ebook img

Rokhsar-Kivelson Models of Bosonic Symmetry-Protected Topological States PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Rokhsar-Kivelson Models of Bosonic Symmetry-Protected Topological States

Rokhsar-KivelsonModelsofBosonicSymmetry-ProtectedTopologicalStates Luiz H. Santos Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada A platform for constructing microscopic Hamiltonians describing bosonic symmetry-protected topological (SPT) states is presented. The Hamiltonians we consider are examples of frustration-free Rokhsar-Kivelson models, which are known to be in one-to-one correspondence with classical stochastic systems in the same spatial dimensionality. By exploring this classical-quantum mapping, we are able to construct a large class of microscopic models which, in a closed manifold, have a non-degenerate gapped symmetric ground state describing the universal properties of SPT states. Examples of one and two dimensional SPT states which illustrateourapproacharediscussed. 5 1 I. INTRODUCTION SPT states. As we shall see, some of the exactly solvable 0 models previously studied20,21,26 will be identified as special 2 The SO(3) symmetric spin-1 anti-ferromagnetic Heisen- cases of a large class of models to be constructed here. We r p bergchain,whichwasshownbyHaldane1–3tohaveasymme- shallalsobeabletoconstructparentHamiltoniansfortwodi- A trypreservinggappedgroundstate,providestheoldestknown mensionalZ2×Z2paramagnets,whoseeffectiveedgetheory was shown in Ref. 16 to be in direct relation to non-trivial example of a bosonic symmetry-protected topological (SPT) 9 3-cocycles. stateinonedimension. Thetopologicalcharacterofthisstate 2 The classes of gapped bosonic insulators protected a by is captured by a topological θ-term present in the non-linear global symmetry G that we shall be concerned with have, ] sigmamodeleffectiveactiondescribinglong-wavelengthde- el greesoffreedom.1–3 onad-dimensionalclosedmanifold,anon-degenerateground - An insightful account of the properties of this anti- state r .st fLeirerbo,maangdnTetaiscaksipi(nAKchLaTin), wwhaso cgoivnesntrubcytedAafflHecakm,ilKtoenninaendiyn, |ΨG(cid:105)= (cid:112) 1 (cid:88) e−β2EG(s)+iWG(s)|s(cid:105), (1.1) t Z(β) a the same phase as the Heisenberg model, where the S = 1 s m spins emerge from the composition of underlying S = 1/2 where {|s(cid:105)} denotes an orthonormal many-body basis, d- dAeKgrLeTesmoofdferelehdaosma.n4,o5nW-diethgepneeriroadteicgbroouunnddasrtyatceotnhdaittdiooness,nthoet EG(s) ∈ R is a non-universal local function related to the n decay of correlations of local operators in the ground state break any symmetries and is separated from the first excited o andthephaseW (s)∈Risauniversalpiecethatendowsthe state by a finite gap. With open boundary conditions, on the G c ground state (1.1) with its non-trivial topological properties. [ otherhand,theAKLTmodelmakesitmanifestthateachedge supportsa“free”S = 1/2degreeoffreedomcontributingto WG(s)plays,atthemicroscopiclevelconsideredhere,arole 3 analogoustothetopologicalθ-term.6,7,17,18 a2-folddegeneracyperedge. Interestingly,whiletheHamil- v WhenW (s)=0,oneobtainsfromEq.(1.1)thenodeless tonian is SO(3) symmetric and the bulk degrees of freedom G 6 groundstate 6 transformlinearlyunderthissymmetry,theeffectiveS =1/2 0 spinsontheedgestransformprojectivelyundertheactionof 0 thespinrotationsymmetry: aninitialS = 1/2spinstatero- |ΦG(cid:105)= (cid:112) 1 (cid:88) e−β2EG(s)|s(cid:105). (1.2) 0 tated by 360 degrees about an arbitrary axis is mapped into Z(β) s . 2 itself up to a minus sign. The inter-connection among the TheformofthegroundstateEq.(1.2)isveryappealing;for 0 topological θ-term action, the ground state degeneracy with 5 openboundaryconditionsandtheprojectiverepresentationof equal time correlation functions of operators in the diagonal 1 representation{|s(cid:105)}, the global symmetry on the edge degrees of freedom makes : v thissystemanon-trivialgappedphaseofmatter. Xi theIrnesphiraevde bbyeetnhereecxeanmtppleroopfostahlesatnoti-cflearsrsoimfyaggnaeptpicedchSaPinT, (cid:104)ΦG|Oˆa(sˆ)Oˆb(sˆ)|ΦG(cid:105)=(cid:88) Oa(s)Ob(s)e−Zβ(EβG)(s) , r s a phasesofmatterprotectedbyaglobalsymmetryGusingvar- (1.3) iousmathematicalframeworkssuchasgroupcohomology,6,7 which generalizes the concept of projective representations, can be interpreted as equal time correlation functions of an topologicalfieldtheories8–16 andnon-linearsigmamodelsin equilibriumd-dimensionalstatisticalmechanicalsystemwith the presence of a topological θ-term action compatible with classical configurations {s}, each one occurring with prob- the global symmetry G.17,18 Recently, a number of micro- ability p(s0) = e−βEG(s)/Z(β), where the real parameter β scopicmodelsofbosonicSPTstateshavebeenstudied,which