyme.Thereactionwasincubatedfor3 Enzyme Assays for 4-Hydroxybutyrate-CoA Synthetase— minat75°C,quenchedwith15(cid:4)lof1MHCl,filteredwitha Twoassayswereusedtomeasureligaseactivity,onespectro- 10-kDaspincolumn(AmiconYM-10)toremovetheprotein, 4014 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 and loaded onto a reversed-phase C18 silica-based column KOH(pH7.9)andeitherstoredat4°Cormixedwithglycerol (ShodexC18–4E,4.6(cid:2)250mm).Themobilephasewas50mM to20%andstoredat(cid:5)20°C. sodiumphosphatebuffer,pH6.7,with2%methanol. Site-directed Mutagenesis of Msed_1353—Msed_1353 was Heterologous Expression of M. sedula Genes in E.coli—M. mutated with the GENEART(cid:1) site-directed mutagenesis sys- sedula genes encoding acyl-CoA synthetases were amplified tem (Invitrogen), using AccuPrimeTM Pfx polymerase. from genomic DNA using primers synthesized by Integrated MutagenesisprimersweredesignedtochangeTrp424toglycine DNA Technologies (Coralville, IA). Msed_0394 and Msed_ (primer 1, 5(cid:4)-CCCTTTGGTAGCACTTGGGGAATGACT- 0406 were ligated into pET46-Ek/LIC, although Msed_1353 GAAACTGG-3(cid:4);primer2,reversecomplementofprimer1). wasligatedintopET21busingNdeIandXhoIrestrictionssites. Plasmids with Msed_1353-G424 were cloned into NovaBlue All constructs were designed to express with an N-terminal GigaSinglesE.colicompetentcellsandselectedbygrowthon His tag. Plasmids containing gene inserts were cloned into LB-agarsupplementedwithampicillin(100(cid:4)g/ml).Sequences 6 NovaBlue GigaSingles E.coli competent cells and selected by wereconfirmedbyEtonBiosciencesInc.(Durham,NC). growthonLB-agarsupplementedwithampicillin(100(cid:4)g/ml). Structural Modeling of Acyl-CoA Synthetases—Three-di- PlasmidDNAwasextractedusingaQIAprepspinminiprepkit. mensionalstructuralmodelsforM.sedulaacyl-CoAsyntheta- ses were made using the iterative threading assembly refine- SequenceswereconfirmedbyEtonBiosciences,Inc.(Durham, ment (I-TASSER) on-line server (2, 3, 16). The server first NC). For protein expression, the plasmids were transformed generates three-dimensional atomic models from multiple into Escherichia coli Rosetta 2 (DE3) cells and selected by growthonLB-agar,supplementedwithampicillin(100(cid:4)g/ml) threading alignments and iterative structural assembly and andchloramphenicol(50(cid:4)g/ml).Cellsharboringtherecombi- then infers function by structural matching to other known nantplasmidwereinducedwithisopropyl1-thio-(cid:1)-D-galacto- proteins.AllstructuresweregeneratedusingtheProteinData- baseentryforSalmonellaentericaACS(STM4275,1PG4)asa pyranoside (final concentration 0.1 mM) atA 0.4–0.6 and 600 threading template for additional restraint specification. culturedfor3hbeforeharvest. Amino acid sequence alignments were generated using the PurificationofRecombinantProteins—Cellswereharvested by centrifugation at 6000 (cid:2) g for 15 min at 4°C. Cell yields UCSFChimerapackagebysuperpositionofI-TASSERthree- dimensional structural models with the Protein Data Bank ranged from 1.6 to 3.8 g of cells/liter of LB medium (wet structureforS.entericaACS. weight). Cell pellets were resuspended in lysis buffer (50 mM Materials—Plasmidvectorsandstrainswereobtainedfrom sodiumphosphate,100mMNaCl,0.1%NonidetP-40,pH8.0) Novagen(SanDiego)andStratagene(LaJolla,CA).Chemicals, containing DNase and lysozyme at final concentrations of 10 devices, and reagents were obtained from Fisher, ACROS and 100 (cid:4)g/ml, respectively. Cells were lysed with a French Organics (Geel, Belgium), Sigma, New England Biolabs (Ips- press(twopassesat18,000p.s.i.),andthelysatewascentrifuged wich, MA), Qiagen (Valencia, CA), Millipore (Billerica, MA), at22,000(cid:2)gfor15minat4°Ctoremovedinsolublematerial. and Invitrogen. Gases were purchased from Airgas National Soluble,cell-freeextractwasheatedto65°Cfor20mintopre- Welders (Charlotte, NC). Protein purification columns were cipitatemesophilicproteins.Streptomycinsulfate(1%w/v)was obtained from GE Healthcare. The Bradford assay reagent addedtoprecipitatenucleicacids,followedbya1-hincubation wasobtainedfromBio-Rad.Site-directedmutagenesiskitwas at4°C.Afinalcentrifugationwasperformedat22,000(cid:2)gfor obtainedfromInvitrogen. 15 min at 4°C to collect the soluble, heat-treated cell-free extract,whichwassterile-filtered(0.22(cid:4)m)andpurifiedusing RESULTS a 5 ml HisTrapTM nickel column (GE Healthcare). Proteins M. sedula Autotrophic Growth Is Hydrogen-limited—To wereboundtotheHisTrapTMcolumnusingbindingbuffer(50 exploretheoptimalgrowthconditionsforH -CO autotrophy 2 2 mMsodiumphosphate,500mMNaCl,20mMimidazole,pH7.4) inM.sedula,afermentationsystemwasdesignedtoallowcon- andelutedusingelutionbuffer(50mMsodiumphosphate,500 trolled definition of the gas feed. Previous autotrophic work mM NaCl, 300 mM imidazole, pH 7.4). SDS-PAGE was then withM.sedulawasdoneinbatchculturesinanorbitalshaking performedontheimmobilizedmetalaffinitychromatography bath at 70°C (2, 4–6, 8). In that case, gas-fed cultures were fractions to qualitatively determine the purity of the protein grown by replacing the air in a sealed volume with a gaseous beforefurtherpurification.Chromatographyfractionscontain- mixtureofaknowncomposition.MasstransferofH ,CO ,and 2 2 ingtheproteinwereconcentrated,exchangedintophosphate O intotheculturemediumwaslimitedtodiffusionacrossthe 2 buffer (50 mM potassium phosphate, 150 mM NaCl, pH 7.0) vapor-liquid interface. Gas limitation presumably affected using an Amicon YM10 (Millipore) centrifugal filter mem- thesecultures,andledtosuboptimalgrowth,asevidencedby brane, and centrifuged at 4000 (cid:2) g and 4°C. To quantify the theslowdoublingtimethatresultedforM.sedulaunderthese amountofprotein,aBradfordassaywasperformedonthecon- conditions(t (cid:1)11–13h). d centratedimmobilizedmetalaffinitychromatographyfractions TogrowM.sedulaautotrophicallywithmoreoptimaldeliv- usingknownserialdilutionsofbovineserumalbumin(BSA)by eryofgaseoussubstratetotheliquidmedium,asemi-continu- takingabsorbancereadingsat595nm.Proteinwasfurtherpuri- ousfermentationsystemwasdevelopedusinga3Lbioreactor. fiedusingaSuperdex20010/300GL(GEHealthcare)gelfiltra- The system was modified to have two separate gas feeds that tion column. The proteins were eluted from the gel filtration sparged directly into the media (sparging stone, 2-(cid:4)m pore columnusingelutionbuffer(50mMpotassiumphosphate,150 size).Microbubblespargingstoneswereusedtopromotedis- mMNaCl,pH7.0).Proteinsweredialyzedinto100mMMOPS- solutionofsparinglysolublegases,inparticularH .Thebiore- 2 FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4015 CO -H AutotrophyinMetallosphaerasedula 2 2 TABLE2 EnhancedtranscriptionresponseforM.sedulaautotrophy ACLversusACR ACLversusHTR ACRversusHTR AutoversusHetero(8) No.ofgenesup-regulated(2-foldormore) 52 467 433 229 No.ofgenesdown-regulated(2-foldormore) 124 517 464 252 actorandconsoleweresituatedinsideamodifiedfumehood, tion proteins in both the cytosolic hydrogenase operon withanairflowmonitoringsysteminplacetodetecthoodfail- (Msed_0921-0933) and the membrane-bound hydrogenase ure.Tandemfermentorswereseededwiththesameinoculum operon(Msed_0947–0950)werebothhighlyup-regulatedon andrunsimultaneouslytoprovideabiologicalrepeat. ACL-HTR,from3-to47-foldhigher. GrowthofM.sedulainanaerobic,autotrophicfermentation New Candidates for 4-Hydroxybutyrate-CoA Synthetase systemwasexpectedtobeH -andnotO -limited.Belowsat- Identified from Refined Transcriptomic Data—The refined 2 2 urating conditions, growth rates varied according to the transcriptomic data provided new insights into the putative amountofH fedtotheculture.ForhighH supplyrates(i.e.30 candidates for 4-hydroxybutyrate-CoA synthetase (Fig. 3). 2 2 ml/min), the growth rates were comparable with the fastest Basedonbioinformaticanalysis,thereareninecandidategenes growth rates previously observed under heterotrophy (t (cid:1) encoding acyl-CoA synthetases (not including Msed_1456, d 4.8h);concomitantly,theculturereachedacelldensityof2(cid:2) whichwasconfirmedasa3HP-CoAsynthetase).Thehighup- 109 cells/ml, the highest observed under autotrophic condi- regulationofMsed_1422underautotrophy(13-foldincrease) tions.AtanH supplyrateof15ml/min,thegrowthrateslowed thatwasobservedinthisworkisconsistentwithprevioustran- 2 (t (cid:1)6h),althoughthefinaldensitywascomparablewiththe scriptomic studies. On the basis of that initial study, d 30ml/mincase(1.5(cid:2)109cells/ml).A30-foldreductioninH Msed_1422waschosenforrecombinantexpressionandtesting 2 flowrates(1ml/min)causedthegrowthratetodecreasebyhalf (2, 9, 9, 10). In the same study, recombinant forms of (t (cid:1)9.7h)andthecellstoenterstationaryphaseat8(cid:2)108 Msed_1291 and Msed_1353 were also produced, which were d cells/ml. chosenbasedonhomologytoaconfirmed4HB-CoAsynthe- AsimilartrendemergedinresponsetolimitinglevelsofCO . tasefromT.neutrophilus(Tneu_0420).Noneoftheseenzymes 2 WhenCO wassupplementedinthegasfeed(referredtohere showedactivityon4HB.Msed_1422andMsed_1291showed 2 as“rich”autotrophy),thegrowthratewasfasterthanobserved noactivityonacetate,propionate,3HP,3HB,4HB,orcroton- forcellsgrownwithairastheonlysourceofCO (t (cid:1)6.8h ate,andMsed_1353hadactivityonlyonacetateandpropionate 2 d versus 9.4 h, respectively). The growth rate for heterotrophi- butnot4HB.Thus,itappearsthatMsed_1353isapromiscuous cally grown cells (t (cid:1) 6.7 h) was comparable with the rich acetate/propionatesynthetase,althoughthesubstratespecific- d autotrophycondition.Thissuggeststhat,undertherichautot- itiesofMsed_1422andMsed_1291remainunknown. rophycondition,thecellswerenotlimitedbyanyoneparticular Amongtheotherpotentialcandidatesthatwereannotatedas gaseoussubstrateandweredoublingatorneartheirmaximal acetate-CoAsynthetasesormediumchainfattyacid-CoAsyn- rate.Thedecreaseingrowthrateforthecarbon-limitedautot- thetases(Fig.3),mostshowednotranscriptionalresponse,had rophyarisesfromthelimitingamountsofCO availableinthe average or low levels of transcription, or were clearly down- 2 medium. regulatedunderautotrophy.Thenewtranscriptomicdatawere OptimizedH -CO AutotrophyConditionsLeadtoEnhanced consistentwiththeexpressionoftwopreviouslyunexamined 2 2 TranscriptomicResponse—Theoptimizedautotrophicgrowth candidates, Msed_0406 and Msed_0394, that are annotated conditionsenhancedtheglobaltranscriptionalresponsecom- asanacetyl-CoAsynthetase(ACS)andAMP-dependentsyn- paredwithpreviouswork(4,7,8).Ofthe2293protein-coding thetase and ligase, respectively. Although Msed_0406 and genesinthe2.2-kbM.sedulagenome,nearlyhalf(984genes) Msed_0394werebothconstitutivelytranscribed,withlessthan exhibitedchangesintranscription(eitherup-ordown-regula- a2-foldchangeintranscriptionlevelsbetweentheconditions tion)of2-foldorgreater,whencomparingheterotrophy(HTR) tested,bothofthemwereinthetop25%ofthetranscriptome. withtheACLcondition(seeTable2).Thenumberofgenesthat This served as the basis to investigate these two genes by were differentially transcribed was twice as high as observed recombinantexpressionandactivityassays,giventhatnoother previously (3, 8, 8), which could be attributed to the refined promisingcandidatesforthisstephademerged. conditions for autotrophic growth. Also, in the experiments KineticAnalysesofMsed_0394andMsed_0406—Recombi- reportedhere,itshouldbementionedthattheimprovedsensi- nant forms of Msed_0394 and Msed_0406 were produced in tivity of new equipment used for scanning microarray slides E.coli and purified to electrophoretic homogeneity. For both improvedtheresolutionanddynamicresponse. enzymes,theproductionof4HB-CoAfrom4HBandCoAwas Overall, the global transcriptional changes were extensive. confirmed using reversed-phase HPLC. Msed_0394 and Transcripts for the characteristic enzymes of the 3HP/4HB Msed_0406wereactiveonarangeofsmallorganicacids(see pathway were significantly up-regulated on ACL-HTR. For Table3forasummaryofkineticdata).Fig.4showstherelative example,thegenesencoding(cid:2)-and(cid:1)-subunitsofacetyl-CoA/ specific activities on different substrates for Msed_0394 and propionyl-CoAcarboxylase(Msed_0147–0148)wereup-regu- Msed_0406,alongwithreporteddatafor3HP-CoAsynthetase lated18-and29-fold,respectively,whereasthe4-hydroxybu- (Msed_1456)forcomparison(4,5,10).Notethatthecalculated tyryl-CoA dehydratase gene (Msed_1321) was up-regulated molecularmassforthesethreeenzymesvariesslightly,62kDa 27-fold.Hydrogenasesandhydrogenaseassemblyandmatura- for Msed_0394, 64 kDa for Msed_0406, and 74 kDa for 4016 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 FIGURE3.4-Hydroxybutyrate-CoAsynthetasecandidatesinM.sedula.NormalizedtranscriptionlevelsforM.sedulagenesannotatedassmallorganicacid orfatty-acidligasesandsynthetases.Hightranscriptionlevelsareshowninredandlowtranscriptioningreen;thecorrespondingnumbersrepresentleast squaremeanvaluesofnormalizedlog2-transformedtranscriptionlevelsrelativetotheoverallaveragetranscriptionlevelof0(black).Conditionsshownareas follows:2010,Heterotrophic,Autotrophic,Mixotrophic;2012,ACL,ACR,HTR.LeastsquaremeanvaluesareshownhereforACLconditionforthesegenes,along withthefoldchangeofgenesunderACLrelativetoHTRandtheirstatisticalsignificance.AllothermicroarraydatacanbefoundintheGEOdepositGSE39944. Msed_1456;thesespecificactivitiesherearemeanttohighlight TABLE3 substratepreferencepatternsforeachenzyme. EnzymekineticdataforCoAsynthetasesfromM.sedula ThespecificactivitiesforMsed_0394showlittledifferencein Enzyme Substrate K V k k /K m max cat cat m themaximumreactionrateundersaturatingsubstrateconcen- (cid:4)M (cid:4)mol s(cid:5)1 s(cid:5)1 trationsforthedifferentsubstrates.Thehighestreactionrate mmign(cid:5)(cid:5)11 M(cid:5)1 observedwas(cid:6)0.2(cid:4)molmin(cid:5)1mg(cid:5)1forpropionate,4HB,and Msed_0394 Acetate 680 0.13 0.14 200 butyrate.However,ifthesubstratespecificitiesaretakeninto Propionate 540 0.2 0.21 390 3HP 1880 0.07 0.08 40 account,adifferentpictureemerges.Acomparisonofthecat- 4HB 1540 0.22 0.24 160 alytic specificity constants (k /K ) for each substrate tested Butyrate 60 0.21 0.23 3700 cat m Valerate 120 0.2 0.22 2000 withMsed_0394(Table3)showsthatthehighestvalueisfor Msed_0406 Acetate 2030 6.0 6.4 3200 