ebook img

Robustness of oscillatory $\alpha^2$ dynamos in spherical wedges PDF

1.2 MB·
by  E. Cole
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robustness of oscillatory $\alpha^2$ dynamos in spherical wedges

Astronomy&Astrophysicsmanuscriptno.paper (cid:13)c ESO2016 January21,2016 2 Robustness of oscillatory α dynamos in spherical wedges E.Cole1,2,A.Brandenburg2,3,4,5,P.J.Ka¨pyla¨6,1,2 andM.J.Ka¨pyla¨6 1 DepartmentofPhysics,GustafHa¨llstro¨minkatu2a,POBox64,FI-00014UniversityofHelsinki,Finland 2 Nordita,KTHRoyalInstituteofTechnologyandStockholmUniversity,Roslagstullsbacken23,10691Stockholm,Sweden 3 DepartmentofAstronomy,AlbaNovaUniversityCenter,StockholmUniversity,10691Stockholm,Sweden 4 JILAandDepartmentofAstrophysicalandPlanetarySciences,Box440,UniversityofColorado,Boulder,CO80303,USA 5 LaboratoryforAtmosphericandSpacePhysics,3665DiscoveryDrive,Boulder,CO80303,USA 6 ReSoLVECentreofExcellence,DepartmentofComputerScience,AaltoUniversity,POBox15400,FI-00076Aalto,Finland 6 1 January21,2016, Revision:1.106 0 2 ABSTRACT n Context. Large-scaledynamo simulationsaresometimesconfinedtosphericalwedgegeometriesbyimposingartificialboundary a conditionsathighlatitudes.Thismayleadtospatio-temporalbehavioursthatarenotrepresentativeofthoseinfullsphericalshells. J Aims.Westudytheconnectionbetweensphericalwedgeandfullsphericalshellgeometriesusingsimplemean-fieldα2dynamos. 0 Methods.Wesolvetheequationsforaone-dimensionaltime-dependentmean-fielddynamotoexaminetheeffectsofvaryingthepo- 2 larangleθ0betweenthelatitudinalboundariesandthepolesinsphericalcoordinates.Weinvestigatetheeffectsofturbulentmagnetic diffusivityandαeffectprofilesaswellasdifferentlatitudinalboundaryconditionstoisolateparameterregimeswhereoscillatoryso- ] lutionsarefound.Finally,weaddshearalongwithadampingtermmimickingradialgradientstostudytheresultingdynamoregimes. R Results. Wefindthatthecommonlyusedperfect conductor boundary condition leadstooscillatoryα2 dynamo solutionsonlyif S thewedgeboundaryisatleastonedegreeawayfromthepoles.Otherboundaryconditionsalwaysproducestationarysolutions.By h. varyingtheprofileoftheturbulentmagneticdiffusivityalone,oscillatorysolutionsareachievedwithmodelsextendingtothepoles, p butthemagneticfieldisstronglyconcentratednearthepolesandtheoscillationperiodisverylong.Bychangingboththeturbulent - magneticdiffusivityandαprofilessothatbotheffectsaremoreconcentratedtowardtheequator,weseeoscillatorydynamoswith o equatorward drift,shorter cycles, andmagnetic fieldsdistributedover awider range of latitude.Byintroducing radial shear anda r dampingtermmimickingradialgradients,weagainseeoscillatorydynamos,andthedirectionofdriftfollowstheParker–Yoshimura st rule.Oscillatorysolutionsintheweakshearregimearefoundonlyinthewedgecasewithθ0 =1◦andperfectconductorboundaries. a Conclusions.Areducedαeffectnearthepoleswithaturbulentdiffusivityconcentratedtowardtheequatoryieldsoscillatorydy- [ namoswithequatorwardmigrationandreproducesbestthesolutionsinsphericalwedges.Forweakshear,oscillatorysolutionsare obtained only for normal field conditions and negative shear. Oscillatory solutions become preferred at sufficiently strong shear. 1 Recentthree-dimensionaldynamosimulationsproducingsolar-likemagneticactivityareexpectedtolieinthisrange. v 6 Keywords.turbulence–magnetohydrodynamics(MHD)–hydrodynamics 4 2 5 1. Introduction arelativevalueof20–30%inlatitude(e.g.Mieschetal.,2000; 0 Ka¨pyla¨etal., 2011).However,whetherornotthisis enoughto . 1 The Sun’s magnetic field is generally believed to be the result driveanαΩdynamoasopposedtoanα2 dynamo,inwhichthe 0 of a turbulent αΩ dynamo in which differential rotation plays Ωeffectwouldbesubdominant,canonlybedecidedonthebasis 6 animportantrole.Thisis referredtoas theΩ effect,andit has ofquantitativecalculations. 1 long been identified as a robust mechanism for amplifying the : In the absence of a conclusive answer, one tends to re- v azimuthalmagneticfieldoftheSunbywindingupthepoloidal sort to qualitative arguments. One is related to the clear east– i field (Babcock, 1961; Ulrich&Boyden, 2005; Brownetal., X west orientation of bipolar regions in the Sun, which sug- 2010). The production of poloidal field, on the other hand, is gests that the azimuthal field must be much stronger than the r more complicated and harder to verify in computer simula- a poloidal field. Another argument is that αΩ dynamos are usu- tions, but it is thought to be associated with helical motions ally cyclic and can display equatorward migration of mag- intherotating,densitystratifiedconvectionzone(Parker,1955; netic field either through suitable radial differential rotation Steenbecketal.,1966).Thisprocessiscommonlyparametrised (Parker, 1955; Steenbeck&Krause, 1969a) or through suffi- by an α effect. Although there remain substantial uncertain- cientlystrongmeridionalcirculationinthepresenceofanαef- ties regarding the α effect as an important ingredient at large fect that operates only in the surface layers (Choudhurietal., magneticReynoldsnumbers(Cattaneo&Hughes,2006),simu- 1995). However, both arguments are problematic. Although it lationsofturbulenceandrotatingconvectionhavesubsequently is probably true that the azimuthal field is stronger than the confirmed that conventional estimates of α and turbulent dif- poloidal,theirratiomaynotbelargeenoughtojustifythedom- fusivity ηt are reasonably accurate up to moderate values of inance of the Ω effect. Furthermore, α2 dynamos may well the magnetic Reynolds number (Suretal., 2008; Ka¨pyla¨etal., beoscillatory(e.g.Ka¨pyla¨etal.,2013a;Masada&Sano,2014) 2009). andcandisplayequatorwardmigrationundersuitableconditions Simulations also demonstrate the generation of differential (Mitraetal.,2010).Acompletelydifferentargumentthatmoti- rotationfromanisotropicrotatingconvection,whichamountsto vatesthestudyofoscillatoryα2dynamosarerecentsimulations 1 E.Coleetal.:Robustnessofoscillatoryα2dynamosinsphericalwedges of convectivedynamosin spherical wedgesand full shells that 2. Model also show equatorward migration (Ka¨pyla¨etal., 2012, 2013b; Weconsiderthemean-fielddynamoequationforthemeanmag- Warneckeetal., 2013; Augustsonetal., 2015). It is now be- netic field B with a given mean electromotive force E in the lievedthattheequatorwardmigrationinthesimulationsisfacil- form itatedbyaregionofnegativeshearandpositive(negative)αef- ∂B fectinthenorthern(southern)hemisphere–inaccordancewith =∇×(cid:0)U ×B+E −ηµ0J(cid:1), (1) theParker–Yoshimurarule(Warneckeetal.,2014).Recentlyan ∂t alternative scenario was reported by Duarteetal. (2015), who whereU = φˆ̟Ω isthemeanflowfromangularvelocitywith foundthatthesignoftheαeffectcanbeinvertedincertainpa- ̟ = rsinθ beingthe distancefromthe axis, Ω(r,θ) isthe in- rameterrangesallowingequatorwardmigrationalso with posi- ternalangularvelocity,φˆ istheunitvectorintheazimuthaldi- tiveradialshear.Althoughitisuncleartowhatextentthosesim- ulationsrepresentstellar magneticfields, it mightbe helpfulto rection,J = ∇×B/µ0 isthemeancurrentdensity,µ0 isthe vacuumpermeability,andηisthenon-turbulentmagneticdiffu- understand first the mechanism operating in those simulations sion coefficient. In the absence of a memory effect, and under beforetryingtounderstandrealstars. theassumptionofisotropicαeffectandturbulentmagneticdif- Whiletheideaofexplainingequatorwardmigrationthrough fusivityηt,themeanelectromotiveforceisgivenby α2 dynamo action might work in sphericalwedge simulations, there is the problem that such solutions have never been seen E =αB−ηtµ0J. (2) in full shell simulations that extend not just to high latitudes, but go all the way to the poles. Indeed, α2 dynamos in full We solve Eqs. (1) and (2) numericallyusing sixth-order fi- nitedifferencesinspaceandathird-orderaccuratetime-stepping spherical shells are known to be steady (Steenbeck&Krause, scheme.WeemploythePENCIL CODE1,whichsolvesthegov- 1969b). Exceptions are dynamos with an anisotropic α ten- erningequationsintermsofthemeanmagneticvectorpotential sor (Ru¨digeretal., 2003) and the non-axisymmetricoscillatory A, such that B = ∇×A. It is convenientto use the advec- solutions found by Jiang&Wang (2006), but for an isotropic α effect, oscillatory axisymmetric α2 dynamos seem to be an tive gauge (Brandenburgetal., 1995; Candelaresietal., 2011), inwhichtheelectrostaticpotentialhasacontributionU A ,so artefact of having imposed a boundary condition at high lati- φ φ that tudes.Onecouldchooseanotherboundarycondition;anormal- ∂A field(pseudo-vacuum)boundaryconditionmightbeanobvious =−̟Aφ∇Ω+E −ηµ0J. (3) choice,butfromcorrespondingCartesiansimulationsweknow ∂t thatthiswouldagainleadtooscillatorysolutions,butwithpole- To allow for the use of a one-dimensional model with B = wardmigration(Brandenburgetal.,2009). B(θ,t),werestrictourselvestoanangularvelocityprofilethat varieslinearlyinr,i.e.,Ω(r,θ)=rS(θ),sotheangularvelocity Although the mean-field description of oscillatory α2 dy- gradientbecomes∇Ω = (S,∂ S,0).Themeancurrentdensity namosseemstofaceaninternalinconsistencyregardingthelimit θ isthen to fullsphericalshells, thereremainsthe questionwhethercer- tainchangesinthesetupofthefullsphericalshellmodelcould J =µ−01R−2(cid:0)DθAθ−Dθ∂θAr, ∂θAr, −∂θDθAφ(cid:1), (4) lead to oscillatory solutions that are internally consistent and otherwisesimilarto thesolutionsinsphericalwedges.Thereis whereD =cotθ+∂ isamodifiedθderivative.Toaccountfor θ θ apriorinophysicalmotivationforthis,butfromamathematical theneglectofrderivatives,weaddinEq.(3)adampingtermof pointofview,thisis a naturalchoicewhentryingtoreproduce theform−µ2A,i.e.,wehave theconditionsencounteredpreviouslywith a perfectconductor bporoufinldearwyitchonadliatirogne.rOconnedpuocstisvibitiylit(ywiesakaesrumitaabglneetliactitduidffiunsailoηnt) ∂∂At =−̟Aφ∇Ω+E −ηµ0J −µ2A (with∂r =0); (5) athighlatitudestosimulate thebehaviourofperfectconductor seeMossetal.(2004)forasurveyofsolutionsfordifferentval- boundaryconditionsusedinsphericalwedges. uesofµ.Forαandηt weuselatitudinalprofilefunctionsofthe In each of those cases, it is important to assess how much form shear would be needed to change the dynamo mode into an αΩ type mode. To keep things simple, we employ a one- α=α0cosθ(cid:0)a0+a2sin2θ+...+ansinnθ(cid:1), (6) dimensional model with only latitudinal extent. However, in its standard formulation, with radial derivatives simply being ηt =ηt0(cid:0)e0+e2sin2θ+...+ensinnθ(cid:1), (7) dropped,the first excited mode of such an αΩ dynamois non- where a and e are coefficients denoted by the vectors a = i i oscillatory(Jenningsetal.,1990).Thisisanartefactthatiseas- (a0,a2,a4,...,an) and e = (e0,e2,e4,...,en), respectively. ilyremovedbysubstitutingradialderivativesbyadampingterm However, we often refer to only the three first components as (Kuzanyan&Sokoloff,1995;Mossetal.,2004),insteadofset- a = (a0,a2,a4) and e = (e0,e2,e4). These expansions can tingthemtozero. alsobeexpressedintermsofLegendrepolynomials,whichare orthonormalfunctionsthatobeyregularityatthepoles.Theoc- Webeginbydescribingourmodelindetail,nextfocusonthe currence of higher order terms in α has been associated with analysisofsphericalwedgesofdifferentextentandturnthento higherorderstermsing·Ω,whicharenormallyomittedinthe- fullsphericalshellswithvariablelatitudinalηt profiles.Inview oreticalcalculations(Ru¨diger&Brandenburg,1995). oftheaforementionedcomplicationsregardingthepossibilityof Asusual,theproblemisgovernedbytwodynamonumbers, oscillatorybehaviourinthecorrespondingαΩdynamos,wealso discuss the sensitivity of our solutionswith respectto an addi- Cα =α0R/ηt0, CΩ =S0R2/ηt0, (8) tionaldampingtermthatmimicstheotherwiseneglectedradial derivativeterms. 1 http://pencil-code.github.com/ 2 E.Coleetal.:Robustnessofoscillatoryα2dynamosinsphericalwedges whereS(θ) = S0 isnowaconstant.Weconsiderthefollowing setsofboundaryconditions: ∂ A =A =A =0 (SAA;regularityonθ =0), (9) θ r θ φ Ar =∂θAθ =Aφ =0 (ASA;perf.cond.onθ =θ0), (10) ∂θAr =Aθ =∂θAφ =0 (SAS;normalfieldonθ =θ0), (11) wherethesequenceoflettersSandAreferrespectivelytosym- metric (∂ = 0) and antisymmetric (vanishing function value) θ of A , A , and A across the boundary. The same conditions r θ φ arealsoappliedonthecorrespondingboundaryinthesouthern hemispherewhereπ−θ = θ0.Inthiswork,nosymmetrycon- dition on the equator is applied,so the parity of the solution is notconstrained. Asinitialconditions,weassumea seedmagneticfieldcon- sisting of low-amplitude Gaussian noise. Such a field is suf- ficiently complex so that the fastest growing eigenmode of either parity tends to emerge after a short time. Note that mixedparitysolutionsareonlypossibleinthenonlinearregime Fig.1. DependenceofCα⋆ onθ0 forthethreeboundarycondi- tionsASA,SAA,andSAS. (Brandenburgetal.,1989),butthiswillnotbeconsideredhere. 3. Results We consider separately the cases where the dynamo is driven either solely by the α effect(α2 dynamos)or by the combined actionofαeffectandlarge-scaleshear(α2Ωdynamos). 3.1. α2 dynamos 3.1.1. Varyingθ0 Webeginbyconsideringthesimplestcasewitha=(1,0,0)and e = (1,0,0)resulting a spatially constantturbulentdiffusivity and a cosθ profile for α We have calculated the critical value Fig.2. AzimuthalmagneticfieldB foranoscillatorydynamo of Cα, hereafter Cα⋆, for an oscillatory α2 dynamo, i.e., where withθ0 =5◦ andtheboundarycondφitionASA. CΩ = 0. We used the boundaryconditionsSAA (Eq. 9), ASA (Eq.10),andSAS(Eq.11)forselectedvaluesofθ0. It turns out that C⋆ decreases as we approach the pole α (θ0 → 0); see Fig. 1. The SAA and SAS boundaryconditions 3.1.2. Varyinglatitudinalηt profile resultinverysimilarnon-oscillatorysolutionswithaC⋆ ofonly approximately40%of thatC⋆ obtainedfortheASA bαoundary Given thatwe have foundthe limit θ0 → 0◦ in the case of the condition.Oscillatorysolutionαsshowtravellingwavesthatprop- perfect conductor boundary condition not to be an approxima- tiontoafullsphericalshellmodel,wenowinvestigatewhether agateequatorward;seeFig.2.Theboundaryconditionwiththe WgreeaatlessotvfianrdiatthioanttohfeCmα⋆oswteitahsiθl0yiesxtchiteedpedryfencatmcoonmdoudcetocrh,aAnSgAes. pwhityhsicthaellySmAoAtivbaoteudndaaltreyractioonndsitoiofnthecofuulldlspphroedriuccaelsohseclilllmatoodreyl, from stationary to oscillatory as θ0 increases from zero to one equatorwardsolutionssimilar to those found for θ0 6= 0◦ with degree in that case. For the case where θ0 = 1◦ we find both the ASA boundarycondition.An obviouspossibility is the use stationaryandoscillatorysolutionsdependingontheinitialcon- of an ηt profile that corresponds to high conductivity near the pole. Such a profile could correspond to the possible effect of ditions. The critical dynamo number is slightly higher for the oscillatorymodethanthecorrespondingvalueofthestationary rotationonthemagneticdiffusivity(Kitchatinovetal.,1994)at solution. variouslatitudes. Theseresultssuggestthatwecannotregardthelimitθ0 →0 One possible alteration to the diffusivity profile is to use with isotropic α effectand turbulentdiffusionand perfectcon- higher order terms for ηt. In particular, we examine solutions ductor boundariesas an approximationto a full spherical shell wheretheordersi = 2,4,6,and8areusedforei;seeEq.(7). model when searching for oscillatory solutions. Extending the Solutionsareexaminedfore0 =η/ηt0 =0.01and0.05.Anon- model to the poles with the ASA boundary condition changes zero uniformvalue of η is neededto ensurethe stability of the the resulting dynamo from oscillatory to stationary. The SAA solutionsinthecaseswheretheturbulentmagneticdiffusivityis andSASboundaryconditionsgivestationarysolutionswithrel- zeroatthepolesduetotheprofilesbeingproportionaltopowers atively similar valuesfor C⋆, but the ASA boundarycondition ofsinθ,whichvanishesatthepoles. α near the poles gives both oscillatory and stationary solutions, Neithervalueofη usedhereleadstospuriousgrowthinthe depending on the initial conditions of the seed magnetic field. absenceofanα-effect.Furthermore,wecalculatetheoscillation Whilenostationarysolutionswerefoundforθ0 > 1◦,theirex- frequencyasω =2π/T whereT istheperiodofoscillationfor istenceisnotruledoutbyourmodels. thelarge-scalemagneticfield. 3 E.Coleetal.:Robustnessofoscillatoryα2dynamosinsphericalwedges Table1. C⋆ forpureα2dynamoswithvariedmagneticdiffusiv- α ityandαprofilesandthecorrespondingoscillationsfrequencies inunitsofηt0/R2. a (1,0,0) (0,1,0) (0,0,1) ei e0 Cα⋆ |ω Cα⋆ |ω Cα⋆ |ω e2 0.01 0.236|—- 4.063|0.405 9.532|0.562 e2 0.05 0.558|—- 5.308|0.288 11.39|0.654 e4 0.01 0.096|0.008 1.045|0.207 4.144|0.298 e4 0.05 0.326|—- 2.587|0.332 7.039|0.548 e6 0.01 0.070|0.005 0.541|0.184 2.175|0.215 e6 0.05 0.265|—- 1.733|0.258 4.857|0.419 e8 0.01 0.059|0.003 0.403|0.131 1.463|0.165 e8 0.05 0.238|—- 1.384|0.199 3.727|0.364 Values for C⋆ are indicated in Table 1 for cases where the α turbulent diffusivity and α effect profiles are expanded up to orders e8 and a4, respectively. We find that for a = (1,0,0), the e0 = 0.05 case produces only stationary solutions, but at e0 = 0.01, only solutions for n = 2 are stationary and all higher orders oscillate; see Table 1. Some solutions ini- tiallyshowrapidlyoscillatingbehaviour,exhibitingantisymme- trywithrespecttotheequator,butthesedisappearlaterandonly aslower,persistentoscillatorymoderemains:seethetoppanel of Fig. 3. These low-frequency oscillations have neither equa- torward nor poleward migration, and are symmetric about the equator.Cα⋆ increaseswithe0,anddecreasesasn increasesfor e ,inaccordancewiththetotaldiffusionincreasinganddecreas- n ing,respectively.Thefrequencyoftheoscillatorymodesfound for e0 = 0.01 decreases as n increases. This is also consis- tent with mean-field theory where the oscillation frequency is proportionaltothemagneticdiffusioncoefficient.Themagnetic field is antisymmetric with respect to the equator in all cases, except for a = (1,0,0) and e0 = 0.01; see the top panel of