acquiresthenaturalinterpretationofaneffectiveinversetem- helptoshedlightontheroleplayedbyphysicalinteractions peratureandthenormalizationfactorofthegroundstate, inbringingaboutSPTphases.6,7,9,15,16,19–26 Thepurposeofthispaperistoprovideaframeworkforcon- Z(β)=(cid:88) e−βEG(s), (1.4) structing microscopic models capable of describing bosonic s 2 isinterpretedasthepartitionfunctionoftheclassicalsystem hence, in “thermal” equilibrium. Hence, if the associated classical model described by the partition function Eq. (1.4) is in the |Ψ (cid:105)=W |Φ (cid:105). (1.7b) G G G “disordered” phase, then typical correlation functions of lo- caloperatorsdistantby|r|behavease−|r|/ξ,forsomefinite correlationlengthξ,andtherepresentation(1.2)canbeasso- FortheSPTgroundstateEq.(1.1)tobeinvariantunderthe ciatedwithaquantummany-bodygroundstateinitsgapped symmetryG,itisrequiredthat phase. Infacttheforegoingclassical-quantumcorrespondencecan E (gs)=E (s), bemademoreprecise.27–31Eq.(1.2)isrecognizedasthezero G G (1.8a) W (gs)=W (s)mod2π, energygroundstateofaclassofquantumdimer-likemodels G G attheso-calledRokhsar-Kivelson(RK)point.27 InRef.27,it ifGisanunitaryglobalsymmetry,and wasnotedthatdimer-dimercorrelationfunctionsofthesquare latticequantumdimermodelattheRKpointcanbecomputed E (gs)=E (s), exactlyfromthecorrespondingclassicaldimerproblem.32 In G G (1.8b) Ref. 29, Ardonne, Fendley and Fradkin have established the WG(gs)=−WG(s)mod2π, quantum-classicalcorrespondencetomoregeneralclassesof RK Hamiltonians beyond dimer models. In Ref. 30, Henley ifGisananti-unitaryglobalsymmetry. has observed that any stochastic classical system described NowletHG andHG be,respectively,thequantumHamil- by a real transition rate matrix M can be interpreted, via a tonians whose non-degenerate ground states are |ΦG(cid:105) and similaritytransformation,asanRKHamiltonian. InRef.31, |ΨG(cid:105). ThentheunitarymappingEq.(1.7b)establishes Castelnovo, Chamon, Mudry and Pujol have shown that the reverseistrue,namely,thatgivenaquantumRKHamiltonian HG =WGHGW−G1. (1.9) in a “preferred basis” [the basis in which the ground state is expressed as a linear combination of same-sign coefficients Starting, thus, from a parent Hamiltonian HG for the trivial asinEq.(1.2)],thereexistsanassociatedstochasticclassical gapped state Eq. (1.2), one can construct a parent Hamilto- modelwhosespectrumofrelaxationratesis(uptoanoverall nianHGfortheSPTgroundstateEq.(1.1)usingEq.(1.9),if minussign)thesameastheenergyspectrumofthequantum the unitary transformation connecting the two ground states, RKHamiltonianandwhoseequilibriumprobabilitydistribu- Eq.(1.7),isknown. tion is the square of the coefficients in the expansion of the This paper is organized as follows. In Sec. (II) we review RKquantumgroundstateEq.(1.2). therelevantpointsaboutthemappingbetweenstochasticclas- In light of the above arguments, if one considers the con- sical systems and quantum RK Hamiltonians. In Sec. (III) figurations {s} to be made of spins on a lattice, then the weconstructparentHamiltoniansofonedimensionalbosonic groundstateEq.(1.2)offersanaturalrepresentationofapara- SPT states with Z × Z symmetry, where we shall use n n magneticstate,providedthecorrespondingclassicalsystemis the concept of entanglement spectrum degeneracy to deter- chosentohaveaspectrumofrelaxationrateswithafinitegap minertheunitarytransformationEq.(1.7)thatmapsthetrivial andcorrelationfunctionsoflocaloperators,Eq.(1.3),exhibit- groundstatetoothern−1topologicalphases.InSec.(IV)we ingshort-rangebehavior. discusstheonedimensionalSPTstatewithanti-unitarytime- Asfortheroleplayedbysymmetries,wenowletthequan- reversalsymmetryZT. InSec.(V)weconstructtwodimen- 2 tum system be invariant under a global symmetry group G, sionalmicroscopicmodelsthataccountforallthe8possible whoseactiononthebasis|s(cid:105)isrepresentedby classesofZ ×Z SPTparamagnets.WeshowthattheZ ×Z 2 2 2 2 symmetrytransformationprojectedontotheonedimensional S(cid:98)G|s(cid:105)=|gs(cid:105). (1.5) edgeacquiresanon-onsiteform,whichwasstudiedinRef.16 in connection with non-trivial 3-cocycles in the group coho- ItisthenclearthatthegroundstateEq.(1.2)isauniqueand mology.Finallywedrawsomeconclusionsandpointtofuture Ginvariantstateprovidedthelocal“classicalenergy”E (s) G directionsinSec.(VI). issymmetricunderthetransformation{s}→{gs}: E (gs)=E (s). (1.6) G G II. CLASSICAL-QUANTUMMAPPING The central point of this paper is the observation, which In order to make the discussion self-contained, we review willbesupportedbyconcreteexamples,thatinaclosedman- theessentialaspectsoftherelationshipbetweenquantumRK ifold,theSPTgroundstateEq.(1.1)canbeobtainedfromthe Hamiltonians and stochastic classical systems.30,31 The con- trivialinsulatorgroundstateEq.(1.2)viaaglobalsymmetry- tent of Secs. (IIA) and (IIB) closely follows Ref. 31, which preserving unitary transformation W , whose action on the the reader may consult for further details. In Sec. (IIC) we G many-bodybasis{|s(cid:105)}is givethegeneralformoftheSPT-RKHamiltoniansdescribing bosonicSPTstatesind-dimensionalspaceobtainedfromthe WG|s(cid:105):=eiWG(s)|s(cid:105), (1.7a) unitarymappingEq.(1.9). 3 A. Rokhsar-KivelsonHamiltonians B. RelationbetweenquantumRKHamiltoniansand stochasticclassicalsystems AquantumRKHamiltoniansatisfiesthreeproperties31: InordertoshowtherelationbetweenquantumRKHamil- 1. The orthonormal elements of the basis Σ = {|s(cid:105)}, tonianandstochasticclassicalsystems,oneconsidersthereal- whichspantheHilbertspace, valuedmatrixM definedby30,31 (cid:88) (cid:104)s|s(cid:48)(cid:105)=δs,s(cid:48), 11= s |s(cid:105)(cid:104)s|, (2.1) Mss(cid:48) ≡−e−β2[E(s)−E(s(cid:48))] (HRK)ss(cid:48) , (2.7) formacountableset. where(H ) =(cid:104)s|H |s(cid:48)(cid:105)denotesthematrixelements RK ss(cid:48) RK ofH . FromthefactthatH isarealandHermitianoper- 2. The quantum Hamiltonian can be decomposed into a RK RK ator,itfollowsthat sum of positive-semidefinite projector-like Hermitian operatorsP [Eq.(2.2)]. s,s(cid:48) (H ) =(H ) (2.8) RK ss(cid:48) RK s(cid:48)s 3. The ground state [Eq. (2.4)] is annihilated by every P andthenormalizationconstantofthegroundstate and,fromEqs.(2.2)and(2.7),thatthematrixM satisfies: s,s(cid:48) canbeinterpretedasthepartitionfunctionofaclassical M >0, ifs(cid:54)=s(cid:48), (2.9a) system[Eq.(2.5)]. ss(cid:48) and TheRKHamiltoniantakestheform s(cid:48)(cid:54)=s 1 s(cid:88)(cid:54)=s(cid:48) Mss =−(cid:88) Ms(cid:48)s. (2.9b) H = ω P , (2.2a) RK 2 s,s(cid:48) s,s(cid:48) s(cid:48) (s,s(cid:48)) One then considers a classical system with a phase space where formedbyconfigurations{s},which,asafunctionoftimeτ, ωs,s(cid:48) ∈R, ωs,s(cid:48) >0, (2.2b) can be visited stochastically with probability ps(τ) evolving accordingtothemasterequation Ps,s(cid:48) =−|s(cid:105)(cid:104)s(cid:48)|−|s(cid:48)(cid:105)(cid:104)s| dps(τ) =(cid:88) M p (τ) +e−β2[E(s(cid:48))−E(s)]|s(cid:105)(cid:104)s|+e−β2[E(s)−E(s(cid:48))]|s(cid:48)(cid:105)(cid:104)s(cid:48)|, dτ s(cid:48) ss(cid:48) s(cid:48) (2.10) (2.2c) s(cid:48)(cid:54)=s (cid:88) (cid:104) (cid:105) = M p (τ)−M p (τ) , whereβ ∈R,E(s)∈RandP isaprojector-likepositive ss(cid:48) s(cid:48) s(cid:48)s s s,s(cid:48) s(cid:48) semi-definiteHermitianoperatorsatisfying (cid:26) (cid:27) where Eq. (2.9b) has been used to achieve the last equality β P2 =2 cosh [E(s(cid:48))−E(s)] P . (2.3) of Eq. (2.10). The first term on the r.h.s. accounts for the s,s(cid:48) 2 s,s(cid:48) transitions out of the configurations s(cid:48) into the configuration s,whilethesecondtermonther.h.s. accountsfortransitions Oneeasilyverifiesthatthenodelessstate outoftheconfigurationsintotheconfigurationss(cid:48). MoreoverEqs.(2.7)and(2.8)areeasilyseentoimply,for |ΦRK(cid:105)= (cid:112) 1 (cid:88) e−β2E(s)|s(cid:105), (2.4) everypairofindices(s,s(cid:48)), Z(β) s withnormalizationconstant Mss(cid:48)p(s0(cid:48)) =Ms(cid:48)sp(s0), (2.11a) (cid:88) Z(β)= e−βE(s), (2.5) where s 1 satisfies p(0) ≡ e−βE(s). (2.11b) s Z(β) P |Φ (cid:105)=0, ∀(s,s(cid:48)). (2.6) s,s(cid:48) RK Eq. (2.11) implies the condition of detailed balance on the Thus Eq. (2.4) is the ground state of the RK Hamilto- matrix M as well as that p(s0) is the equilibrium probability nian Eq. (2.2) with energy zero. The normalization constant distributionassociatedwiththeclassicaldynamicsEq.(2.10). Eq.(2.5)canbeinterpretedasthepartitionfunctionofaclas- Denoting by λ and ψ(R;n), respectively, the right- n s sicalsystemwithclassicalenergyE(s)attheeffectiveinverse eigenvaluesandright-eigenvectorsofM, temperatureβ. Inthe“infinitetemperature”limitβ = 0,the Boltzmann factors in the partition function tend to unity and (cid:88) M ψ(R;n) =λ ψ(R;n), (2.12) ss(cid:48) s(cid:48) n s Z(0)countsthenumberofallowedconfigurations. s(cid:48) 4 then the time dependent solution of Eq. (2.10) can be ex- largestcharacteristictimescaleassociatedwiththedecayinto pressedas the equilibrium configuration is finite in the thermodynamic limit, thenitfollowsfromEq.(2.14)thatthemany-bodyen- (cid:88) p (τ)= a (0)eλnτψ(R;n), (2.13) ergy spectrum of the quantum Hamiltonian possess a finite s n s energygapforexcitationsabovegroundstate. n wherea (0)arecoefficientsdeterminedbytheinitialcondi- n tions. C. SPT-RKHamiltonians Since Eq. (2.7) establishes, up to an overall minus sign, a similaritytransformationbetweenH andM,thespectrum WenowgivethegeneralformoftheSPT-RKHamiltonians RK ofrelaxationrates{λ }ofM andtheenergyspectrum{ε } withgroundstategivenbyEq.(1.1). n n ofH aresimplyrelated: Letthed-dimensionalquantumsystem,protectedbyglobal RK symmetryG,initstrivialphasebedescribedbyanRKHamil- εn =−λn >0. (2.14) tonian HG of the form Eq. (2.2) with the non-degenerate groundstate|Φ (cid:105),Eq.(1.2),whereweimposethesymmetry G constraint Eq. (1.6) upon E (s). Then the unitary transfor- G Whentheclassicalsystemwhosedynamicsisdescribedby mationEq.(1.7)yieldstheSPTgroundstate|Ψ (cid:105),Eq.(1.1), G Eq. (2.10) has a spectrum of relaxation rates such that the andEq.(1.9)yieldstheSPT-RKHamiltonianH : G s(cid:48)(cid:54)=s 1 (cid:88) H =W H W−1 = ω P , (2.15a) G G G G 2 s,s(cid:48) s,s(cid:48) (s,s(cid:48)) where ω ∈R, ω >0, (2.15b) s,s(cid:48) s,s(cid:48) Ps,s(cid:48) =−ei[WG(s)−WG(s(cid:48))]|s(cid:105)(cid:104)s(cid:48)|−ei[WG(s(cid:48))−WG(s)]|s(cid:48)(cid:105)(cid:104)s|+e−β2[EG(s(cid:48))−EG(s)]|s(cid:105)(cid:104)s|+e−β2[EG(s)−EG(s(cid:48))]|s(cid:48)(cid:105)(cid:104)s(cid:48)|. (2.15c) Before we proceed to discuss specific SPT systems, we III. SPTSTATESINONEDIMENSION closethissectionwithafewimportantremarks: (a) InSecs.(IIA)and(IIB)wesawthatthestructureofthe InthissectionwederiveparentHamiltoniansofonedimen- RK ground state is determined only by βE(s), while sional bosonic SPT states protected by Z ×Z symmetry. n n the energy spectrum is determined solely by the cou- In a chain with periodic boundary conditions, each of these plingsω .30,31 s,s(cid:48) phases is described by a non-degenerate gapped symmetric (b) If the couplings ω are such that the energy spec- groundstate.Inachainwithopenboundaryconditions,onthe s,s(cid:48) trumhasanon-degenerategappedgroundstate(which otherhand,thereremainsatrivialphasewithanon-degenerate istheonlycaseconsideredinthiswork),thenEq.(2.4) groundstate,whilen−1phaseshaven-folddegeneracyper parametrizes a large class of ground states, whereby edge,accountingforatotaln2-folddegeneracyoftheground βE(s) controls the correlation length associated with statemanifoldinthethermodynamiclimit. thedecayofcorrelationfunctionssuchasEq.(1.3). OuraimistoconstructtheunitarytransformationsEq.(1.7) connecting the trivial ground state and the n−1 non-trivial (c) Intheparticularcaseβ = 0,thegroundstateEq.(2.4) SPTgroundstates.Ourstrategyinderivingsuchunitarymap- acquires the form of a trivial product state. It will pings is to draw on the notion of entanglement spectrum de- proveusefultoworkinthis“infinitetemperature” limit, generacy as follows. As we pointed out in the remark (c) where the correlation length is zero, in order to deter- of Sec. (IIC), in the “infinite temperature” limit β = 0 the minetheformoftheunitarytransformationEq.(1.7). ground state of the trivial SPT chain reduces to a product (d) While the unitary mapping Eq. (1.7) leaves the energy state. The entanglement structure of the product state is as spectrum unchanged, it introduces a non-trivial entan- simpleasitgets,fortheSchmidtdecompositionwithrespect glementstructureintheSPTgroundstateEq.(1.1)that toanypartitioncontainsonlyoneeigenvalue(equalto1). We isresponsibleforitsuniversaltopologicalproperties. shall find the unitary transformation Eq. (1.7) by demanding 5 that, in the limit β = 0, the entanglement spectrum of the andtheSPTstate non-trivial SPT ground state, for any partition of the chain, acquires an n-fold degeneracy. Remarkably, we shall verify |ΨZ2×Z2(cid:105) ≡WθZ2×Z2|ΦZ2×Z2(cid:105) that these unitary mappings, via Eq. (1.9), endow the parent 1 (cid:88) ≡ eiWZ2×Z2(s)|s(cid:105) Hamiltonians of non-trivial SPT chains with the required n- 2Ns/2 (3.5) s fold degeneracy of the energy spectrum per edge. Once the unitarytransformationEq.(1.7)isderived,wecanobtainthe = 1 (cid:88) ei(cid:80)j θj(1−sjsj+1)/2|s(cid:105). most general form of the SPT ground state Eq. (1.1) by al- 2Ns/2 s lowing β (cid:54)= 0 without changing either the gapped nature of The unitary transformation Eq. (3.4) endows the state themany-bodyenergyspectrumorthetopologicalproperties Eq. (3.5) with an amplitude eiθj for every domain wall be- of the ground state. That this is true can be seen perturba- tweenneighborspinsinthemany-bodyconfiguration|s(cid:105).We tively: movingawayfromtheβ = 0limitwithβ << 1and seektofindθ forwhichEq.(3.5)describestheSPTground E (s)alocalfunctioninEq.(2.15),amountstoaddingsmall j G state. localsymmetry-preservingperturbationstothegappedβ =0 DuetotheproductstatenatureofEq.(3.2)andthepairwise theory,whichtherefore,cannotimmediatelydestroytheSPT entanglement induced by the unitary mapping Eq. (3.4), one phase. Based on this we expect that, for 0 < β ≤ β , the c effortlesslyfindsthat,foranypartitionΣ ,thereduceddensity ground state Eq. (1.1) describes a class of many-body SPT i operator obtained by tracing over one of the subsystems is groundstatesadiabaticallyconnectedtotheβ =0limit. givenbythe2×2matrix (cid:18) (cid:19) A. Z2 × Z2SPTstatesind=1 ρ = 1 1 cos(θi) . (3.6) i 2 cos(θi) 1 Weconsideraspinchain,withanevennumberN ofsites, s For θ = 0 the above density matrix has a single non-zero dividedintoevenandoddsublatticesandZ ×Z symmetry i 2 2 Schmidt eigenvalue. The existence of 2 degenerate Schmidt generatedby eigenvalues(equalto1/2)isverifiedfor S(cid:98)Z(1) = (cid:89) Xj, S(cid:98)Z(2) = (cid:89) Xj. (3.1) θi =±π/2. (3.7) 2 2 j∈even j∈odd Inthefollowing,{X,Y,Z}denotethethreePaulimatrices. Moreover, imposing that the unitary transformation Eq. (3.4) commutes with either of the Z symmetries in We start by examining a trivial spin chain in the special 2 Eq.