ebook img

Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems PDF

194 Pages·2017·4.659 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems

Studies in Systems, Decision and Control 83 Huiping Li Yang Shi Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems Studies in Systems, Decision and Control Volume 83 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] About this Series The series “Studies in Systems, Decision and Control” (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control- quickly, up to date and withahighquality.Theintentistocoverthetheory,applications,andperspectives on the state of the art and future developments relevant to systems, decision making,control,complexprocessesandrelatedareas, asembeddedinthefieldsof engineering,computerscience,physics,economics,socialandlifesciences,aswell astheparadigmsandmethodologiesbehindthem.Theseriescontainsmonographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular valuetoboththecontributorsandthereadershiparetheshortpublicationtimeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/13304 Huiping Li Yang Shi (cid:129) Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems 123 HuipingLi Yang Shi Schoolof Marine Science andTechnology Department ofMechanical Engineering Northwestern Polytechnical University University of Victoria Xi’an Victoria, BC China Canada ISSN 2198-4182 ISSN 2198-4190 (electronic) Studies in Systems,DecisionandControl ISBN978-3-319-48289-7 ISBN978-3-319-48290-3 (eBook) DOI 10.1007/978-3-319-48290-3 LibraryofCongressControlNumber:2016954586 MATLAB®is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098,USA,http://www.mathworks.com. ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Theemergenceoflarge-scaleandnetworkedphysicalsystemssuchassmartgrids, multi-robotsystems andtransportationsystems callsfornewtheory,methodology, and frameworks for synthesizing and analyzing such systems from a control engineering perspective. In such networked and large-scale systems, the grand challenges for control include the network-induced communication constraints (suchascommunicationdelays,anddatalosses),scalabilityissue,nonlinearity,and uncertainty. The receding horizon control (RHC) strategy is regaining popularity in recent years, and it is particularly efficient and promising to handle communication con- straints, provide satisfactory control performance, as well as deal with other issues such as nonlinearity and disturbances. Specifically speaking, the RHC strategy is abletoofferaheadinformationtocompensatefornetwork-inducedcommunication constraints; it can achieve suboptimal performance for large-scale systems in a distributed fashion; it is efficient in handling nonlinear control problem online and iteratively. This book makes full use of these features of RHC and brings RHC-based methodologies and frameworksfor the control of nonlinear networked systems and large-scale systems. The technical contents of the book contain eight self-contained chapters, which maybedividedintofourparts.ThefirstpartisChap.1.Inthischapter,arelatively comprehensive overview on the RHC for networked control systems (NCSs) and distributedRHCforlarge-scaleagentsystemsisoffered,whichwouldgivereaders aclearresearchbackground.ThesecondpartincludesChaps.2–4.Chapters2and3 provide novel approaches to solve the RHC-based control problem for nonlinear NCSs with two-channel data losses and two-channel data loss and information latency,respectively.Chapter4solvestheoutputfeedbackRHCproblemforNCSs with measurement dropouts. The third part includes Chaps. 5–7, which focuses on the distributed RHC problems for large-scale nonlinear systems. The methods on dealing with external disturbances, transmission delays, and simultaneous occur- renceofdelaysanddisturbancesarereportedinChaps.5–7.Finally,thefourthpart contains Chap. 8, which provides a novel approach on the event-triggered RHC problem for nonlinear systems, to save computational load and communication v vi Preface resources. The event-triggered RHC is a very new topic and Chap. 8 provides a basic but useful result. For each control problem, this book not only provides practical solutions with effective control algorithms and/or strategies, but also offers rigorous theoretical analysis with provably correct design conditions. In addition, simulation examples are provided in each chapter to show how to implement the developed algorithms and/or strategies. This book would be useful for graduate students, control engi- neers,anduniversityinstructors;howevertheyneedthebackgroundsonbasicRHC before fully understanding this book. In particular, it is believed that the book would be very helpful for those who are doing research in RHC for large-scale systems and networked systems. Xi’an, China Huiping Li Victoria, Canada Yang Shi October 2015 Acknowledgments Although this book is an accumulation and fruit of 6-year research in the area of receding horizon control for networked large-scale systems, we are indebted to many colleagues and friends. We thank Prof. Wu-sheng Lu at the University of Victoria, BC, Canada, for his discussions and instructions in the theory of convex optimization, and Prof. Wei Ren and Dr. Daniela Constantinescu for providing suggestions in multi-agent systems. In addition, we wish to express thanks to Dr. Jian Wu for providing help in area of linear algebra, to Dr. Ji Huang for his comments on networked control systems, to Dr. Xiaotao Liu for the useful sug- gestions and discussions on receding horizon control. We also wish to thank Dr. Hui Zhang, Mr. Mingxi Liu, Mr. Bingxian Mu, Mr. Chao Shen, and Mr.YuanyeChengfortheirsupportduringtheresearchperiodattheUniversityof Victoria. We also would like to thank the reviewers for reviewing this book and Oliver Jackson and Nisha S. Keeran at Springer for providing assistance to get this manuscript published. Finally,wewouldliketothankthefinancialsupportfromtheChinaScholarship Council(CSC),theNaturalSciencesandEngineeringResearchCouncilofCanada and the Canada Foundation of Innovation, the University of Victoria, National Natural Science Foundation of China (NSFC) under Grant 61473225, 61502395, and 61473116, Northwestern Polytechnical University. Xi’an, China Huiping Li Victoria, Canada Yang Shi vii Contents 1 Introduction and Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Control Systems with Communication Networks (NCSs). . . . . . . 1 1.2 Introduction to Receding Horizon Control (RHC). . . . . . . . . . . . 4 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 RHC-based Control of NCSs. . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Distributed RHC of Large-Scale Systems . . . . . . . . . . . . 8 1.4 Motivation of the Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Outline of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Note and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 RHC of Networked Nonlinear Systems with Two-Channel Packet Dropouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Preliminary Results and Modeling . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Regional ISpS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 Network Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.3 Buffer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Predictive Networked Controller Design . . . . . . . . . . . . . . . . . . 25 2.3.1 Constrained Optimization Problem. . . . . . . . . . . . . . . . . 25 2.3.2 Control Packet Generation . . . . . . . . . . . . . . . . . . . . . . 26 2.3.3 Packet Transmission and Compensation Strategy Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Explicit Control Law and Closed-Loop Model. . . . . . . . . 28 2.4 Stability Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Note and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ix x Contents 3 Min-Max RHC of Nonlinear NCSs with Delays and Packet Dropouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Problem Formulation and Preliminaries. . . . . . . . . . . . . . . . . . . 42 3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Networked Controller Design. . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.1 Control System Structure . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.2 Min-Max RHC-Based Control Packet Design . . . . . . . . . 47 3.3.3 Compensation Strategy. . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 Stability Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Simulation Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6 Note and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Output Feedback RHC of NCSs with Intermittent Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Observer Design and Estimation Error Analysis. . . . . . . . . . . . . 68 4.3.1 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Bounds of Estimation Error. . . . . . . . . . . . . . . . . . . . . . 69 4.4 Robust Output Feedback RHC Design . . . . . . . . . . . . . . . . . . . 70 4.4.1 Nominal State Feedback RHC. . . . . . . . . . . . . . . . . . . . 70 4.4.2 Constraints Tightening . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.3 Robust Output Feedback RHC Algorithm. . . . . . . . . . . . 75 4.5 Feasibility and Stability Analysis. . . . . . . . . . . . . . . . . . . . . . . 75 4.5.1 Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5.2 Stability Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.6 Simulations and Comparison Studies . . . . . . . . . . . . . . . . . . . . 79 4.6.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.6.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.7 Note and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5 Robust Distributed RHC of Constrained Nonlinear Systems. . . . . . 89 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 89 5.1.2 Main Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1.3 Organization and Notations. . . . . . . . . . . . . . . . . . . . . . 91 5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3 Robust Distributed RHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3.1 Setup of Robust Distributed RHC . . . . . . . . . . . . . . . . . 94 5.3.2 Robust Distributed RHC Algorithm . . . . . . . . . . . . . . . . 97

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.