Studies in Systems, Decision and Control 7 Xiao-Heng Chang Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems Studies in Systems, Decision and Control Volume 7 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] For furthervolumes: http://www.springer.com/series/13304 About thisSeries The series ‘‘Studies in Systems, Decision and Control’’ (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control- quickly, up to date and withahighquality.Theintentistocoverthetheory,applications,andperspectives on the state of the art and future developments relevant to systems, decision making,control,complexprocessesandrelatedareas,asembeddedinthefieldsof engineering, computer science, physics, economics, social and life sciences, as well as the paradigms and methodologies behind them. The series contains monographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, AerospaceSystems,Automation,Manufacturing,SmartGrids,NonlinearSystems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publicationtimeframeandtheworld-widedistributionandexposurewhichenable both a wide and rapid dissemination of research output. Xiao-Heng Chang Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems 123 Xiao-Heng Chang College ofEngineering Bohai University Jinzhou China ISSN 2198-4182 ISSN 2198-4190 (electronic) ISBN 978-3-642-55106-2 ISBN 978-3-642-55107-9 (eBook) DOI 10.1007/978-3-642-55107-9 Springer Heidelberg NewYork Dordrecht London LibraryofCongressControlNumber:2014936741 (cid:2)Springer-VerlagBerlinHeidelberg2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface It is well known that robust H control and filtering are important issues for 1 systems. In recent years, the linear matrix inequality (LMI) technique has been widely used to solve the robust H control and filtering problems for uncertain 1 linearsystemswithpolytopicuncertainparametersand/ornormboundeduncertain parameters. Although a large number of design methods have been developed to deal with the robust H control and filtering problems for both continuous-time and dis- 1 crete-time uncertain linear systems, the design problem of output feedback H 1 controllerscannotbeformulatedintheframeworkofLMI.Ingeneral,theproblem can be represented as a bilinear matrix inequality (BMI) problem. However, the BMI problem is nonconvex and difficult to obtain solution. To obtain LMI-based conditions for designing output feedback H controllers, some studies have to 1 impose constraints on system matrices. In summary, those results are limited and cannot be applied to general control systems. This monograph aims to present some new results on robust output feedback H control and filtering for uncertain linear systems. It lists an LMI decoupling 1 approach, and the main results of this monograph are expressed in a unified LMI framework,whichwillprovideaneffectivefoundationforthefutureresearch.Itis primarilyintendedforgraduatestudentsincontrolandfiltering,butcanalsoserve as a valuable reference material for researchers wishing to explore the area of control and filtering of linear systems. The background required of the reader is knowledge of basic control system theory, basic Lyapunov stability theory, and basic LMI theory. Jinzhou, China, March 2014 Xiao-Heng Chang v Acknowledgments This monograph would not be possible without the work done in the previous resultsofothers.Ithankthemfortheirscientificdedicationandespeciallyfortheir influence on my research and on this monograph. It is a great pleasure to express mythankstothosewhohavebeeninvolvedinvariousaspectsofresearchleading to the work. TheauthorwishestoexpresshisheartygratitudetoadvisorsProf.Guang-Hong Yang and Prof. Yuanwei Jing, Northeastern University, China, for directing the research interest of the author to the general area of controls. Special thanks to Prof. QinglingZhang,Northeastern University,China, for thehelpfulsuggestions onthismonograph.IwanttothankProf.ShengyuanXuattheNanjingUniversity of Science and Technology, China, Prof. Shaocheng Tong at the Liaoning University of Technology, China, and Prof. Bing Chen at Qingdao University, China,forallthehelpinmyacademicresearch.IamalsogratefultoProf.Huijun Gao, Prof. Zhongdang Yu, and Prof. Shen Yin, Bohai University, China, for the support and encouragement the author has had during the writing of this monograph. Finally,theauthorwouldliketoexpresshisgratitudetotheeditorNaXuatthe SpringerBeijingOffice.Withouttheirappreciationandhelp,thepublicationofthis book would have not gone so smoothly. The monograph was supported in part by the National Natural Science Foun- dation of China (Grant No. 61104071), by the Program for Liaoning Excellent TalentsinUniversity,China(GrantNo.LJQ2012095),bytheOpenProgramofthe Key Laboratory of Manufacturing Industrial Integrated Automation, Shenyang University, China (Grant No. 1120211415). vii Contents 1 Introduction and Preview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Formulation and Preliminaries . . . . . . . . . . . . . . . . . . 4 1.2.1 Output Feedback H Control. . . . . . . . . . . . . . . . . . . . 4 1 1.2.2 H Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 1.2.3 LMI and Matrix Properties. . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Robust Static Output Feedback H Control. . . . . . . . . . . . . . . . . 17 ‘ 2.1 With Time-Invariant Polytopic Uncertainties . . . . . . . . . . . . . . 17 2.1.1 Discrete-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2 Continuous-Time Systems . . . . . . . . . . . . . . . . . . . . . . 74 2.2 With Norm Bounded Uncertainties . . . . . . . . . . . . . . . . . . . . . 83 2.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.3.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.3.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3 Robust Dynamic Output Feedback H Control. . . . . . . . . . . . . . . 95 ‘ 3.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.3 LMI Decoupling Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.4 A Whole Design Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.5 For the Case DðhÞ6¼0 and HðhÞ6¼0. . . . . . . . . . . . . . . . . . . . 120 3.6 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4 Robust Observer-Based Output Feedback H Control . . . . . . . . . 125 ‘ 4.1 With Time-Invariant Polytopic Uncertainties . . . . . . . . . . . . . . 125 4.1.1 Condition A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1.2 Condition B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 ix x Contents 4.2 With Time-Varying Norm Bounded Uncertainties. . . . . . . . . . . 135 4.2.1 The Two-Step Process with a Selection. . . . . . . . . . . . . 135 4.2.2 A Simple LMI Result . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.2.3 LMI Decoupling Approach. . . . . . . . . . . . . . . . . . . . . . 145 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5 Robust H Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 ‘ 5.1 Discrete-Time System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.1.1 H Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 156 1 5.1.2 Robust H Filters Design . . . . . . . . . . . . . . . . . . . . . . 160 1 5.1.3 LMI Decoupling Approach. . . . . . . . . . . . . . . . . . . . . . 174 5.2 Continuous-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.2.1 H Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 177 1 5.2.2 Robust H Filters Design . . . . . . . . . . . . . . . . . . . . . . 181 1 5.3 Numerical Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 6 With Other Types of Uncertainties. . . . . . . . . . . . . . . . . . . . . . . . 191 6.1 With Feedback Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.1.1 Robust Output Feedback H Control . . . . . . . . . . . . . . 191 1 6.1.2 Robust H Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 200 1 6.1.3 Output Feedback Non-fragile H 1 Control with Type III . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.1.4 Non-fragile H Filtering with Type I and Type II . . . . . 218 1 6.2 Frobenius Norm Uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . 233 6.2.1 Observer-Based Output Feedback Non-fragile H Control. . . . . . . . . . . . . . . . . . . . . . . . 234 1 6.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Acronyms LMI Linear matrix inequality LMIs Linear matrix inequalities BMI Bilinear matrix inequality xi