butyrate(3700M(cid:5)1s(cid:5)1),followedbyvalerate(2000M(cid:5)1s(cid:5)1), Propionate 380 15.1 16.2 43000 propionate (390 M(cid:5)1 s(cid:5)1), acetate (200 M(cid:5)1 s(cid:5)1), and finally 3HP 810 2.4 2.6 3200 4HB (160 M(cid:5)1 s(cid:5)1). There is a clear preference for unsubsti- 4BHutByrate 2302000 17..79 18..84 92160000 tutedstraightchainorganicacidswithachainlengthoffouror Valerate 740 5.2 5.6 7500 five carbons. No activity was detected with the six-carbon Msed_1353-G424 4HB 1130 2.3 2.5 2180 hexanoicacid. ThespecificactivitiesforMsed_0406undersaturatingsub- limitsthesizeofsubstratethatcanbeaccommodatedwithin strateconcentrationsshowthehighestreactionratesforpro- theactivesite.Totesttheimportanceofthisresidueindeter- pionate(15.1(cid:4)molmin(cid:5)1mg(cid:5)1).Thecatalyticspecificitycon- miningsubstratespecificity,Trp424inMsed_1353wasmutated stantprofileforMsed_0406showsthatthisenzymeworksbest toaglycinetoproduceMsed_1353-G424.Thesinglesubstitu- onpropionate(43,000M(cid:5)1s(cid:5)1)andthenbutyrate(26,000M(cid:5)1 tionmutant(W424G)waspredictedtocontainalargerinterior s(cid:5)1),valerate(7500M(cid:5)1s(cid:5)1),acetate/3HP(3200M(cid:5)1s(cid:5)1),and binding pocket for the hydrophobic end of the substrate. 4HB(910M(cid:5)1s(cid:5)1).ThehighV valuesforacetate/propio- Accordingly, it showed a dramatic change in specificity (Fig. max nate,combinedwiththelowK valueforpropionate,suggest 5B). Activity for the mutant on acetate and propionate m that Msed_0406 is also a promiscuous acetate/propionate decreasedby60%,from8.9to3.6and8.8to3.5(cid:4)molmin(cid:5)1 ligase,althoughonethatalsoshowsactivityon4HB. mg(cid:5)1, respectively. However, Msed_1353-G424 also showed Site-directed Mutagenesis of Msed_1353—Msed_1353, a activityonC4-C8substrates,including4HB(1.8(cid:4)molmin(cid:5)1 highlyconservedgeneamongtheSulfolobales,waspreviously mg(cid:5)1). reportedtohaveactivityonlyonacetateandpropionate(4,5,5, Tocomparetheactivityofthesethreeenzymeson4HB,the 9,11,12,15).Initialeffortstoidentifytheunknown4HB-CoA Michaelis-MentencurvesareshowninFig.6.Fromthisfigure, synthetaseinM.sedulainvolvedpurificationofnativeenzyme itisclearthatthereisalargedifferenceincatalyticrateforthe activityandanalysisofmultipleSDS-polyacrylamidegelbands threeenzymes,andthisdifferenceholdsovertheentirerangeof using mass spectrometry. Msed_1353 was detected in these substrate concentration, including when [S]/K (cid:7)(cid:7)1. There- m experiments, and based on the very large up-regulation of fore, although it is possible that both Msed_0394 and Msed_1353underautotrophy,itwasrecombinantlyproduced Msed_0406 are catalytically active on 4HB in vivo, it is likely toconfirmitsactivity.Ourresultsconfirmedpreviousreports; that Msed_0406 is more physiologically relevant in terms of undersaturatingsubstrateconcentrations,Msed_1353hadthe catalyticperformance.Additionally,thesinglepointmutation highestactivityonacetate(8.9(cid:4)molmin(cid:5)1mg(cid:5)1,100%)and ofMsed_1353toMsed_1353-Gly424producesanenzymethat propionate (99%) but also on 3HP (8%) and butyrate (16%). is active on 4HB at even higher rates for all substrate However,noactivitywasfoundon4HBorlongerorganicacid concentrations. substrates(seeFig.5A). DISCUSSION Structural modeling of the binding pocket of Msed_1353 revealedaconservedtryptophanresidue,similartothatseenin Thesemi-continuousgas-intensivebioreactorsystemdevel- acetate-CoAsynthetase(ACS)fromS.enterica(4,14,17).This oped here was successfully used to refine the transcriptional tryptophanformsthebottomsurfaceofthebindingpocketand responseofautotrophy-relatedgenesinM.sedula.Thissystem FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4017 CO -H AutotrophyinMetallosphaerasedula 2 2 FIGURE4.Specificactivityofacyl-CoAligasesintheM.sedulacarbonfixationpathwayonvarioussubstrates.Specificactivitiesofthenewcandidatesfor 4-hydroxybutyrate-CoA ligase on a variety of substrates compared with reported data for Msed_1456, a 3-hydroxypropionate-CoA ligase, as follows: Msed_0394(A),Msed_0406(B),andMsed_1456(C).Msed_1456showed(cid:8)1%activityon3-hydroxybutyrate,butitwasnottestedon4-hydroxybutyrate. Substrateabbreviations:ACE,acetate;PRO,propionate;3HP,3-hydroxypropionate;4HB,4-hydroxybutyrate;BUT,butyrate;VAL,valerate. FIGURE5.SpecificactivityofnativeMsed_1353andMsed_1353-W424Gmutantonvarioussubstrates.ComparisonofactivityofMsed_1353(A)and Msed_1353-G424(B)onavarietyofshortchainlinearorganicacids.Substrateabbreviations:ACE,acetate;PRO,propionate;3HP,3-hydroxypropionate;4HB, 4-hydroxybutyrate;BUT,butyrate;VAL,valerate;HEX,hexanoate;OCT,octanoate. providedbetterdeliveryofgaseswithlowsolubilityandallowed limitsgrowth.Initsnaturalenvironment,thepicturemaybe more precise regulation of gas composition than could be somewhatdifferent.Hydrogenmeasurementsfromthe(largely achievedinserumbottles.At70°Cand1atm,thesolubilityof anoxic)acidichotspringsatYellowstoneindicatethatgaseous oxygen and hydrogen are comparable (0.6 mM), although the hydrogenmaybequiteabundant,withconcentrationsranging solubilityofcarbondioxideisabout20-foldhigher(12mM)(8, between10and300nM(8,19).Thesourceofthishydrogengas 9,18).Fortheseexperiments,thelowsolubilityofH wasoffset isprimarilygeochemical;althoughthemechanismisnotwell 2 bytheuseofmicrobubblersparingstones(2(cid:4)mporesize)to understood, it probably arises from subsurface interaction of increasethegasphasesurfaceareaandincreasedeliveryofH waterwithFe[II](15,20).Formostsubsurfaceenvironments, 2 tothemedium. oxygenisprobablylimiting(21).However,M.sedulawasiso- Stoichiometrically, at least four H molecules are required lated from aerobic (surface) samples of a hot water pond at 2 for every carbon atom fixed. Assuming that ATP generation PisciarelliSolfatara,Naples,Italy(22).Thus,bothhydrogenand requires the oxidation of two hydrogen molecules, then each oxygenmaybeavailableinabundanceforautotrophicgrowth. turnofthecyclerequires12moleculesofhydrogenforevery TheregulationofgrowthmodesinM.sedulainvolvesmas- twomoleculesofcarbondioxide.Assuch,thelimitinggrowth sive transcriptional changes between heterotrophic and factorforM.sedulainabioreactorislikelyacquisitionofthe autotrophicgrowth.Nearlyhalfthegenome(984genesoutof electrondonor,incontrasttomostaerobicmicrobialfermen- 2293) responded with transcriptional changes of 2-fold or tationswhereacquisitionofthefinalelectronacceptor,oxygen, greaterwhencomparingheterotrophytocarbondioxide-lim- 4018 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 ActivityofbothpurifiedMsed_0394andMsed_0406on4HB waswellabovethereportedactivitymeasuredinautotrophic cell extract (0.3 (cid:4)mol min(cid:5)1 mg(cid:5)1) (4). It appears that Msed_0406 is primarily a promiscuous propionate-CoA syn- thetase. Msed_0394, by contrast, has nearly equal levels of activityonacetate,propionate,and4-HB.Althoughtheoverall activity for Msed_0394 is lower by comparison, when taking into account the different substrate specificities, this enzyme shows a preference for C5-C6 linear unsubstituted organic acids. By comparison, the homologous 4-HB-CoA synthetase fromT.neutrophilus(Tneu_0420),ananaerobicarchaeonthat containstheDC/4HBcarbonfixationcycle,wasrecombinantly producedandshowntohavemaximalactivityon4HB,followed bycrotonate,acetate,3HP,and3HB(9).ThereportedK value m for Tneu_0420 was about 3-fold lower than that found for Msed_0406(700(cid:4)Mversus2000(cid:4)M),withcomparableactivity (1.6versus1.8(cid:4)molmin(cid:5)1mg(cid:5)1),whichsuggeststhatthecat- alyticactivitieson4HBarealsocomparable. FIGURE 6. Reaction rate profile for acyl-CoA ligases. Michaelis-Menten reactionratecurvesshownwithexperimentaldataforMsed_0394(squares), ItislikelythatMsed_0406ismoreeffectiveatcatalyzingthe Msed_0406(circles),andMsed_1353-G424(triangles)overarangeofsub- ligationofCoAto4HBinvivothanMsed_0394.Perhapsthese strateconcentrations. enzymeshaveevolvedfromhighlyspecificacetate/propionate synthetasestobesufficientforcatalyzingthenecessaryreaction itedautotrophy.Notmuchisknownabouttheregulationstrat- on4HBforthe3HP/4HBfixationcycle.Itisnotclearwhytwo egies employed by archaea to control gene transcription, but synthetases would be required, or whether both of them are between different forms of chemolithoautotrophy (reduced necessaryforautotrophicgrowth.However,theyaresofarthe metals,H ,etc.)andheterotrophy,M.sedulacanutilizeabroad onlyligasesinM.sedulathathavebeenshowntoactivate4HB 2 rangeofmetabolicsubstratesforgrowth. withCoA. Themissingstepinthe3HP/4HBpathwayhasbeentheacyl- Genes with high homology to Msed_0394 and Msed_0406 CoAsynthetasethatutilizes4HB.Previousattemptstoidentify existinthegenomeofthecloselyrelatedM.cuprina(67and thegenethatencodesthisenzymewereunsuccessful,andthe 73% amino acid identity, respectively), but it is less clear candidateenzymeshadnoactivityon4HB(9).Inthiswork,two whetherhomologsexistinthegenomesofotherSulfolobales, previouslyunexaminedsynthetasesfromM.sedula,consistent suchastheSulfolobusandAcidianusspp.Membersoftheacyl- with the new transcriptomic evidence, were recombinantly adenylate-forming enzyme family may share little identity or producedandcharacterized.BothMsed_0394andMsed_0406 similarityinaminoacidsequenceapartfromafewhighlycon- showed activity on 4HB as well as other small organic acids. servedcoremotifs(27).TherearehomologsofMsed_0406in Basedonthelackofothersynthetasecandidatessuggestedby otherspeciesofSulfolobalesthathave30–35%identityandone thetranscriptomicanalysisandpreviousbiochemicalevidence homologinS.acidocaldariuswith61%identity.Buttheeffort rulingoutMsed_1422andMsed_1291,weconcludethatoneor tofindtheM.sedula4HB-CoAsynthetasehasshownthatsub- bothoftheseenzymesarenecessaryforautotrophicgrowthin stratespecificitycannotbeinferredfromaminoacidsequence M.sedula. homologyalone.However,thelowhomologyoftheM.sedula Acetyl-CoAsynthetasesbelongtotheclassIsuperfamilyof 4HB-CoAsynthetasegenedoesstandoutamongalltheother adenylate-forming enzymes that includes acyl- and aryl-CoA genesinthe3HP/4HBcycle,whichhavedistincthomologsin synthetases,theadenylationdomainsofnonribosomalpeptide Sulfolobusspp.thatrangefrom50to80%identity. synthetases, and firefly luciferase (23). These enzymes use a Because4HBisametaboliteuniquetobutyratemetabolism two-stepmechanisminwhichfirstanacyl-AMPintermediate (28),including(cid:3)-aminobutyratefermentation(29)andpolyhy- isformed(withreleaseofpyrophosphate)followedbydisplace- droxyalkanoateproduction(30),itisunlikelytohaveanyother mentofAMPbyCoA(24).Mostacetyl-CoAsynthetaseshavea role in crenarchaeal metabolism outside of carbon fixation. limitedsubstraterange.Archaealacyl-CoAsynthetases,which Recent work with metabolic flux analysis has shown there is formaphylogeneticclusterdistinctfromotherbacterialsub- anotherexitrouteforcarbonfluxfromthecyclethroughsuc- groups (25), have been reported to exhibit broader substrate cinyl-CoAtosuccinate(10).Inthisstudytheauthorsestimate preferences. The acetyl-CoA synthetase from Pyrobaculum thattwo-thirdsofthecyclecarbonfluxpassestosuccinatevia aerophilum can work on acetate, propionate, butyrate, and succinyl-CoAorsuccinicsemialdehyde,althoughone-thirdof isobutyrate(26);anotheracetyl-CoAsynthetasefromArchaeo- thecyclecarbonfluxpassesthroughthelatterpartofthecycle globusfulgiduswasactiveonacetate,propionate,andbutyrate (via4HB)toregenerateacetyl-CoA.Ofcourse,thisfluxdistri- (27). Both Msed_0394 and Msed_0406 were found to have bution may be highly dependent on growth conditions and activityonabroadrangeofsmallorganicacidsubstratesofup could shift more to the 4HB branch depending on substrate tofivecarbonsinlength. availability. FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4019 CO -H AutotrophyinMetallosphaerasedula 2 2 FIGURE7.S.entericaACSandMsed_0394activesitecomparison.ACSisshowningoldandMsed_0394incyan.LigandfromACSstructure(adenosine-5(cid:4)- propylphosphate)shownwithcoloredheteroatoms.A,sideviewofbindingpocketwithinter-atomicdistancesgivenfromphosphorusatomofpropyl- phosphatemoietytoselectatomfromaminoacidresidues.B,axialviewfrombottomofsubstratebindingpocket. ItisclearthatallmembersoftheSulfolobalesorderhavea homologfor4hbdandthereforeshouldhaveacompletesetof enzymes for carbon fixation. However, previous studies have been mixed as to which Sulfolobus spp. are capable of autotrophicgrowth.EarlyreportsonSulfolobusacidocaldarius isolates claimed that they could grow chemolithoautotrophi- callyonelementalsulfur(31,32).Subsequentreportsclaimthat neither S. solfataricus nor S. acidocaldarius can grow FIGURE 8. Sequence alignment of S. enterica acetyl-CoA synthetase autotrophically on elemental sulfur alone (33), although it is (STM4275)andM.sedulaacyl-CoAligases.Aminoacidsequencealign- unclear whether they simply lost the ability to grow chemo- mentofactivesiteresiduesinputativeacyl-CoAligasesrevealsaconserved glycine(showninred)exceptforMsed_1353,whichhasatryptophanindic- lithoautotrophicallyorwereselectedfromwhatwereoriginally ativeofacetate-propionateCoAligases.AlignmentwasgeneratedusingChi- mixed cultures (34). Recent reports have shown autotrophic merabysuperpositionofI-TASSERthree-dimensionalstructuralmodels. growthofSulfolobusmetallicusonsulfurandSulfolobustoko- daiionbothsulfurandiron(35).Theonlyothermemberofthe thereforeonlyworkonacetateandpropionate,afactthathas Sulfolobales that has been reported to grow on hydrogen is beenconfirmedbiochemically(9).Here,therewassomeactiv- Acidianusambivalens,asulfur-reducingacidophile(36).Genes ity with Msed_1353 on 3HP and butyrate but no activity on encoding for hydrogenase and maturation enzymes with 4HB. Msed_0394 and Msed_0406 both have a glycine in this homologytoM.sedulahydrogenasegenesarepresentinone position,Gly333andGly346,respectively.However,therestof strainofSulfolobusislandicus(HVE10/4),butthisispredicted thegenesannotatedasacyl-CoAsynthetasesinM.sedulaalso to be involved in anaerobic fermentation (37). Clearly, some haveaglycineinthisposition,sothisglycineresiduealoneis Sulfolobusspp.musthaveafunctionalcarbonfixationpathway, notsufficienttoindicateactivityonC3-C5unsubstitutedlinear but others seem to possess an incomplete or nonfunctional organicacids.BothMsed_1422andMsed_1291wererecombi- pathway.ItmaybethattheCoA-activatingligasethatcanoper- nantly expressed and shown to be inactive on C2-C4 linear ateon4HBisessentialforcompletecyclefunction,andlossof organicacids(9). 4HB-CoAsynthetaseactivityrendersthecarbonfixationcycle AmutantofMsed_1353withaglycineinplaceofthecon- inoperable. served tryptophan (W424G) was made by site-directed Toinvestigatetheissueofsubstratespecificity,denovostruc- mutagenesisandexpressedinE.coli(Msed_1353-Gly424).The turalpredictionsofM.sedulaacyl-CoAsynthetaseswerecom- nativeenzymewasactiveonlyonacetateandpropionate,but pared with crystal structures of other known synthetases, themutantshowedactivityon3HP,4HB,valerate,hexanoate, includingacetyl-CoAsynthetasefrombothS.enterica(17)and and even octanoate (Fig. 5). The activity was just as high on Saccharomyces cerevisiae (38) and 4-chlorobenzonate-CoA C5-C8 substrates as on acetate and propionate but lower on synthetase from Alcaligenes sp. (39). The structure for ACS 3HP and 4HB. This suggests that the polar hydroxyl group fromS.entericarevealedthattherearefourresiduesthatform destabilizestheinteractionbetweenthesubstrateandtheresi- theacetatebindingpocketasfollows:Val310,Thr311,Val386,and duesoftheenlargedbindingpocket.Asimilartrendisevident Trp414(17).Theconservedtryptophanresiduecutsthebinding withMsed_0406(Fig.4).However,Msed_0394hasnearlyequal pocketshortandprecludesactivityonlongersubstrates(Fig.7). levelsofactivityonpropionate,butyrate,and4HB,suggesting ExtensivemutagenesisofbindingpocketresiduesinyeastACS thatitcanstabilizethehydroxylgroupon4HBbetterthanthat showedthatmutationofW416Gwassufficienttolengthenthe of3HP.Similarly,Msed_1456,whichcatalyzestheligationof binding pocket to accommodate C4-C8 organic acids (40). CoA to 3HP in the 3HP/4HB pathway, has equal activity on AminoacidsequencealignmentsshowthatMsed_1353hasa propionateand3HP,andthereforeitmighthaveresiduesinthe tryptophan in the same position (Trp424) (Fig. 8) and should activesitethathelpstabilizethehydroxylgroupof3HP. 4020 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER6•FEBRUARY8,2013 CO -H AutotrophyinMetallosphaerasedula 2 2 InMsed_1456,Val386,whichmakescontactswiththe(cid:3)-car- 13. Han,Y.,Hawkins,A.S.,Adams,M.W.,andKelly,R.M.(2012)Epimerase bon of the propyl moiety in the S. enterica ACS structure, is (Msed_0639)andmutase(Msed_0638,Msed_2055)convert(S)-methyl- replacedwithAsn390,whosepolaramidenitrogencouldhydro- malonyl-CoAtosuccinyl-CoAintheMetallosphaerasedula3-hydroxy- propionate/4-hydroxybutyrate cycle. Appl. Environ. Microbiol. 78, genbondwiththehydroxylgroupof3HPtostabilizesubstrate 6196–6202 binding.AsforMsed_0406,bothvalineresiduesintheacetate 14. Riddles,P.W.,Blakeley,R.L.,andZerner,B.(1983)ReassessmentofEll- binding pocket are replaced with alanine (Ala249 and Ala321) man’sreagent.MethodsEnzymol.91,49–60 andThr311isreplacedwithalysine(Lys250).InMsed_0394,all 15. Auernik,K.S.,andKelly,R.M.(2008)Identificationofcomponentsof threeoftheseresiduesarealanine(Ala240,Ala241,andAla309). electron transport chains in the extremely thermoacidophilic crenar- chaeonMetallosphaerasedulathroughironandsulfurcompoundoxida- Potentialcandidateresiduesforstabilizingthehydroxylgroup tiontranscriptomes.Appl.Environ.Microbiol.74,7723–7732 of4HBinMsed_0394includeHis341andTyr338. 16. Roy,A.,Kucukural,A.,andZhang,Y.(2010)I-TASSER.Aunifiedplat- Thisworkhelpstoclosethegapsonthemissingpieceofthe formforautomatedproteinstructureandfunctionprediction.Nat.Pro- 3HP/4HB pathway in M. sedula. It is still unclear why only toc.5,725–738 certain members of the Sulfolobales operate the 3HP-4HB 17. Gulick,A.M.,Starai,V.J.,Horswill,A.R.,Homick,K.M.,andEscalante- cycle,butthismayreflecttheenvironmentalhistoryofspecific Semerena,J.C.(2003)The1.75Åcrystalstructureofacetyl-CoAsynthe- taseboundtoadenosine-5(cid:4)-propylphosphateandcoenzymeA.Biochem- species.Furthermore,alongwithotherrecentsuccessesobtain- istry42,2866–2873 ingrecombinantversionsofdifficulttoproduceenzymesfrom 18. Wilhelm,E.,Battino,R.,andWilcock,R.J.(1977)Lowpressuresolubility the pathway (13), complete characterization of all cycle ofgasesinliquidwater.Chem.Rev.77,219–262 enzymes is close at hand. The information obtained for cycle 19. Spear,J.R.,Walker,J.J.,McCollom,T.M.,andPace,N.R.(2005)Hydro- function will be invaluable for the creation of a metabolically gen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. engineeredplatformcapableofproducingchemicalsandfuels Natl.Acad.Sci.U.S.A.102,2555–2560 20. Sleep,N.H.(2004)H-richfluidsfromserpentinization.Geochemicaland fromcarbondioxide(1). 2 bioticimplications.Proc.Natl.Acad.Sci.U.S.A.101,12818–12823 21. Gold,T.