ebook img

Robust Latent Feature Learning for Incomplete Big Data PDF

119 Pages·2023·4.049 MB·English
by  Di Wu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust Latent Feature Learning for Incomplete Big Data

SpringerBriefs in Computer Science Di Wu Robust Latent Feature Learning for Incomplete Big Data SpringerBriefs in Computer Science SeriesEditors StanZdonik,BrownUniversity,Providence,RI,USA ShashiShekhar,UniversityofMinnesota,Minneapolis,MN,USA XindongWu,UniversityofVermont,Burlington,VT,USA LakhmiC.Jain,UniversityofSouthAustralia,Adelaide,SA,Australia DavidPadua,UniversityofIllinoisUrbana-Champaign,Urbana,IL,USA XueminShermanShen,UniversityofWaterloo,Waterloo,ON,Canada BorkoFurht,FloridaAtlanticUniversity,BocaRaton,FL,USA V.S.Subrahmanian,UniversityofMaryland,CollegePark,MD,USA MartialHebert,CarnegieMellonUniversity,Pittsburgh,PA,USA KatsushiIkeuchi,UniversityofTokyo,Tokyo,Japan BrunoSiciliano,UniversitàdiNapoliFedericoII,Napoli,Italy SushilJajodia,GeorgeMasonUniversity,Fairfax,VA,USA NewtonLee,InstituteforEducation,ResearchandScholarships,LosAngeles,CA, USA SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125pages,theseriescoversarangeofcontentfromprofessionaltoacademic. Typicaltopicsmightinclude: (cid:129) Atimelyreportofstate-of-theartanalyticaltechniques (cid:129) A bridge between new research results, as published in journal articles, and a contextualliteraturereview (cid:129) Asnapshotofahotoremergingtopic (cid:129) Anin-depthcasestudyorclinicalexample (cid:129) A presentation of core concepts that students must understand in order to make independentcontributions Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. Briefs will be published as part of Springer’s eBook collection, with millions of users worldwide. In addition, Briefs will be available forindividualprintandelectronicpurchase.Briefsarecharacterizedbyfast,global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8–12 weeks after acceptance. Both solicited and unsolicited manuscriptsareconsideredforpublicationinthisseries. **Indexing:ThisseriesisindexedinScopus,Ei-Compendex,andzbMATH** Di Wu Robust Latent Feature Learning for Incomplete Big Data DiWu CollegeofComputerandInformationScience SouthwestUniversity Chongqing,China ISSN2191-5768 ISSN2191-5776 (electronic) SpringerBriefsinComputerScience ISBN978-981-19-8139-5 ISBN978-981-19-8140-1 (eBook) https://doi.org/10.1007/978-981-19-8140-1 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Intheeraof BigData, high dimensional andincomplete(HDI) data arefrequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature learning is one of the most popular representation learning methods tailored for HDI data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing HDI data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing HDImethodsdonotfullyconsidersuchuncertainty. Inthisbook,Iintroduceseveralrobustlatentfeaturelearningmethodstoaddress suchuncertaintyforeffectivelyandefficientlyanalyzingHDIdata,includingrobust latent feature learning based on smooth L -norm, improving robustness of latent 1 featurelearningusingL -norm,improvingrobustnessoflatentfeaturelearningusing 1 double-space, data-characteristic-aware latent feature learning, posterior- neighborhood-regularizedlatentfeaturelearning,andgeneralizeddeeplatentfeature learning. Thisisthefirstbookthatcanhelpresearchersandengineersfullyunderstandhow to employ robust latent feature learning to effectively and efficiently analyze HDI data.Itisassumedthatreadershaveabasicknowledgeofmathematics,aswellasa certainbackgroundindatamining.Readerscanobtainanoverviewofthechallenges of analyzing HDI data. In addition, this book provides several algorithms and real application cases, which can help readers quickly build their robust latent feature learningmodelstoanalyzeHDIdata. Chongqing,China DiWu September2022 v Acknowledgments The work described in this book was supported by the National Natural Science FoundationofChinaundergrant62176070. vii Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 SymbolsandNotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 BookOrganization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 BasisofLatentFeatureLearning. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 LatentFeatureLearning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 ABasicLFLModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 ABiasedLFLModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3 AlgorithmsDesign. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 13 2.4 PerformanceAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.1 EvaluationProtocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 RobustLatentFeatureLearningbasedonSmoothL -norm. . . . . . . 19 1 3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 ASmoothL -NormBasedLatentFeatureModel. . . . . . . . . . . . . 21 1 3.3.1 ObjectiveFormulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2 ModelOptimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.3 IncorporatingLinearBiasesintoSL-LF. . . . . . . . . . . . . . . 23 3.4 PerformanceAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 GeneralSettings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.2 PerformanceComparison. . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.3 OutlierDataSensitivityTests. . . . . . . . . . . . . . . . . . . . . . 27 3.4.4 TheImpactofHyper-Parameter. . . . . . . . . . . . . . . . . . . . 28 ix x Contents 3.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 ImprovingRobustnessofLatentFeatureLearningUsing L -Norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 AnL -and-L -Norm-OrientedLatentFeatureModel. . . . . . . . . . . 35 1 2 4.3.1 ObjectiveFormulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.2 ModelOptimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.3 Self-AdaptiveAggregation. . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 PerformanceAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4.1 GeneralSettings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4.2 L3F’sAggregationEffects. . . . . . . . . . . . . . . . . . . . . . . . 40 4.4.3 ComparisonBetweenL3FandBaselines. . . . . . . . . . . . . . 41 4.4.4 L3F’sRobustnesstoOutlierData. . . . . . . . . . . . . . . . . . . 41 4.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 ImproveRobustnessofLatentFeatureLearningUsing Double-Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 ADouble-SpaceandDouble-NormEnsembledLatentFeature Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.1 PredictorBasedonInnerProductSpace(D2E-LF-1). . . . . 50 5.3.2 PredictoronEuclideanDistanceSpace(D2E-LF-2). . . . . . 53 5.3.3 EnsembleofD2E-LF-1andD2E-LF-2. . . . . . . . . . . . . . . . 56 5.3.4 AlgorithmDesignandAnalysis. . . . . . . . . . . . . . . . . . . . 57 5.4 PerformanceAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4.1 GeneralSettings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4.2 PerformanceComparison. . . . . . . . . . . . . . . . . . . . . . . . . 59 5.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6 Data-characteristic-awareLatentFeatureLearning. . . . . . . . . . . . . 67 6.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.1 RelatedLFL-BasedModels. . . . . . . . . . . . . . . . . . . . . . . 68 6.2.2 DPClustAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3 AData-Characteristic-AwareLatentFeatureModel.. . . . . . . . . .. 70 6.3.1 ModelStructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.2 Step1:LatentFeatureExtraction. . . . . . . . . . . . . . . . . . . 71 6.3.3 Step2:NeighborhoodandOutlierDetection. . . . . . . . . . . 71 6.3.4 Step3:Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Contents xi 6.4 PerformanceAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4.1 PredictionRuleSelection. . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4.2 PerformanceComparison. . . . . . . . . . . . . . . . . . . . . . . . . 77 6.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7 Posterior-neighborhood-regularizedLatentFeatureLearning. . . . . 85 7.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 APosterior-Neighborhood-RegularizedLatentFeatureModel. . . . 87 7.3.1 PrimalLatentFeatureExtraction. . . . . . . . . . . . . . . . . . . . 87 7.3.2 Posterior-NeighborhoodConstruction. . . . . . . . . . . . . . . . 88 7.3.3 Posterior-Neighborhood-RegularizedLFL. . . . . . . . . . . . . 89 7.4 PerformanceAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4.1 GeneralSettings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4.2 ComparisonsBetweenPLFandState-of-the-ArtModels. . . 91 7.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8 GeneralizedDeepLatentFeatureLearning. . . . .. . . . . . .. . . . . . .. 97 8.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.2 RelatedWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.3 ADeepLatentFeatureModel. . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.4 PerformanceAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.4.1 GeneralSettings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.4.2 EffectsofLayerCountinDLF. . . . . . . . . . . . . . . . . . . . . 101 8.4.3 ComparisonBetweenDLFandRelatedModels. . . . . . . . . 102 8.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9 ConclusionandOutlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.1 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.2 Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.