(3.1)yieldsthefinalform limitwhereitisrepresentedbyaproductstate, (cid:89)Ns 1 (cid:88) WZ2×Z2 =(cid:89) eiπ4 (1−Z2j−1Z2j)e−iπ4 (1−Z2jZ2j+1). |ΦZ2×Z2(cid:105)= |→(cid:105)j = 2Ns/2 |s(cid:105), (3.2) j (3.8) j=1 s where Xj|→(cid:105)j = |→(cid:105)j and {|s(cid:105)} represents the 2Ns Onethenfinds many-body spin states in the eigenbasis of Z operators: Zj|sj(cid:105) = sj|sj(cid:105), for sj ± 1. We recognize Eq. (3.2) as WZ2×Z2X2jW−Z21×Z2 =X2jZ2j−1Z2j+1, (3.9) thegroundstateEq.(1.2)intheβ =0limit. Ithastheparent WZ2×Z2X2j+1W−Z21×Z2 =X2j+1Z2jZ2j+2. Hamiltonian HZ2×Z2 =ω0 (cid:88)Ns (1−Xj) , (3.3) munoTidtahirfieyeotdrpaPenarsuaftlooirsrmpWiantiZoo2pn×e)Zrwa2thXoircjh(sWiisn−Zc“2ed1×rieZts2issecodab”ntabibyneethdreefrgdoaomrmdeaXdinjawbsyalaal j=1 operatorZ Z withsupportontheoppositesublattice. j−1 j+1 So, under the unitary transformation Eq. (3.8), the SPT whichisanRKHamiltonianoftheformEq.(2.2)withβ =0 Hamiltonianatzerocorrelationlengthis andω =ω >0,wherethesuminEq.(2.2a)extendsover s,s(cid:48) 0 paiTrsheofpsrotadtuesct(sst,aste(cid:48))fworhmicohfdthifefegrrboyunadssintagtleeEsqp.in(3fl.2ip).implies HZ2×Z2 ≡WZ2×Z2HZ2×Z2W−Z21×Z2 that its Schmidt decomposition, with respect to any partition (cid:88)Ns (cid:16) (cid:17) (3.10) =ω 1−Z X Z . Σ between sites i and i+1 of the lattice, contains a single 0 j−1 j j+1 i Schmidteigenvalue(equalto1). j=1 Now,forθj ∈R,weintroducetheunitarymapping We note that the model Eq. (3.10) has been constructed in Ref.21usingtheconceptofdecorateddomainwalls,whilewe (cid:89) WθZ2×Z2 ≡ eiθj(1−ZjZj+1)/2 (3.4) hspaevcetraurmrivveidaothneitubnyitaarpypmeaalpinpgintgoEthqe.n(3o.t8io).nofentanglement j 6 Groundstatedegeneracycanbeeasilyattestedbystudying whichisanRKHamiltoniansoftheformEq.(2.2)withβ = thismodelwithopenboundaryconditions,where 0,ω = ω > 0,wherethesuminEq.(2.2a)extendsover s,s(cid:48) 0 pairsofstates(s,s(cid:48))whichdifferbyasingleZ spinflip. 3 N(cid:88)s−1 (cid:16) (cid:17) Wenowconsider,forθj ∈R,theunitarytransformation Hopen =ω 1−Z X Z . (3.11) Z2×Z2 0 j−1 j j+1 j=2 ThefactthattheaboveHamiltoniancommuteswithZ1and WθZ3×Z3 =(cid:89) exp(cid:34)iθj(cid:88)2 (ω¯1a−−(σ1)j†(σωja+1−)a1)(cid:35) (3.16) Z impliesthatthereare2-folddegeneratestatesassociated j a=1 Ns withtheleftandtherightedgescorrespondingtostateswith s = ±1 and s = ±1. Thus the universal properties of 1 Ns andtheSPTstate theSPTstatestudiedhereareencodedintheunitarymapping Eq.(3.8). theWmitohrethgeenuenriatalrfyortmranosffotrhmeaStiPoTngErqo.un(3d.8s)t,atweeEqc.an(1o.1b)tabiyn |ΨZ3×Z3(cid:105)≡WθZ3×Z3|ΦZ3×Z3(cid:105) allowingβ (cid:54)= 0withoutchangingeitherthegappednatureof ≡ 1 (cid:88) eiWZ3×Z3(s)|s(cid:105) themany-bodyenergyspectrumorthetopologicalproperties 3Ns/2 s ofthegroundstate. Inthisregard,theHamiltonianEq.(3.10)   is a particular example of a larger class of SPT models de- 1 (cid:88) (cid:88) (cid:88)2 1−ωa(sj+1−sj) scribedinEq.(2.15),withthephasefactorseiWZ2×Z2(s)given = 3Ns/2 exp iθj (ω¯a−1)(ωa−1)|s(cid:105). s j a=1 by acting with the unitary transformation Eq. (3.8). on the (3.17) state|s(cid:105). B. Z3 × Z3SPTstatesind=1 The unitary transformation Eq. (3.16) endows the state Eq. (3.17) with an amplitude eiθj for every pair of neighbor Weconsideraspinchain,withanevennumberNs ofsites spinsj andj+1forwhichsj (cid:54)= sj+1 (mod3)inthemany- andZ ×Z symmetrygeneratedby bodyconfiguration|s(cid:105). 3 3 S(cid:98)Z(1) = (cid:89) τj, S(cid:98)Z(2) = (cid:89) τj. (3.12) wiDseueenttoantghleempreondtuinctdustcaetdebnyattuhreeuonfitEarqy.m(3a.1p4p)inagnEdqth.(e3p.1a6ir)-, 3 3 j∈even j∈odd oneeffortlesslyverifiesthat,foranypartitionΣ ,thereduced i density operator obtained by tracing over one of the subsys- where,ateachsitej,weconsidertheoperators temsisgivenbythe3×3matrix     0 0 1 1 0 0 τj =1 0 0 , σj =0 ω 0  , (3.13)  1 f(θ ) f(θ ) 0 1 0 0 0 ω2 1 i i ρi = 3 f(θi) 1 f(θi) , (3.18) f(θ ) f(θ ) 1 satisfyingτ3 =σ3 =1,τ†σ τ =ωσ ,whereω =ei2π/3. i i j j j j j j Let |s (cid:105), for s = 0,1,2, be the eigenstates of σ : i i i σi|si(cid:105) = ωsi|si(cid:105). As in Sec. (IIIA), we start with a triv- wheref(θ)= 1(1+2cos(θ)). Forθ =0theabovedensity ialZ ×Z paramagnetdescribedbythegroundstate 3 i 3 3 matrix has a single non-zero Schmidt eigenvalue. The exis- tence of 3 degenerate Schmidt eigenvalues (equal to 1/3) is |ΦZ3×Z3(cid:105)≡(cid:89) (cid:16)|0j(cid:105)+|√1j3(cid:105)+|2j(cid:105)(cid:17)= 3N1s/2 (cid:88) |s(cid:105), thenverifiedfor j {s} (3.14) 2π θ(p) = p, p=1,2. (3.19) where{|s(cid:105)}representsthe3Ns many-bodyspinstatesinthe i 3 eigenbasisofσoperators. WerecognizeEq.(3.14)astheRK ground state Eq. (1.2) in the β = 0 limit. It has the parent Hamiltonian Moreover, imposing that the unitary transformation (cid:88)Ns (cid:104) (cid:16) (cid:17)(cid:105) Eq. (3.16) commutes with either of the Z3 symmetries in HZ3×Z3 =ω0 2− τj +τj† , (3.15) Eq.(3.12)yieldsthefinalform j=1 7 W(p) =(cid:89) exp(cid:104)i2πp (cid:88)3 1−(σ2†j−1σ2j)a (cid:105) exp(cid:104)−i2πp (cid:88)2 1−(σ2†jσ2j+1)a (cid:105), p=1,2. (3.20) Z3×Z3 3 (ωa−1)(ω¯a−1) 3 (ωa−1)(ω¯a−1) j a=1 a=1 Eq.(3.20)establishestwounitarymappingsbetweenthetriv- Moreoverwefindthat ial SPT ground state and the two non-trivial SPT ground (cid:16) (cid:17)−1 states. W(p) τ W(p) =τ (σ σ† )p, Z3×Z3 2j Z3×Z3 2j 2j−1 2j+1 (cid:16) (cid:17)−1 W(p) τ W(p) =τ (σ† σ )p, Z3×Z3 2j+1 Z3×Z3 2j+1 2j 2j+2 (3.21) so that the operator τ gets “dressed” by a domain wall like j operator–carryingZ chargep = 1,2–withsupportonthe 3 oppositesublattice. TheSPTHamiltoniansintheβ =0limitthenread (cid:16) (cid:17)−1 HZ(p3)×Z3 =W(Zp3)×Z3HZ3×Z3 W(Zp3)×Z3 (cid:88) (cid:110)(cid:104) (cid:105) (cid:111) (cid:88) (cid:110)(cid:104) (cid:105) (cid:111) (3.22) =ω 1−τ (σ σ† )p +H.c. +ω 1−τ (σ† σ )p +H.c. , 0 2j 2j−1 2j+1 0 2j+1 2j 2j+2 j j forp=1,2. ofthegroundstate. Inthisregard,theHamiltonianEq.(3.22) providesaparticularexampleofalargerclassofmodelsde- As in Sec. (IIIA), degeneracy of the ground state energy scribedinEq.(2.15),withthephasefactorseiWZ3×Z3(s)given manifold can be checked by placing this system in an open by acting with the unitary transformation Eq. (3.20). on the chain, in which case, one finds that the SPT Hamiltonians state|s(cid:105). commuteswithσ andσ ,thusimplyinga3-folddegenerate 1 Ns state associated to the left and right edges. Thus the univer- salpropertiesoftheSPTstatestudiedhereareencodedinthe C. Z × Z SPTstatesind=1 n n unitarymappingEq.(3.20). With the unitary transformation Eq. (3.20) we can obtain We generalize the findings of Secs. (IIIA) and (IIIB) to the more general form of the SPT ground state Eq. (1.1) by Z × Z SPT states (see the Appendix for definitions and n n allowingβ (cid:54)= 0withoutchangingeitherthegappednatureof useful formulas). We arrive at n − 1 Z × Z symmetric n n themany-bodyenergyspectrumorthetopologicalproperties unitarytransformations,labeledbyp=1,...,n−1, W(p) =(cid:89) exp(cid:104)i2πp n(cid:88)−1 1−(σ2†j−1σ2j)a (cid:105) exp(cid:104)−i2πp n(cid:88)−1 1−(σ2†jσ2j+1)a (cid:105). (3.23) Zn×Zn n (ωa−1)(ω¯a−1) n (ωa−1)(ω¯a−1) j a=1 a=1 Itcanbeshown,usingEqs.(A3), (A4)and(A5),that thatthisclassofonedimensionalSPTmodelshasbeenstud- ied in Ref. 26 without reference to the connection between (cid:16) (cid:17)−1 W(p) τ W(p) =τ (σ σ† )p, unitary transformations and ground state entanglement spec- Zn×Zn 2j Zn×Zn 2j 2j−1 2j+1 trumthatweareexploringhere. Moreover,inourformalism, (cid:16) (cid:17)−1 W(p) τ W(p) =τ (σ† σ )p, we do not need to be restricted to the β = 0 limit for, with Zn×Zn 2j+1 Zn×Zn 2j+1 2j 2j+2 theunitarytransformationEq.(3.23),wecanconstructalarge (3.24) class of SPT-RK Hamiltonians of the form Eq. (2.15) with forp=1,...,n−1. thephasefactorseiWZn×Zn(s)givenbyactingwiththeunitary TheZ × Z SPTHamiltoniansintheβ = 0limitareof transformationEq.(3.23)onthebasisstate|s(cid:105). n n thesameformasEq.(3.22)withp = 1,...,n−1. Wenotice 8 IV. SPTSTATEINONEDIMENSIONWITH due to the fact that, with periodic boundary conditions, (cid:80) TIME-REVERSALSYMMETRY (1−s s )/2isanevennumber. Moreover,comparing j j j+1 Eqs.(4.5)and(4.7)withtheresultsobtainedinSec(IIIA),we WenowstudytheonedimensionalbosonicSPTstatespro- concludethat, foranypartitionΣi betweensitesiandi+1, tectedbytime-reversalsymmetrywhich,beingananti-unitary thereare2degenerate(equalto1/2)Schmidteigenvaluesand symmetry,requiresconditionsEq.(1.8b)tobesatisfied. thattheSPTparentHamiltonianforthegroundstateEq.(4.4) Theactionoftime-reversalsymmetryshallberepresented reads bytheanti-unitaryoperator Θ, (cid:88)Ns H ≡W H W−1 =ω (1+Z X Z ) . ΘΘ−1 =1, Θ2 =1, (4.1a) ZT2 ZT2 ZT2 ZT2 0 j−1 j j+1 j=1 (4.8) whereweworkwiththerepresentation (cid:16) (cid:89) (cid:17) SincethisisessentiallythesamemodelastheZ ×Z spin Θ = X K, 2 2 j (4.1b) chaindiscussedinSec(IIIA),weconcludethattheZT sym- j 2 metricSPTHamiltonianhas2-folddegeneracyoftheground withK denotingthecomplexconjugationoperator. stateperedge. AonedimensionalchainofN sitesinthetrivialZT insu- WiththeunitarytransformationEqs.(4.5)and(4.7)wecan s 2 latingphasecanbedescribedbytheHamiltonian obtainthemostgeneralformoftheSPTgroundstateEq.(1.1) by allowing β (cid:54)= 0 without changing either the gapped na- (cid:88)Ns ture of the many-body energy spectrum or the topological HZT =ω0 (1−Xj) , (4.2) properties of the ground state. In this regard, the Hamilto- 2 j=1 nianEq.(4.8)providesaparticularexampleofalargerclass whichhasthetime-reversalsymmetricgroundstate of models described in Eq. (2.15), with the phase factors 1 (cid:88) eiWZT2(s)giveninEq.(4.7). |ΦZT2 (cid:105)= 2Ns/2 |s(cid:105), (4.3) s V. SPTSTATESINTWODIMENSIONS where{|s(cid:105)}representsthe2Ns many-bodyspinstatesinthe eigenbasisofZ operators: Zj|sj(cid:105) = sj|sj(cid:105), forsj = ±1. A. Z SPTstatesind=2 2 We recognize Eq. (4.3) as the ground state Eq. (1.2) in the β = 0limitandEq.(4.2)asanRKHamiltonianoftheform TheclassificationofbosonicSPTstatesintwodimensions, Eq.(2.2)withβ = 0andω = ω > 0, wherethesumin s,s(cid:48) 0 protectedbyZ symmetry,assertstheexistenceofngapped Eq.(2.2a)extendsoverpairsofstates(s,s(cid:48))whichdifferbya n phasesofmatter.6–8Fromthepointofviewoftheonedimen- singlespinflip. We now obtain the unitary mapping W , which, applied sional edge, these n phases can be distinguished by the way ZT2 right-andleft-movingdegreesoffreedomtransformunderthe onthetrivialgroundstateEq.(4.3),yieldsthenon-trivialSPT symmetry: while in the trivial phase right- and left-moving state modescarrythesameZ charges,theirZ chargesarediffer- n n |ΨZT2 (cid:105)≡WZT2 |ΦZT2 (cid:105)≡ 2N1s/2 (cid:88) eiWZT2(s)|s(cid:105), (4.4) eanctofnosreeqaucehncoef,thineeoathcheronf−the1senonn−-tri1vinaolnS-PtrTivsiatalteSsP.8T,9,s1t5aAtess s theedgestatescannotbegappedandsymmetrypreservingat whereintheactionofWZT onthemany-bodybasis{|s(cid:105)}is thesametime. 2 definedas LevinandGuhaveconstructedamodelonatriangularlat- ticethatdescribesaZ SPTparamagnetintwodimensions.20 WZT2 |s(cid:105)=eiWZT2(s)|s(cid:105). (4.5) TheZ2symmetryisg2eneratedby (cid:89) S(cid:98)Z2 = Xj, (5.1) Invariance of the SPT ground state |Ψ (cid:105) under time- ZT j 2 reversalsymmetryEq.(4.1),accordingtoEq.(1.8b),implies where {X,Y,Z} denote the three Pauli matrices and WZT(s)=−WZT(−s)+2π×integer. (4.6) Zj|sj(cid:105)=sj|sj(cid:105),forsj =±1. 2 2 InRef.20thetwokindsofparamagneticgroundstatesare representedby In light of the discussion in Sec. (III), if we assume for 1 (cid:88) WZT2 anansatzthatleadstotheentanglementofnearestneigh- |ΦZ2(cid:105)= 2Ns/2 |s(cid:105), (5.2) borspins, thantheonlytransformation(uptoatrivialglobal s phase)consistentwithEq.(4.6)has forthetrivialparamagnet,and π (cid:88) 1 (cid:88) WZT2(s)= 4 (1−sjsj+1) (4.7) |ΨZ2(cid:105)= 2Ns/2 eiπL(s)|s(cid:105), (5.3) j s 9 for the non-trivial paramagnet. N denotes the number of icalpropertiesofthegroundstategiverisetotheedgephysics s sitesofthetriangularlatticeandL(s)∈Ncountsthenumber studiedinRef.16. of loops that separate domain-wall regions for each one of the 2Ns many-body spin configurations |s(cid:105) (see Figs. 1, 2, and3). ThuswhilethecoefficientsintheexpansionEq.(5.2) all have the same sign, in the non-trivial SPT ground state Eq.(5.3), thesignofthecoefficientsdependsonthenumber ofloopsL(s). Thisnon-trivial(real)phasefactorwasshown inRef.20toberesponsiblefortheuniversalpropertiesofthe Z non-trivialparamagneticstate. 2 FromEqs.(5.2)and(5.3),weidentifythegroundstatesof Ref. 20 with Eqs. (1.2) and (1.1) in the limit β = 0, and the unitary mapping WZ between the two classes of paramag- 2 nets,definedbyitsactiononthebasis{|s(cid:105)},tobe WZ |s(cid:105)=eiWZ2(s)|s(cid:105)=eiπL(s)|s(cid:105). (5.4) FIG.2. (Coloronline)Aparticularmany-bodyconfiguration|s(2)(cid:105) 2 ofspinsZ(2)(blue). j Given that the unitary transformation defined in Eq. (5.4) encodes the universal properties of the two dimensional Z 2 SPT paramagnet, we can move away from the “infinite tem- perature” limit β = 0 studied in Ref. (20) by allowing a largerclassofZ SPTparamagnetswithgroundstategivenby 2 Eq.(1.1)andmicroscopicHamiltoniansgivenbyEq.(2.15). B. Z ×Z SPTstatesind=2 2 2 FIG. 3. (Color online) A particular many-body configuration |s(12)(cid:105)ofthespinsZ(12) = Z(1)Z(2) (green). Notehowthedi- j j j rectionofthearrowsateverysiteisconsistentwithFigs.1and2. InaddressingSPTstateswithZ ×Z symmetry,weallow, 2 2 at each site j of the lattice, two spin species represented by Pauli operators {X(1),Y(1),Z(1)} and {X(2),Y(2),Z(2)}, j j j j j j wheretheZ ×Z symmetryisgeneratedby 2 2 S(cid:98)Z(12) =(cid:89) Xj(1), S(cid:98)Z(22) =(cid:89) Xj(2). (5.5) j j FIG.1. (Coloronline)Aparticularmany-bodyconfiguration|s(1)(cid:105) of spins Z(1) (red), where the loops are defined along the domain Weimmediatelyrealizethatthereshouldexistatleastfour j wallsandhavesupportontheduallattice. AsinRef.20, inorder kindsofparamagnets,whichareobtainedbystackingtwode- todeterminetheprojectionoftheZ symmetryontheedge,wetake coupled Z symmetric systems. These four states of matter 2 2 theouterspinsinareferencestatewheretheyareallpointingup. are parametrized by two integer numbers, p ,p ∈ {0,1}, 1 2 which contribute to the expansion of the ground state with the (real) phase factor exp(cid:8)iπ (cid:2)p L(s(1))+p L(s(2))(cid:3)(cid:9), In Ref. 16, the classification of two dimensional bosonic 1 2 SPTstateswithZ ×Z symmetrywasstudiedfromthepoint whereL(s(1))andL(s(2))count,respectively,thenumberof n m ofviewoftheeffectiveonedimensionaledgedegreesoffree- loopsdefinedbydomainwallconfigurationsformedbyspins dom. Thenon-trivialSPTedgestateswerethereshowntobe ofspecies1and2,asinFigs.1and2. associatedwithnon-trivial3-cocyclesinthegroupcohomol- In order to obtain Z2 × Z2 symmetric states that go be- ogy.However,nomicroscopictheoryforthetwo-dimensional yondthetensorproductoftwoZ2 symmetricstates,wereal- bulkstateshasbeeninvestigated. Inthissection,weconstruct izethat, ateachsitej, wecanconsideranindependentIsing amicroscopictheoryfortheZ ×Z bosonicSPTstatesusing spinZ(12) ≡Z(1)Z(2)witheigenvaluess(12) =s(1)s(2). 2 2 j j j j j j theformalismofRKHamiltoniansandshowhowthetopolog- Wethenpropose 10 |Ψ2Zd2×Z2(cid:105)= 2N1s (cid:88) (cid:88) eiπ[p1L(s(1))+p2L(s(2))+p12L(s(12))]|s(1);s(2)(cid:105) (5.6) s(1) s(2) asadescriptionofthe8classesofZ ×Z symmetricground whichisthetensorproductoftwotrivialZ paramagnets. 2 2 2 states parametrized by 3 binary indices p ,p ,p ∈ {0,1}. 1 2 12 Weadoptthenotation|s(1)(cid:105)⊗|s(2)(cid:105) ≡ |s(1);s(2)(cid:105). When Eq. (5.6) corresponds to the choice of ground state in the p = p = p = 0, Eq. (5.6) describes the trivial ground 1 2 12 “high temperature” limit β = 0 and the SPT ground states state can be obtained from the trivial one, Eq. (5.7), via the uni- |Φ2d (cid:105)= 1 (cid:88) (cid:88) |s(1);s(2)(cid:105), tarytransformationW2Zd2×Z2,whoseactiononthemany-body Z2×Z2 2Ns (5.7) basis{|s(1);s(2)(cid:105)}reads s(1) s(2) W2Zd2×Z2|s(1);s(2)(cid:105)≡eiWZ22d×Z2(s(1);s(2))|s(1);s(2)(cid:105)=eiπ[p1L(s(1))+p2L(s(2))+p12L(s(12))]|s(1);s(2)(cid:105). (5.8) In Eqs. (5.6) and (5.8), in order to simplify the notation, we describes a trivial paramagnetic systemand has Eq. (5.7) as omittheindicesp ,p andp onwhichtheSPTgroundstates itsgroundstate. ItisthesumoftwoRKHamiltoniansofthe 1 2 12 andtheunitarytransformationdependupon. formEq.(2.2)withβ =0,ω =ω >0,wherethesumin s,s(cid:48) 0 Eq.(2.2a)extendsoverpairsofstates(s,s(cid:48))whichdifferbya singlespinflip. 1. ParentHamiltoniansoftheZ ×Z stateind=2 2 2 TheHamiltonian Then applying the unitary transformation W2d in H2d =ω (cid:88) (cid:104)(cid:16)1−X(1)(cid:17)+(cid:16)1−X(2)(cid:17)(cid:105) Eq.(5.8)totheHamiltonianEq.(5.9)yieldsthemicZr2o×sZc2opic Z2×Z2 0 j j (5.9) modelrealizingthe8classesofZ2×Z2SPTparamagnets: j H2d =W2d H2d (cid:0)W2d (cid:1)−1 Z2×Z2 Z2×Z2 Z2×Z2 Z2×Z2 =ω0 (cid:88) (cid:110)1−Xj(1)eiπ(p1+p12)+iπ4 (cid:80)<(cid:96)(cid:96)(cid:48);j>(cid:104)p1(cid:16)1−Z(cid:96)(1)Z(cid:96)((cid:48)1)(cid:17)+p12(cid:16)1−Z(cid:96)(12)Z(cid:96)((cid:48)12)(cid:17)(cid:105)(cid:111) (5.10) j +ω0 (cid:88) (cid:110)1− Xj(2)eiπ(p2+p12)+iπ4 (cid:80)<(cid:96)(cid:96)(cid:48);j>(cid:104)p2(cid:16)1−Z(cid:96)(2)Z(cid:96)((cid:48)2)(cid:17)+p12(cid:16)1−Z(cid:96)(12)Z(cid:96)((cid:48)12)(cid:17)(cid:105)(cid:111), j where the notation < (cid:96)(cid:96)(cid:48); j > denotes that the summation onamicroscopicscale,originatesfromanon-onsitesymme- in the exponent runs over pairs of nearest neighbors (cid:96) and tryrealizationontheedgedegreesoffreedom.9,15,16,20Forthe (cid:96)(cid:48), which themselves belong to the 6 nearest sites around a Z ×Z SPT states considered here, the non-onsite symme- 2 2 given site j of the triangular lattice. When p = 0 and trytransformationsontheedgewereshowninRef.16tobea 12 p = p = 1, Eq. (5.10) describes, up to an overall energy manifestationofthenon-trivialtype-IIcocyclesofgroupco- 1 2 shift, two decoupled Levin-Gu Hamiltonians.20 On the other homology. hand,thecasep =1encodesstrongentanglementbetween 12 ThegroundstateEq.(5.7)isasimpleproductstateand,as thetwoIsingsystems. such, the edge states are disentangled from the bulk. On the other hand, in the other SPT ground states whose expansion coefficientsdependuponthedomainwallconfigurations,the 2. EdgesymmetrytransformationsoftheZ2×Z2stateind=2 effectofflippinganedgespincanchangethenumberofloops L,implyinganentanglementbetweenedgeandbulkdegrees The physical properties of the edge of two dimensional offreedom. Thereforebystudyingthepropertiesoftheedge bosonic SPT states can be understood from the chiral ac- states, we can gain information about the nature of the bulk tion of the symmetry on the edge modes8,9,15,16,20,33 which, statesandviceversa.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.