(1992)Thedeep,hotbiosphere.Proc.Natl.Acad.Sci.U.S.A.89, REFERENCES 6045–6049 1. Hawkins,A.,Han,Y.,Lian,H.,Loder,A.,Menon,A.,Iwuchukwu,I., 22. Huber,G.,andSpinnler,C.(1989)Metallosphaerasedulagen.,andsp. Keller,M.,Leuko,T.,Adams,M.W.,andKelly,R.M.(2011)Extremely nov.,representsanewgenusofaerobic,metal-mobilizing,thermoacido- thermophilic routes to microbial electrofuels. ACS Catal. 1, philicarchaebacteria.Syst.Appl.Microbiol.12,38–47 1043–1050 23. Schmelz,S.,andNaismith,J.H.(2009)Adenylate-formingenzymes.Curr. 2. Berg,I.A.(2011)Ecologicalaspectsofthedistributionofdifferentau- Opin.Struct.Biol.19,666–671 totrophic CO fixation pathways. Appl. Environ. Microbiol. 77, 24. Gulick,A.M.(2009)Conformationaldynamicsintheacyl-CoAsyntheta- 2 1925–1936 ses,adenylationdomainsofnon-ribosomalpeptidesynthetases,andfirefly 3. Berg,I.A.,Kockelkorn,D.,Ramos-Vera,W.H.,Say,R.F.,Zarzycki,J., luciferase.ACSChem.Biol.4,811–827 Hügler,M.,Alber,B.E.,andFuchs,G.(2010)Autotrophiccarbonfixation 25. Bräsen,C.,andSchönheit,P.(2005)AMP-formingacetyl-CoAsynthetase inarchaea.Nat.Rev.Microbiol.8,447–460 fromtheextremelyhalophilicarchaeonHaloarculamarismortui.Purifi- 4. Berg,I.A.,Kockelkorn,D.,Buckel,W.,andFuchs,G.(2007)A3-hydroxy- cation,identification,andexpressionoftheencodinggeneandphyloge- propionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation neticaffiliation.Extremophiles9,355–365 pathwayinarchaea.Science318,1782–1786 26. Bräsen,C.,Urbanke,C.,andSchönheit,P.(2005)AnoveloctamericAMP- 5. Alber,B.E.,Kung,J.W.,andFuchs,G.(2008)3-Hydroxypropionyl-coen- forming acetyl-CoA synthetase from the hyperthermophilic crenar- zymeAsynthetasefromMetallosphaerasedula,anenzymeinvolvedin chaeonPyrobaculumaerophilum.FEBSLett.579,477–482 autotrophicCO fixation.J.Bacteriol.190,1383–1389 27. Ingram-Smith,C.,andSmith,K.S.(2007)AMP-formingacetyl-CoAsyn- 2 6. Hügler,M.,Huber,H.,Stetter,K.O.,andFuchs,G.(2003)Autotrophic thetasesinArchaeashowunexpecteddiversityinsubstrateutilization. CO fixationpathwaysinarchaea(Crenarchaeota).Arch.Microbiol.179, Archaea2,95–107 2 160–173 28. Pryde,S.E.,Duncan,S.H.,Hold,G.L.,Stewart,C.S.,andFlint,H.J.(2002) 7. Huber,H.,Gallenberger,M.,andJahn,U.(2008)Adicarboxylate/4-hy- Themicrobiologyofbutyrateformationinthehumancolon.FEMSMi- droxybutyrateautotrophiccarbonassimilationcycleinthehyperthermo- crobiol.Lett.217,133–139 philicarchaeumIgnicoccushospitalis.Proc.Natl.Acad.Sci.U.S.A.105, 29. Gerhardt,A.,Cinkaya,I.,Linder,D.,Huisman,G.,andBuckel,W.(2000) 7851–7856 Fermentationof4-aminobutyratebyClostridiumaminobutyricum.Clon- 8. Auernik,K.S.,andKelly,R.M.(2010)Physiologicalversatilityoftheex- ingoftwogenesinvolvedintheformationanddehydrationof4-hydroxy- tremelythermoacidophilicarchaeonMetallosphaerasedulasupportedby butyryl-CoA.Arch.Microbiol.174,189–199 transcriptomicanalysisofheterotrophic,autotrophic,andmixotrophic 30. Valentin, H. E., Zwingmann, G., Schönebaum, A., and Steinbüchel, A. growth.Appl.Environ.Microbiol.76,931–935 (1995)Metabolicpathwayforbiosynthesisofpoly(3-hydroxybutyrate-co- 9. Ramos-Vera, W. H., Weiss, M., Strittmatter, E., Kockelkorn, D., and 4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. Fuchs, G. (2011) Identification of missing genes and enzymes for au- Eur.J.Biochem.227,43–60 totrophiccarbonfixationincrenarchaeota.J.Bacteriol.193,1201–1211 31. Brock,T.D.,Brock,K.M.,Belly,R.T.,andWeiss,R.L.(1972)Sulfolobus. 10. Estelmann,S.,Hügler,M.,Eisenreich,W.,Werner,K.,Berg,I.A.,Ramos- Anewgenusofsulfur-oxidizingbacterialivingatlowpHandhightem- Vera,W.H.,Say,R.F.,Kockelkorn,D.,Gad’on,N.,andFuchs,G.(2011) perature.Arch.Microbiol.84,54–68 LabelingandenzymestudiesofthecentralcarbonmetabolisminMetal- 32. Shivvers,D.W.,andBrock,T.D.(1973)Oxidationofelementalsulfurby losphaerasedula.J.Bacteriol.193,1191–1200 Sulfolobusacidocaldarius.J.Bacteriol.114,706–710 11. Hügler,M.,Krieger,R.S.,Jahn,M.,andFuchs,G.(2003)Characterization 33. Grogan,D.W.(1989)Phenotypiccharacterizationofthearchaebacterial ofacetyl-CoA/propionyl-CoAcarboxylaseinMetallosphaerasedula.Eur. genusSulfolobus.Comparisonoffivewild-typestrains.J.Bacteriol.171, J.Biochem.270,736–744 6710–6719 12. Alber,B.,Olinger,M.,Rieder,A.,Kockelkorn,D.,Jobst,B.,Hügler,M.,and 34. Kletzin, A., Urich, T., Müller, F., Bandeiras, T. M., and Gomes, C. M. Fuchs,G.(2006)Malonyl-coenzymeareductaseinthemodified3-hy- (2004)Dissimilatoryoxidationandreductionofelementalsulfurinther- droxypropionatecycleforautotrophiccarbonfixationinarchaealmetal- mophilicarchaea.J.Bioenerg.Biomembr.36,77–91 losphaeraandsulfolobusspp.J.Bacteriol.188,8551–8559 35. Bathe,S.,andNorris,P.R.(2007)Ferrousiron-andsulfur-inducedgenes FEBRUARY8,2013•VOLUME288•NUMBER6 JOURNALOFBIOLOGICALCHEMISTRY 4021
Description: