POLITECNICODIMILANO DepartmentofAerospaceScienceandTechnology DoctoralProgrammeInAerospaceEngineering–XXVIIICycle Robust Shape Optimization of Fixed and Morphing Rotorcraft Airfoils DoctoralDissertationof: FrancescaFusi Supervisor: Prof.GiuseppeQuaranta Co-Supervisor: Dr.PietroMarcoCongedo Tutor: Prof.GiuseppeGibertini TheChairoftheDoctoralProgram: Prof.LuigiVigevano 2016 Keywords: Copyright©2015byFrancescaFusi All rights reserved. No part of this publication may be reproduced, stored in a re- trieval system or transmitted in any form or by any means, electronic, mechani- cal, photocopying, recording or otherwise, without the prior written permission of the author F. Fusi, Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali,ViaLaMasa34,20156,Milano,Italy. PrintedinItaly Contents Abstract 3 Sommario 5 1 Introduction 7 1.1 Basicsofrotorcraftaerodynamics . . . . . . . . . . . . . . . . . . 9 1.1.1 Hoveringflight . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.2 Forwardflight . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Airfoildesignforhelicopterrotorblades . . . . . . . . . . . . . . . 12 1.2.1 State-of-theartonoptimizationofhelicopterairfoils . . . . 16 1.3 Morphingairfoilsforhelicopterrotorblades . . . . . . . . . . . . . 19 1.4 ObjectiveofthePhDthesis . . . . . . . . . . . . . . . . . . . . . . 21 1.4.1 StructureofthePhDthesis . . . . . . . . . . . . . . . . . . 23 2 Robustoptimization 25 2.1 Whatisrobustoptimization? . . . . . . . . . . . . . . . . . . . . . 28 2.1.1 Methodologyforuncertainty-basedoptimization . . . . . . 32 2.2 Methodsforoptimization . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.1 Multi-objectiveoptimizationandParetodominance . . . . . 35 2.2.2 GeneticAlgorithm . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 BIMADS . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Uncertaintyquantification . . . . . . . . . . . . . . . . . . . . . . 39 2.3.1 Modellinguncertainty . . . . . . . . . . . . . . . . . . . . 40 VI CONTENTS 2.3.2 Propagatinguncertainty . . . . . . . . . . . . . . . . . . . 46 3 Efficientmethodsforrobustoptimization 59 3.1 Multi-fidelityuncertainty-basedoptimizationmethod . . . . . . . . 60 3.1.1 Descriptionofthemulti-fidelitystrategy . . . . . . . . . . . 62 3.1.2 Preliminaryresultsonalgebraictestcase . . . . . . . . . . 64 3.2 Adaptivemethodwitherrorboundingboxes . . . . . . . . . . . . . 69 3.2.1 Paretodominancewitherrorboundingboxes . . . . . . . . 70 3.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.3 Convergenceanalysis . . . . . . . . . . . . . . . . . . . . . 75 3.2.4 Estimation of error bounds in the uncertainty quantification method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.5 Uncertainty-basedoptimizationofalgebraictestcases . . . 83 3.3 Remarksonthemethods . . . . . . . . . . . . . . . . . . . . . . . 94 4 Robustoptimizationoffixedairfoilinhoveringcondition 95 4.1 Optimizationproblem . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Numericalingredientsofrobustoptimizationmethod . . . . . . . . 97 4.2.1 Uncertainoperatingconditions . . . . . . . . . . . . . . . . 97 4.2.2 Aerodynamicmodels . . . . . . . . . . . . . . . . . . . . . 100 4.2.3 Shapeparameterization . . . . . . . . . . . . . . . . . . . . 102 4.2.4 Optimizationmethod . . . . . . . . . . . . . . . . . . . . . 103 4.2.5 Uncertaintyquantificationmethod . . . . . . . . . . . . . . 105 4.3 Multi-fidelitymethodresults . . . . . . . . . . . . . . . . . . . . . 109 4.3.1 Applicationofthemulti-fidelitystrategy . . . . . . . . . . . 110 4.3.2 Preliminaryresults . . . . . . . . . . . . . . . . . . . . . . 111 4.3.3 Optimizationresults . . . . . . . . . . . . . . . . . . . . . 113 4.3.4 Inboardsection . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3.5 Outboardsection . . . . . . . . . . . . . . . . . . . . . . . 121 4.4 Adaptivemethodresults . . . . . . . . . . . . . . . . . . . . . . . 125 4.5 Finalremarksonthemethods . . . . . . . . . . . . . . . . . . . . . 129 5 Robustoptimizationofairfoilsinforwardflight 131 5.1 UnsteadyCFDsimulation. . . . . . . . . . . . . . . . . . . . . . . 132 5.1.1 UnsteadyCFDset-up . . . . . . . . . . . . . . . . . . . . . 133 5.1.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.1.3 Steadyvs. unsteadysimulation . . . . . . . . . . . . . . . . 139 5.2 Deterministicforwardflightoptimization . . . . . . . . . . . . . . 142 CONTENTS 1 5.2.1 Designvariables . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.2 Aerodynamicmodels . . . . . . . . . . . . . . . . . . . . . 145 5.2.3 Optimizationalgorithm . . . . . . . . . . . . . . . . . . . . 147 5.3 Robustoptimizationproblem . . . . . . . . . . . . . . . . . . . . . 148 5.3.1 Uncertaintyquantification . . . . . . . . . . . . . . . . . . 149 5.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.4.1 Deterministicoptimization . . . . . . . . . . . . . . . . . . 150 5.4.2 Comparisonwithrobustoptimization . . . . . . . . . . . . 153 5.5 Validationwiththeazimuthangle . . . . . . . . . . . . . . . . . . 158 6 Optimizationofmorphingairfoils 163 6.1 Effectsofcamberandthicknessmorphing . . . . . . . . . . . . . . 164 6.1.1 CamberandthicknessmorphingfromairfoilDA0 . . . . . 165 6.2 Optimalmorphingairfoils . . . . . . . . . . . . . . . . . . . . . . 169 6.2.1 Morphingstrategyandparameterization . . . . . . . . . . . 169 6.2.2 Deterministicresults . . . . . . . . . . . . . . . . . . . . . 171 6.2.3 Robustresults . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.3 Validationwithazimuth . . . . . . . . . . . . . . . . . . . . . . . . 175 7 Conclusion 179 Nomenclature 183 Listofabbreviations 187 A Deterministicaerodynamicbenchmarkcase 189 B Analternativeformulationfordesignunderuncertainty 197 Bibliography 207 Abstract The thesis presents a methodology for robust optimization applied to the problem of finding optimal shapes of fixed and morphing airfoils for helicopter rotor blades. To this purpose, the employment of robust approaches is explored to demonstrate their capability of indicating interesting design in the application to helicopter rotor blade airfoils. Because robust optimization increases the computational cost of the optimization process, new uncertainty-based optimization methods are developed. The goal of this development is to improve the numerical efficiency, thereby mak- ingrobustapproachesmoreattractivetoaerodynamicapplications. Thefirstmethod is based on a multi-fidelity approach to the estimation of the aerodynamic perfor- mance. Thesecondstrategyleveragesanadaptiveuncertaintyquantificationmethod to reduce the computational cost associated with poor design vectors inside the op- timization loop. The methods are applied to algebraic test cases and to the robust optimizationoffixedairfoilsinthehoveringcondition. Thisfirstapplicationdemon- strates the effectiveness of the proposed strategies and it also provides the mean for a discussion on the impact of robustness criteria on airfoil design. The robust opti- mizationframeworkisthenusedtotackletheforwardflightcase. Inthisflightcon- dition, two representative position of the blade over the azimuth are considered, i.e. the advancing side and the retreating side. Deterministic and robust optimal shapes are compared and robust airfoils demonstrate to be able to trim the helicopter with performance close to the deterministic values. The post-processing analysis of this application includes the comparison of the estimate computed by the steady models used in the optimization loop throughout the thesis and the objective function esti- mates obtained from an unsteady CFD model. Finally, the application of morphing 4 CONTENTS airfoilisconsidered. Themorphingstrategyconsistsinavariablecamberairfoiland itisconceivedwiththeintentofchangingitsshapeatthe1/revfrequencytoenhance aerodynamic performance. The optimization of morphing airfoils presented in the thesistakesintoaccounttheaerodynamicperformance,wheretechnologicalaspects are accounted for by means of geometrical constraints. The gain of the morphing airfoilstrategyisassessednotonlyfromadeterministicpointofview,butalsowhen consideringuncertaintyintheoperatingconditions.
Description: