Statistics R o b u s Robust Response Surfaces, t R e s Regression, and p o Robust Response Surfaces, n s Positive Data Analyses e S u Regression, and Although widely used in science and technology for experimental data generating, r f modeling, and optimization, the response surface methodology (RSM) has a c many limitations. Showing how robust response surface methodology (RRSM) e Positive Data Analyses can overcome these limitations, Robust Response Surfaces, Regression, s , and Positive Data Analyses presents RRS designs, along with the relevant R e regression and positive data analysis techniques. It explains how to use RRSM g in experimental designs and regression analysis. re s The book addresses problems of RRS designs, such as rotatability, slope- s i o rotatability, weak rotatability, and optimality. It describes methods for estimating n model parameters as well as positive data analysis techniques. The author , a illustrates the concepts and methods with real examples of lifetime responses, n d resistivity, replicated measures, and more. P o The range of topics and applications gives the book broad appeal to both s theoreticians and practicing professionals. The book helps quality engineers, it i v scientists in any area, medical practitioners, demographers, economists, and e statisticians understand the theory and applications of RRSM. It can also be D a used in a second course on the design of experiments. t a Features A • Explores how RRSM overcomes many limitations of the well-known RSM n a • Covers related topics of RRSM, such as regression analysis for correlated l y s errors and positive data analysis e • Emphasizes the concepts of rotatability, weak rotatability, D-optimality, s Rabindra Nath Das slope-rotatability, weak slope-rotatability, and D-optimal slope-rotatability • Analyzes real data from the medical, demography, hydrogeology, and other D fields a s K14635 K14635_cover.indd 1 4/18/14 9:58 AM Robust Response Surfaces, Regression, and Positive Data Analyses Robust Response Surfaces, Regression, and Positive Data Analyses Rabindra Nath Das CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140502 International Standard Book Number-13: 978-1-4665-0680-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedicated to my beloved mother and to the memory of my father Contents List of Figures xiii List of Tables xv Preface xix Author xxiii 1 INTRODUCTION 1 1.1 THE PROBLEM AND PERSPECTIVE . . . . . . . . . . . . . . . . . . . 1 1.2 A BRIEF REVIEW OF THE LITERATURE . . . . . . . . . . . . . . . . 3 1.3 EXISTING LITERATURE IN THE DIRECTION OF PRESENT RESEARCH MONOGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 ROBUST REGRESSION DESIGNS . . . . . . . . . . . . . . . . . . . . . 7 1.5 SUMMARY OF THE RESEARCH MONOGRAPH . . . . . . . . . . . . 9 1.6 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 ROBUST FIRST-ORDER DESIGNS 15 2.1 INTRODUCTION AND OVERVIEW . . . . . . . . . . . . . . . . . . . . 16 2.2 FIRST-ORDER CORRELATED MODEL . . . . . . . . . . . . . . . . . . 16 2.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Analysis and rotatability . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Robust rotatable and optimum designs . . . . . . . . . . . . . . . . 18 2.3 ROBUST FIRST-ORDER DESIGNS FOR INTRA-CLASS STRUCTURE 20 2.3.1 Comparison between RFORD and FORD . . . . . . . . . . . . . . 21 2.4 ROBUST FIRST-ORDER DESIGNS FOR INTER-CLASS STRUCTURE 21 2.4.1 Optimum robust first-order designs under inter-class structure . . . 23 2.4.2 RFORD and D-ORFOD under inter-class structure . . . . . . . . . 24 2.5 ROBUST FIRST-ORDER DESIGNS FOR GENERALIZED INTER- CLASS STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 ROBUST FIRST-ORDER DESIGNS FOR COMPOUND SYMMETRY STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6.1 Optimum robust first-order designs under compound symmetry structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.2 RFORD and D-ORFOD under compound symmetry structure. . . 29 2.7 ROBUST FIRST-ORDER DESIGNS FOR TRI-DIAGONAL STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7.1 Optimum robust first-order designs under tri-diagonal structure . . 31 2.7.2 RFORD and D-ORFOD under tri-diagonal structure . . . . . . . . 31 vii viii Contents 2.8 ROBUST FIRST-ORDER DESIGNS FOR AUTOCORRELATED STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8.1 Optimum robust designs under autocorrelated structure . . . . . . 34 2.8.2 RFORD and nearly D-ORFOD under autocorrelated structure . . 35 2.9 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 ROBUST SECOND-ORDER DESIGNS 45 3.1 INTRODUCTION AND OVERVIEW . . . . . . . . . . . . . . . . . . . . 46 3.2 SECOND-ORDER CORRELATED MODEL . . . . . . . . . . . . . . . . 46 3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 ROBUST SECOND-ORDER ROTATABILITY . . . . . . . . . . . . . . . 48 3.3.1 Robust second-order rotatability conditions . . . . . . . . . . . . . 48 3.3.2 Robust second-order rotatable non-singularity condition . . . . . . 50 3.3.3 Robust second-order rotatable and optimum designs . . . . . . . . 51 3.4 ROBUST SECOND-ORDER DESIGNS FOR INTRA-CLASS STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.1 Second-order rotatability conditions under intra-class structure . . 52 3.4.2 Non-singularity condition under intra-class structure . . . . . . . . 53 3.4.3 Estimated response variance under intra-class structure . . . . . . . 53 3.4.4 Optimum RSORD under intra-class structure . . . . . . . . . . . . 54 3.5 ROBUST SECOND-ORDER DESIGNS FOR INTER-CLASS STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.1 Second-order rotatability conditions under inter-class structure . . 55 3.5.2 RSORD construction methods under inter-class structure . . . . . 57 3.6 ROBUST SECOND-ORDERDESIGNS FOR COMPOUNDSYMMETRY STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6.1 Second-order rotatability conditions under compound symmetry structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6.2 RSORD construction for compound symmetry structure . . . . . . 66 3.7 ROBUST SECOND-ORDER DESIGNS FOR TRI-DIAGONAL STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.7.1 Second-order rotatability conditions under tri-diagonal structure. . 66 3.7.2 RSORD construction for tri-diagonalstructure . . . . . . . . . . . 67 3.8 ROBUST SECOND-ORDER DESIGNS FOR AUTOCORRELATED STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.8.1 Second-order rotatability conditions for autocorrelatedstructure . . 71 3.8.2 RSORD construction for autocorrelatedstructure . . . . . . . . . . 73 3.9 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 ROBUST REGRESSION DESIGNS FOR NON-NORMAL DISTRIBUTIONS 77 4.1 INTRODUCTION AND OVERVIEW . . . . . . . . . . . . . . . . . . . . 77 4.2 CORRELATED ERROR MODELS FOR NON-NORMAL DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.1 Correlated error models for log-normaldistribution . . . . . . . . . 79 4.2.2 Correlated error models for exponential distribution. . . . . . . . . 80 4.3 ROBUST FIRST-ORDER DESIGNS FOR LOG-NORMAL AND EXPONENTIAL DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . 81
Description: