ebook img

Robust stability analysis of systems under parametric uncertainty PDF

244 Pages·1991·8.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust stability analysis of systems under parametric uncertainty

ROBUSTSTABILITYANALYSISOFSYSTEMSUNDERPARAMETRIC UNCERTAINTY By JOSEALVAROLETRA ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1991 To CarmenLucia and Ariadne ACKNOWLEDGMENTS Iamprofoundlyindebtedtomyadvisorandsupervisorycommitteechairman,Dr.Ha- niphA.Latchman,forhisguidance,permanentsupportandencouragementduringmythree yearsattheUniversityofFlorida. Despitehisseveralotherresponsibilities,Dr.Latchman alwaysfoundtimetodiscussmyworkandgivemehisinsightfulorientation. Iwishtothanktheprofessorswhoservedonmycommittee,Dr. ThomasE.Bullock, Dr.J.Hammer,Dr. A.AntonioArroyoandDr. SpyrosA.Svoronos,fortheirwillingness todiscussandadvicemywork,andforthehighlevelofconsiderationIwasalwaystreated with. IwishtothankthehelpandadviceofDr.G.Basile,myfirstcommitteechairman. IamindebtedtotheEEGraduateCoordinator,Dr. LeonWCouch,andhisstaff,for alltheirassistance.Particularly,IhavetothankMrs. GretaSbrocco,whoalwaysprovided helpfulorientationonadministrativesubjects. Itwasaprivilegetoworkclosetomyex-fellowstudent,Dr. RobertJ.Norris,whose valuableincentiveandhelpInowacknowledge.IalsowishtothankDr.JulioS.Dolceda Silva,oftheBrazilianArmy,forhishelponmyenrollmentandadaptationtotheUniversity. IamgratefultotheExecitoBrasileiro(BrazilianArmy)forconcedingmetheopportu- nityofcomingtotheUniversityofFloridatofurtherpursuemystudies,andtotheCNPq- ConselhoNacionaldeDesenvolvimentoCientificoeTecnologico(ScientificandTechnologi- calNationalDevelopmentAgency-Brazil)forthescholarshipIwasgranted. 111 TABLEOFCONTENTS page ACKNOWLEDGMENTS iii ABSTRACT vi CHAPTERS 1 INTRODUCTION 1 1.1DissertationObjective 1 1.2BriefHistoricalofUncertaintyTreatment 2 1.3StructureoftheDissertation 9 1.4Notation 11 2 NOMINALMODELSANDUNCERTAINTYREPRESENTATION 16 2.1NominalModelsandDefinitions 16 2.2UncertaintyRepresentation 20 2.3Conclusions 38 3 STABILITYANALYSISOFLINEARSYSTEMS 39 3.1Introduction 39 3.2StabilityofStateSpaceSystems 39 3.3StabilityofTransferMatrixModels 45 3.4Frequency-DomainScalingTechniques 63 3.5Conclusions 72 4 LYAPUNOVDIRECTMETHODINTHEPRESENCEOFSTRUCTURED UNCERTAINTY 73 4.1Introduction 73 4.2DependenceofConservatismonPerturbationStructure 76 4.3StabilityUnderStructuredUncertainty 82 4.4MaximizationofStabilityDomains 92 4.5ApplicationofOptimizationOverO 109 4.6Conclusions 113 IV 5 STABILITYUNDERDIAGONALPARAMETRICUNCERTAINTY 115 5.1Introduction 115 5.2DiagonalRepresentationofStateSpacePerturbations 116 5.3ProblemFormulation 122 5.4NecessaryandSufficientConditionsforRobustStability 127 5.5SufficientConditionsforRobustStability 132 5.6NumericalApplication 136 5.7SomeExtensionsofPreviousResults 139 5.8Conclusions 143 6 COMPARISONOFSUFFICIENTPARAMETERNORMBOUNDS 145 6.1Introduction 145 6.2ResultsforProblemswith2and3Parameters 146 6.3ResultsforRandomlyGeneratedMatrices 154 6.4Conclusions 161 7 ITERATIVECONTROLLERROBUSTIFICATION 163 7.1Introduction 163 7.2RobustificationAssociatedtoLyapunovAnalysis 169 7.3RobustificationAssociatedtoFrequency-DomainAnalysis 169 7.4Application 187 7.5Conclusion 195 8 NECESSARYSTABILITYDOMAININTHEPARAMETERSPACE 197 8.1Introduction 197 8.2CharacterizationofaNecessaryStabilityDomain 199 8.3ComputationoftheNecessaryStabilityDomain 202 8.4Applications 209 8.5Conclusions 214 9 CONCLUSION 216 9.1Summary 216 9.2DirectionsforFutureWork 223 REFERENCES 230 BIOGRAPHICALSKETCH 234 v AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy ROBUSTSTABILITYANALYSISOFSYSTEMSUNDERPARAMETRIC UNCERTAINTY By JOSEALVAROLETRA May1991 Chairman: Dr.HaniphA.Latchman MajorDepartment:ElectricalEngineering Intheanalysisofstabilitypropertiesofcontrolsystems,theuncertaintyinmathemati- calmodelsmustbetakenintoaccount.Mainsourcesofuncertaintyarehighorderdynamic phenomenaofthephysicalsystemneglectedinthemodel,andvariationsinsystemparam- eters.Thesubjectofthisworkistheassessmentofstabilityoflinearcontrolsystemsinthe presenceofparametricuncertainty. Statespaceandfrequency-domainmodelsanduncertaintyrepresentationarereviewed, aswellasgeneral conditions fornominal and robust stability. Alsoreviewed arescal- ingtechniquesusedforreducingthedegreeofconservatismoffrequency-domainstability conditions,includingoptimalsimilarityscaling,optimalnon-similarityscalingandPerron scaling. Particularly, theperturbed statespacemodel x(t) = (A+E)x(t)is studied. The nominal matrix Ais assumed asymptotically stable, and the perturbation Eis ofthe form E = YHt=\PkEk, wherepis am—dimensional vectorofsystem parameters, and Ek,k= areconstantmatrices. TheapplicationoftheLyapunovDirectMethod vi forobtainingconditionsonthenormofpwhicharesufficientforrobuststabilityisdiscussed indetail.Anewstabilityconditionon||p||2isgiven,whichispotentiallylessconservative thanavailableresults. TheproblemofthechoiceoftheLyapunovmatrixwhichyields lessconservativestabilityconditionsisformalizedasaconstrainednumericaloptimization problem. Forthecaseoftime-invariant uncertainty, an equivalentfrequency-domainstability problemisformulated,wheretheperturbationisareal,diagonalmatrixobtaineddirectly from thestate spaceperturbation. Sufficient stability conditions arederived from the equivalentformulation,andscalingtechniquesareused,inordertoreduceconservatism. Comparisonofnumericalresultsobtainedforseveralproblemsindicatesthat,fortime- invariantuncertainty,thefrequency-domainapproach,associatedtoPerronscaling,consti- tutesanalternativewhichhasbetterperformancethantheLyapunovDirectMethod.The frequency-domainapproachandcorrespondingstabilityconditionsarealsoshowntobeof advantageiniterativeoptimizationofstaticfeedbackcontrollersoffixedorder. Additionally,aprocedureissuggestedforobtaininganecessarystabilitydomaininthe spaceofplantparameters,startingfromaknownsufficientdomain. Finally,theintegrationofthestabilityanalysistechniquesintorobustcontrollerdesign isdiscussed. vn CHAPTER1 INTRODUCTION 1.1 DissertationObjective Atleasttwocommonaspectsaresharedbythemajorityofthecurrentliteratureon controlsystemsanalysisanddesign,althoughmanydifferentmethodsandtechniquesare nowadaysemployed.Theseaspectsareasfollows: • Focusisplacedonmultivariablesystems; • Uncertaintyinsystemmodelsisexplicitlytakenintoaccount. Theseaspectsconstituteaframeforthepresentdissertation.Thespecificsubjectisthe assessmentofrobuststabilitypropertiesofsystemsunderparametricuncertainty,which findsmotivationinthefollowingconsiderations. Controlsystemsaredesignedtomeetsomeperformancespecifications. Althoughthe formulationofperformancespecificationsdependsontheapproachused,italwaysrequires thatsomequantitativeindicesbesatisfiedbythesystemresponse,whatofcourseimplies inconstraintstothedynamicbehaviorofthesystem. However,itonlymakessensetodiscussthequantitativebehaviorofacontrolsystem ifitsstabilitycanbeassured. Otherwise,thedynamicbehaviorcanbeexpectedtoblow upundersomeadmissibleoperatingcondition,thusrenderingthesystemuseless.Stability, therefore,emergesasafundamentalrequirement. Controldesignreliesonmathematicalmodelingofthecontrolledsystem.Unfortunately, therealwaysexistsadegreeofuncertaintybetweenthemodelandthemodeledsystem, 1 2 whichmustbetakenintoaccount.Theexistenceofuncertaintygivesrisetotherequirement ofrobustness,namelytheaptitudeofacontrolsystemforretainingthedesiredbehaviorin spiteoftheuncertainty. Designmethodsdefinitelydependonanalysistechniquesinordertoassesssystemprop- erties,includingrobuststability. Techniquesforrobuststabilityanalysiscountonuncer- taintyrepresentation,whichisdictatedbyseveralfactors,mainlybythecausesofuncer- taintyandavailableinformationonuncertaintystructure. Variationsinsystemparameters aresourcesofanimportantcategoryofperturbations, whichisparticularlysuitableto representationinstatespacemodels. Motivatedbythesefacts, thisdissertationaddressestheproblemofrobust stability analysisinthepresenceofparametricperturbations.Theperturbationwillbeassumedto dependlinearlyonavectorofparameters,thusadmittingthepracticallyimportantcase inwhichoneparameteraffectsseveralentriesofthesystemmatricesinthestatespace representation.Thismodelhasbeenusedinseveralrecentworksinstabilityanalysis. ThedevelopmentofthesubjectisoutlinedinSection1.3.Beforethis,abriefhistorical summaryofthetreatmentofuncertaintyincontroltheoryisgiven. 1.2 BriefHistoricalofUncertaintyTreatment Theneedforcontrolsystemshasbeenlongfeltintheprocessoftechnologicaldevel- opment. Examplesoftheuseofcontrolsystemsdatebacktofourthousandyears[50]. Noteworthyisthefactthatfeedbackprinciplesarefoundeveninthoseearlyexamples. Amongtheseveraladvantagesthatthefeedbackprinciplebringstocontrolsystems,ap- pearsthepropertyofeffectivelycopingwithdisturbancesandsystemuncertainty[31]. 3 ImportanteventsinfeedbackhistoryareregisteredbySage[50]. Amongthemarethe inventionofthemechanicalfly-ballgovernorbyJamesWattin1788,whichwasdeveloped fromearlywindmillregulators,andtheanalysisoffeedbackcontrolsystemspublishedin 1868byMaxwell. In1927,theconceptoffeedbackwasintroducedbyBlackinthedesignofamplifiers forlongdistancetelephonelines;hispioneeringworkiscontainedinthepaper‘Stabilized FeedbackAmplifiers’,publishedin1934. Althoughrobusttouncertaintiescausedbynon- linearityandotherfactors,thefeedbackamplifierpresentedunwantedoscillations. The theoreticalstudyofthisphenomenonledtothedevelopmentoftheregenerationtheoryby Nyquist,whoseworkwaspublishedin1932. TheNyquistcriterion,whichderivesclosed- loopstabilitycharacteristicsfromopen-loopinformation,wouldconstituteafundamental techniqueforfrequency-domainstabilityanalysis. Ensuingdevelopmentsoffrequency-domainconceptsoriginatedfromtheworkofBode, innetworkanalysisandamplifierdesign(1945),whichdemonstratetheexistenceofcon- straintsinthemanipulationofthefrequencyresponseoflineartime-invariantsystems;from theNicholstransformationoftheNyquistdiagram,andfromtherootlocustechniqueof Evans. Thesetofthosetechniquesconstitutewhat becameknownastheclassicalapproach toanalysis and designofSingle-Input, Single-Output (SISO) systems. In theclassical approach,theissueofcopingwith uncertaintyisindirectlyaddressed, byprovidingthe systemwithenoughgainandphasemargins. Thesemarginsensurethatunwantedeffects ofuncertaintywillnotdisruptstability. Inthelate’50s,problemsofmorecomplexnature,mainlyoriginatedbythecontroland guidanceofmissilesandspacevehicles,cameintotheconsiderationofcontrolengineers

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.