Fig.3. Azimuthal magnetic field for e4, e0 = 0.01 in Table 1 Fig.3 withθ0 =0◦ andtheSAAcondition. Theazimuthalmagneticfieldisstronglyconcentratedtoward the poleswhenthe α effecthasonly the cosθ variationin lati- tude;seethetoppanelsofFigs.3and4.Inviewoftheequatorial e0 =0.05,theequatorwarddriftbecomesmorepronouncedand magneticfieldconcentrationintheSunandinthree-dimensional extendstolowerlatitudes(middleandbottompanelsofFig.4). solar dynamo simulations, where the kinetic helicity is known In summary, extending the model all the way to the poles to be strongly concentrated toward the equator (Ka¨pyla¨etal., andincludingan ηt profileconcentratedtowardthe equatorre- 2012), it is of interest to consider models with a = (0,1,0) sults in oscillatory behaviour with long cycles but no equator- anda = (0,0,1),so that the α effectis moreconcentratedto- wardmigration.Includinganα-effectalsoconcentratedatlower ward lower latitudes. Indications for α being stronger at lower latitudes produces equatorward cycles with shorter cycle peri- latitudeshavebeenobserved,forexample,inmodelsofrapidly odswith strongestmagneticfieldsappearingatlowerlatitudes. rotatingconvection(Ka¨pyla¨etal.,2006).ThevaluesforCα⋆ are Theseresultsareinqualitativeagreementwithdirectandlarge- given in Table 1, columns for a = (0,1,0) and a = (0,0,1). eddy simulations (Ka¨pyla¨etal., 2012, 2013b; Augustsonetal., A similar trend as for the case where a = (1,0,0) is seen, 2015;Duarteetal.,2015). where higher orders of e result in lower values for C⋆, in ac- i α cordance with lower total diffusion. Changes in the α profile have a larger effect on C⋆ than changes in the diffusivity pro- 3.2. α2Ωdynamos α file. However,this is simply because, owingto the presence of 3.2.1. Overallbehaviourofdynamosolutions the cosθ factorin the α profile,itsmaximumvalue diminishes as higher powers of sinθ are used, while the maximum value We nowaddlarge-scaleradialshearanda dampingtermgiven ofηt isalwaysunity,irrespectiveoftheprofile.Theoscillation by µR2/ηt and use µ˜ to denote µR2/ηt0. We first explore the frequenciesofthesolutionsfora = (0,1,0)anda = (0,0,1) dynamo regimes and the dependencyon µ˜ by setting θ0 = 1◦ aretwoordersofmagnitudehigherthanthelow-frequencymode andonceagainusea = (1,0,0)ande = (1,0,0).Thecritical seenfora=(1,0,0).Itturnsoutthatthemagneticfieldisthen valueC⋆ nowdependsonthevalueofµ˜;seeFig.5,blacksym- α moreuniformlydistributedoveralllatitudes;see Figs.3and4. bols. We now concentrate on studying the dynamo modes that For e0 = 0.01, this distribution is largely uniform with very are excited in the system for values of µ˜ between 0 and 4 and slightequatorwarddrift(Fig.3, middleandbottom),and when variousvaluesofCΩ. 4 E.Coleetal.:Robustnessofoscillatoryα2dynamosinsphericalwedges Fig.6. Angular frequencyω as a function of CΩ for θ0 = 1◦ (black)andθ0 =0◦ (red)forµ˜ =1. Table 2. Cα⋆ forrunswith θ0 = 0◦, 1◦, 5◦, and15◦ with a = (1,0,0)ande=(1,0,0)andµ˜=1. θ0 Boundary CΩ Cα⋆ Condition 0 SAA 60 5.17 1 ASA 60 4.71 5 ASA 60 4.18 15 ASA 60 4.22 Whenµ˜ = 0,allresultingdynamosarestationary,withthe exceptionofthecasewhereCΩ = 0whereoscillationsdepend oninitialconditions,andCα⋆ decreasesasCΩ increases.Forso- lutions pertaining to µ˜ = 1, two solutions exist in the regime CΩ >∼ 33.5witheitheroscillatoryorstationarymagneticfields. Fig.4. Azimuthal magnetic field for e4, e0 = 0.05 in Table 1 When CΩ is less than this value, we find only stationary solu- withθ0 =0◦andtheSAAcondition. tions. Near this limit, the frequency of oscillations is sensitive tobothCα⋆ andCΩ andevensmallchangescandoublethefre- quency.TheC⋆ forstationarydynamosissignificantlylessthan α for oscillating solutions. It is possible that for µ˜ > 1 a sim- ilar bifurcation also exists, as there always appears a jump in C⋆ asthedynamomodechangesfromstationarytooscillatory. α However,atleastinthecasewithµ˜ =2,thestationarysolutions werefoundtodisappear.Forcaseswhereµ˜ > 2,C⋆ decreases α withCΩ,andoscillationsonlyoccurabovecertaincriticalvalues forCΩ.Intheregimeofnegativeshear(CΩ < 0),allsolutions foundwereoscillatory. We calculate the frequency ω of oscillatory solutions as in the previous section and show the results in Fig. 6. It can be seen that for positive shear, ω approaches 0 as CΩ → 33.55. There also exists a jump in frequency around CΩ ∼ 70, cor- respondingto a changein the symmetryofthe azimuthalfield. This is demonstratedin Fig. 7 where time-latitude diagramsof theazimuthalmagneticfieldsareshownforarepresentativese- lection of CΩ values for models with θ0 = 1◦. The symmetry change corresponding to the frequency jump in Fig. 6 can be seeninthechangefromantisymmetricabouttheequator(third Fanigd.s5t.atVioanluaerysf(ocrroCsαs⋆eass)asofluunticotinosnfoofrCθ0Ω=for1o◦s(cbillalactko)ryan(pdluθ0se=s) CpaΩne=lo8f0F)i.gT.h7e,CmΩag=ne4ti0c)fitoeldsyimsmalesotriscy(mfomuertthricpainnetlhoefoFscigil.la7-, 0◦(red). torysolutionfoundforCΩ =0. All oscillatory solutions with positive (negative) shear showpoleward(equatorward)migrationinaccordancewiththe Parker–Yoshimurarule(Parker,1955;Yoshimura,1975),seethe 5 E.Coleetal.:Robustnessofoscillatoryα2dynamosinsphericalwedges Fig.7. Azimuthal magnetic field for θ0 = 1◦ with the ASA Fig.8. Azimuthal magnetic field for θ0 = 0◦ with the SAA boundarycondition. boundarycondition. 6 E.Coleetal.:Robustnessofoscillatoryα2dynamosinsphericalwedges Fig.9. Azimuthal magnetic field for θ0 = 0◦ with the SAA boundarycondition. third and fifth panels of Fig. 7, respectively, for representative results.Thefrequencyoftheoscillationsincreaseswithgreater CΩ in accordance with linear theory of αΩ dynamos, except thatthere|ω|∝C1/2(e.g.Brandenburg&Subramanian,2005). Ω Mostofthemagneticfieldisconcentratedathighlatitudesabove |90◦−θ| > 60◦ for cases whereCΩ is positive,Fig. 7(b)–(d). When CΩ ≤ 0, the field is even more concentrated close to boundaries,Fig.7(e). Fig.10. Azimuthalmagneticfieldforθ0 = 0◦ withe0 = 0.05, µ˜ = 1,anda = e = (0,0,1)forCΩ = 40(upperpanel),and 3.2.2. Comparisonbetweenθ0 =0andθ0 =1◦ cases CΩ =−40(lowerpanel). Themodelisnowextendedtothepolestostudythedifferences between wedges and full spheres. The boundary condition on frequencyof oscillationsis less by abouta factorof two in the θ0 = 0◦ is changed to comply with the regularityrequirement formercase,seeFig.6. (SAA).We focusonthe case whereµ˜ = 1.We considera few Finally,we examinethe effectthat θ0 has on the results by modelswithµ˜ =0and2toprobewhetherthebehaviourissimi- holdingCΩ constantanddeterminingCα⋆.Theresultsaregiven lar,asintheθ0 =1◦case.WefindthatthevaluesofCα⋆arefairly in Table 2. We find that there is a dependency on θ0, but the close to those obtainedfor the correspondingθ0 = 1◦ models; behaviourisconsistentifonegoestothepolesandchangesthe seetheredsymbolsinFig.5.Similarlyasintheθ0 =1◦case,a boundarycondition;seeTable2wherethechangebetweenθ0 = bifurcationintostationaryandoscillatorysolutionsexistsinthe 5◦and1◦iscomparabletothedifferencebetween1◦and0◦.All positiveCΩ regimewithacut-offpointatCΩ ≈ 33.2,whichis solutionsareoscillatorywithpolewardmigration. slightlylowerthanintheθ0 = 1◦ case.Fornegativeshear,un- Ourresultssuggestthat,atleastinthecaseswhereCΩ >0, likeforθ0 = 1◦ whereallvaluesproduceoscillatorydynamos, asetupwithθ0 = 1◦ andperfectconductorboundarycondition theregimeforoscillationsisfoundonlyforCΩ <∼−21.Theos- (ASA)givessimilarresultsasfullspheremodelswithθ0 = 0◦ cillatorymodegraduallydisappearsandonlyastationarymode and the regularity (SAA) condition. Furthermore,solutions for persists,whichisshowninFig.9. 33.4 < CΩ < 75arealso fairlysimilar. Thisindicatesthatthe Theoscillationfrequencies(Fig.6,redsymbols)aresimilar wedgesareafairapproximationoffullspheresinthisparameter ctoasteh,oasejuimnpthiencfarseequoefnpcoysiistivoebssehrevaerd. Swimheinlatrhlyetaozitmheutθh0al=fie1ld◦ rthegeirmeseu.lItfstbheetwsheeeanrθi0s n=eg1a◦tivaen,dthθe0re=is0◦a cqausaelsit.aIttivaepcpheaanrsgethiant changes symmetry with respect to the equator, as shown in oscillatory solutionsare obtainedonly for the ASA boundaries Fig. 8(c) and (d) for antisymmetric(CΩ = 40) and symmetric forweaknegativeshear. (CΩ =80)fieldconfigurations,respectively.Intheantisymmet- ricregime,theazimuthalfieldisconcentratedatapproximately the same latitudes as for the case θ0 = 1◦. In the symmetric 3.2.3. Varyingtheαandηt profiles regime, i.e. for CΩ & 70, the azimuthal field extends to lower Finally, we consider changes to the turbulent magnetic diffu- latitudes, |90◦ −θ| > 30◦; see Fig. 8(d), The main difference sivity profile. We do not perform a thorough parameter study occurs at the boundaryitself such that for θ0 = 1◦ (ASA) the but consider a pair of cases corresponding to CΩ = ±40, magneticfieldpeaksattheboundarywhereasitvanishesatthe a = e = (0,0,1),e0 = 0.05,µ˜ = 1,andθ0 = 0withregular- pole for θ0 = 0 (SAA). When shear is negative, the field in- ityconditionsforthemagneticfield.Weshowthetime–latitude steadbecomesconcentratedandsymmetricaroundtheequator, diagramsoftheazimuthalfieldfromthesemodelsinFig.10. andinaccordancewiththeParker–Yoshimurarule,thedynamo In the case of positive shear, the combination of shear, α hasanequatorwarddrift.Thecaseofnegativeshearresultsina andηt profiles,createsasteadymigrationpolewardatlatitudes dramaticallydifferentconcentrationoftheazimuthalfieldwhen above ±45◦. Comparing this to an α2 dynamo with the same comparedwith the θ0 = 1◦ counterpart;see the bottompanels profilesofαandηt (bottompanelofFig.4),andtoanα2Ωrun ofFigs.7and8forrunswithCΩ =−40forthetwocases.Even with nosin2nθ contributionsin theprofilesbutthe same value though the values for Cα⋆ are similar for θ0 = 0◦ and 1◦, the ofCΩ (thirdpanelofFig.8),showsthatthemigrationdirection 7 E.Coleetal.:Robustnessofoscillatoryα2dynamosinsphericalwedges is reversed in comparison to the α2 run and that the poleward ary conditionto SAA producedqualitativelyandquantitatively driftismorecoherentthanintheα2Ωmodel.Theseresultsindi- similarresultswhentheshearwaspositive.Resultsarelesssim- catethatthesheardeterminesthedirectionofthedynamowave ilarifnegativeshearisintroduced.Whenθ0 = 1◦,allsolutions inthisparameterregime.Theazimuthalfieldinbothofthecom- found where CΩ < 0 were found to oscillate. However, when parisoncasesisantisymmetric,andthisresultalsocarriesoverto θ0 =0◦,shearhadtoexceedacriticalvalue,|CΩ|=21,forso- thecasewhenshearisincludedwiththesameαandηt profiles. lutionsto oscillate. Furthermore,the structure of the azimuthal Thefrequencyoftheoscillationsisω =5.54,andthecriticaldy- field over time was significantly different, showing symmetry namoparameterisC⋆ =5.62.Thesevaluesaresomewhatclose aboutthe equator and concentrationat the equator.In all cases α tothevalues(ω = 3.90andC⋆ = 4.94)obtainedinSect.3.2.1 with shear,the Parker–Yoshimurarule was foundto be obeyed α inthecasewithmoreuniformprofilesoftheturbulenttransport where oscillatory solutions with negative shear migrated equa- coefficients. torwardandpositiveshear,poleward. We foundearlier that, in the case of negativeshear, the az- When combiningthe ηt profile with shear, the direction of imuthal field was symmetric aboutthe equator;see the bottom migrationwasdeterminedbythesignofCΩ.Thefrequencyin- panel of Fig. 8. With more equatorially concentrated turbulent creased in the case of negative shear when using an ηt and α diffusivity and α profiles we also find solutions with equato- profilewithhigherorderterms. rial symmetry, see the bottom panel of Fig. 10. Furthermore, There are other possibilities for refining the model and for the magnetic field now has a minimum aroundlatitudes ±25◦. obtainingoscillatorysolutionstotheα2 dynamo.Onepossibil- The Parker–Yoshimura rule still holds true, and the migration ityistostudytheeffectofdecreasingthe(microphysical)mag- is equatorward.However,C⋆ has almostdoubledfrom 5.62 to neticdiffusivityevenfurther.Anotherpossibilityistostudythe α 10.75, and the frequency of oscillations is much larger, ω = memoryeffect,whichhasrecentlybeenidentifiedasameansto 14.56 in comparison to 5.54. The main effect from the more facilitateoscillatorybehaviour,althoughsofaronlydecayingso- concentratedprofilesforα and ηt in thecase ofα2Ω dynamos lutionshavebeenfoundtobemodifiedinthatway(Devlenetal., isseeninthelatitudinalprofileoftheresultingmagneticfields, 2013). However, under suitable conditions such solutions can butthequalitativecharacterofthesolutionsremainsunchanged indeed become oscillatory (Rheinhardtetal., 2014) and may incomparisontomodelswithsimplerlatitudedependenceofthe present a possible solution to the problem where equatorward turbulenttransportcoefficients. motionobtainedviavaryingtheαprofile(i.e.,a = (0,0,1))is limitedtocertainlatitudes. 4. Conclusions Acknowledgements. TheauthorsthankNorditaforhospitalityduringtheirvis- its.FinancialsupportfromtheVilho,Yrjo¨ andKalleVa¨isa¨la¨Foundation(EC), Motivatedby earlierresultsofglobalsimulationsin wedgege- theAcademy ofFinland grants No.136189, 140970 (PJK)andthe Academy ometry,we have studied the robustness of oscillatory solutions ofFinlandCentreofExcellenceReSoLVE(272157;MJKandPJK),aswellas in α2 dynamos in simple one-dimensional mean-field dynamo theSwedishResearch Council grants 621-2011-5076 and2012-5797, andthe models.We foundthattheboundaryconditionson thelatitudi- EuropeanResearchCouncil undertheAstroDynResearchProject 227952are nalboundariesplayamajorroleintherealisedsolutionsforα2 acknowledged. Weacknowledge CSC – IT Center for Science Ltd., who are administeredbytheFinnishMinistryofEducation,fortheallocationofcompu- dynamoswithasimplecosθprofileforαandconstantturbulent tationalresources. diffusivity.Imposing the perfectconductorboundarycondition creates oscillating solutions only for solutions where θ0 >∼ 1◦. For θ0 = 1◦, both oscillatory and stationary solutions were References foundtoappearwithslightlydifferingcriticaldynamonumbers. Augustson,K.,Brun,A.S.,Miesch,M.S.,&Toomre,J.2015,ApJ,809,149 Wefoundnooscillatorysolutionsforthenormalfield(SAS)or Babcock,H.W.1961,ApJ,133,572 regularityconditions(SAA). Brandenburg,A.,Candelaresi,S.,&Chatterjee,P.2009,MNRAS,398,1414 Keeping a simple cosθ profile for the α effect and varying Brandenburg,A.,Krause,F.,Meinel,R.,Moss,D.,&Tuominen,I.1989,A&A, theηt profilecreatesoscillatingsolutionswitha lowfrequency 213,411 Brandenburg,A.,Nordlund,A˚.,Stein,R.F.,&Torkelsson,U.1995,ApJ,446, and no clear migration or stationary solutions, depending on 741 thevalueoftheunderlying(constant)magneticdiffusivity.The Brandenburg,A.&Subramanian,K.2005,Phys.Rep.,417,1 magneticfieldislargelyconcentratednearthepoles.Iftheαpro- Brown,B.P.,Browning,M.K.,Brun,A.S.,Miesch,M.S.,&Toomre,J.2010, fileischangedtobeconcentratedneartheequator,similartopro- ApJ,711,424 filesobservedinrapidlyrotatingturbulentconvection,themag- Candelaresi,S.,Hubbard,A.,Brandenburg,A.,&Mitra,D.2011,Phys.Plasmas, 18,012903 neticfieldbecomesmoreevenlydistributedtowardstheequator. Cattaneo,F.,&Hughes,D.W.2006,J.FluidMech.,553,401 Themagneticfieldalsoexhibitsclearequatorwardmigrationand Choudhuri,A.R.,Schu¨ssler,M.,&Dikpati,M.1995,A&A,303,L29 antisymmetry with respect to the equator. The overall conclu- Devlen,E.,Brandenburg,A.,&Mitra,D.2013,MNRAS,432,1651 sionisthatα2dynamoscanproducesolar-likemagneticactivity Duarte, L. D. V., Wicht, J., Browning, M. K. & Gastine, T. 2015, arXiv:1511.05813 if the α effectand turbulentdiffusivityhave latitudinalprofiles Jennings,R.,Brandenburg,A.,Moss,D.,Tuominen,I.1990,A&A,230,463 thataresufficientlyconcentratedtowardtheequator. Ka¨pyla¨,P.J.,Korpi,M.J.,Ossendrijver,M.&Stix,M.2006,A&A,455,401 We then added positive shear to study α2Ω dynamos and Ka¨pyla¨,P.J.,Korpi,M.J.,&Brandenburg,A.2009,A&A,500,633 how they connect to the pure α2 solutions in the same wedge Ka¨pyla¨,P.J.,Mantere,M.J.,Guerrero,G.,Brandenburg,A.,&Chatterjee, P. geometry with θ0 = 1◦. For weak shear the azimuthal mag- 2011,A&A,531,A162 Ka¨pyla¨,P.J.,Mantere,M.J.,&Brandenburg,A.2012,ApJ,755,L22 netic field is concentrated at the poles and shifts equatorward. Ka¨pyla¨, P.J.,Mantere, M.J.,&Brandenburg, A.2013, Geophys. Astrophys. OveracertainintervalinCΩ,whichdependsontheaddedlocal FluidDyn.,107,244 friction µ˜, oscillatory solutions are foundand the field is more Ka¨pyla¨,P.J.,Mantere,M.J.,Cole,E.,Warnecke,J.,&Brandenburg,A.2013, concentratedacrossallupperlatitudes.Forµ˜=1,wefoundthat ApJ,778,41 Kitchatinov,L.L.,Ru¨diger,G.,&Pipin,V.V.1994,Astron.Nachr.,315,157 both stationary and oscillatory solutions exist with the oscilla- Kuzanyan,K.M.,&Sokoloff,D.D.1995,Geophys.Astrophys.FluidDyn.,81, tory one havinga substantially highercritical dynamonumber. 113 Going to a full sphere with θ0 = 0◦ and changing the bound- Jiang,J.,&Wang,J.-X.2006,ChineseJ.Astron.Astrophys.,2,227 8 E.Coleetal.:Robustnessofoscillatoryα2dynamosinsphericalwedges Masada,Y.&Sano,T.2014,ApJ,794,L6 Miesch, M. S., Elliott, J. R., Toomre, J., Clune, T. L., Glatzmaier, G. A., & Gilman,P.A.2000,ApJ,532,593 Mitra,D.,Tavakol,R.,Ka¨pyla¨,P.J.,&Brandenburg,A.2010,ApJ,719,L1 Moss,D.,Sokoloff,D.,Kuzanyan,K.,&Petrov,A.2004,Geophys.Astrophys. FluidDyn.,98,257 Parker,E.N.1955,ApJ,122,293 Rheinhardt,M.,&Brandenburg,A.2012,Astron.Nachr.,333,71 Rheinhardt,M.,Devlen,E.,Ra¨dler,K.-H.,&Brandenburg,A.2014,MNRAS, 441,116 Ru¨diger,G.&Brandenburg,A.1995,A&A,296,557 Ru¨diger,G.,Elstner,D.,&Ossendrijver,M.2003,A&A,406,15 Steenbeck,M.,&Krause,F.1969a,Astron.Nachr.,291,49 Steenbeck,M.,&Krause,F.1969b,Astron.Nachr.,291,271 Steenbeck,M.,Krause,F.,&Ra¨dler,K.-H.1966,Z.Naturforsch.,21a,369 Sur,S.,Brandenburg,A.,&Subramanian,K.2008,MNRAS,385,L15 Ulrich,R.K.,&Boyden,J.E.2005,ApJ,620,L123 Warnecke,J.,Ka¨pyla¨,P.J.,Mantere,M.J.,&Brandenburg,A.2013,ApJ,778, 141 Warnecke,J.,Ka¨pyla¨,P.J.,Ka¨pyla¨,M.J.,&Brandenburg,A.2014,ApJ,796, L12 Yoshimura,H.1975,ApJ,201,740 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.