ebook img

Robust Filtering for Uncertain Systems: A Parameter-Dependent Approach PDF

259 Pages·2014·6.239 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust Filtering for Uncertain Systems: A Parameter-Dependent Approach

Communications and Control Engineering Huijun Gao Xianwei Li Robust Filtering for Uncertain Systems A Parameter-Dependent Approach Communications and Control Engineering For furthervolumes: http://www.springer.com/series/61 Huijun Gao Xianwei Li • Robust Filtering for Uncertain Systems A Parameter-Dependent Approach 123 Huijun Gao Xianwei Li ResearchInstituteofIntelligentControland Systems Harbin InstituteofTechnology Harbin China ISSN 0178-5354 ISSN 2197-7119 (electronic) ISBN 978-3-319-05902-0 ISBN 978-3-319-05903-7 (eBook) DOI 10.1007/978-3-319-05903-7 Springer ChamHeidelberg New YorkDordrecht London LibraryofCongressControlNumber:2014935227 (cid:2)SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To my parents, Qingxiang Gao and Yunrong Yan, my wife, Lu Zhao, and my son, Ying’ao Gao — Huijun Gao To my parents, Daiyuan Li and Helan Chen, and my wife, Yue Gu — Xianwei Li Preface Filtering is one of the basic problems in the fields of systems, control and signal processing. The goal of filtering is to estimate signals that are unmeasurable through processing the measured output signals. Since the development of Kal- man’s optimal filtering theory for stochastic systems and Luenberger’s observer theoryfordeterministicsystems,manyscholarshave devotedconsiderableefforts to the problem of filtering. Especially, the well-known Kalman filtering theory plays a significant role in various social and engineering fields such as aerospace, astronautics,industrialprocessesandeconomicandfinancialsystems.TheKalman filtering theory is based on the availability of the precisely-known mathematical modelofthestudiedplantandtheassumptionofstrictGaussianrandomprocesses orseries.However,itisusuallydifficulttocharacterizethedynamicsofthestudied plantexactlybyamathematicalmodel,inevitablyleadingtoanerrorbetweenthe derived mathematical model and the practical plant; moreover, it is rare for practicalexternalnoisestocompletelysatisfythestrongGaussianassumption.The uncertainties existing in systems and signals would greatly degrade the perfor- mance of a traditional Kalman filter and even cause divergence. Hence, it is of practical meaning to research filtering theory for uncertain dynamical systems so as to improve the robustness of a filter against uncertainties. In systems and control areas, study on uncertain systems has drawn much attentionfrommanyresearchersforalongtime.Robustcontroltheory,originating from 1970s, generally solves analysis and synthesis problems of parametric uncertain systems based on the notion of quadratic stability. Since the late 1980s, this notion has also been gradually employed to solve robust filtering problems of uncertain systems, which results in a great number of quadratic approaches to robust filter design. However, these quadratic approaches have been well recog- nizedtobeconservativeduetothetheutilizationofacommonquadraticLyapunov function for the entire uncertainty domain. In recent years, to reduce such con- servatism and improve the practical applicability of robust filter design methods, parameter-dependent Lyapunov functions are introduced into robust filtering the- ory,andparameter-dependentapproachestorobustfilterdesignhavedrawagreat deal of attention. The essential idea of the most popular parameter-dependent fil- teringresultsistorelaxLyapunovfunctionstobelinearlyparameter-dependentand meanwhile to fix some slack matrices, which, though relaxing the quadratic approaches, still has much limitation. vii viii Preface Inviewofthelimitationoftheexistingparameter-dependentresults,somenew methods recently have been developed to derive a series of parameter-dependent approachestorobustfilterdesign,includingours,whichfurtherreleasetheprevious restrictions on Lyapunov functions, showing great potential in conservatism reduction. This book systematically summarizes these recent developments of parameter-dependent filter design methods. Robust H filtering, robust H 2 ? filteringandrobustenergy-to-peakfilteringarediscussedinthebook,whererobust H filtering is employed asthe main filtering scheme for various classes of com- ? plex uncertain dynamical systems including time-delay systems, two-dimensional systems and networked systems. Moreover, our latest work, some preliminary resultsonfinitefrequencyH filtering,willalsobeinvolvedattheendofthebook ? toshowanewfilteringthemeoffutureinterest.Variousexamplesareprovidedin the book to illustrate the effectiveness of the presented new parameter-dependent filtering results. All the results are presented in the framework of linear matrix inequality (LMI). Fromthebook,readercanfindanoverviewofthelatestadvancesintherobust filtering area and grasp the state-of-the-art methods on parameter-dependent filter design.Thisbookcanbeusedasareferencebyresearchersandengineersworking intheareasrelatedtocontroltheoryandengineering,andsignalprocessing,andit is especially beneficial for graduate students interested in or focusing on robust filtering theory and its application. Courses like linear systems, modern control theory and robust control theory and basic mathematical background are pre- requisiteforreadingthebook.ThosefamiliarwiththeLMItheorywouldpossibly read the book more efficiently. Harbin, China, July 2013 Huijun Gao Xianwei Li Acknowledgments The authors would like to dedicate their gratitude to many colleagues and friends who have made direct and indirect contribution to this book. First appreciation is delivered toProf. Tongwen Chen from University of Alberta, Canada, who offers the first author an opportunity to conduct his postdoctoral research from 2005 to 2007 at University of Alberta, where partial works of the book are completed underthecooperationwithProf.Chen.SpecialthanksgotoMr.XiangyuMengfor hiseffortsandcontributiontosomepertinentworkswhenheconductedhisM.Eng. career under the supervision of the first author. The authors are also grateful to Prof. James Lam from The University of Hong Kong, Hong Kong, Prof. Zidong Wang from Brunel University, UK, Professer Peng Shi from The University of Adelaide, Australia, Prof. Okyay Kaynak from Bogazici University, Turkey, and Prof.ChanghongWangfromHarbinInstituteofTechnology,China,fortheirlong- lasting friendship and cooperation that have provided the authors great support, encouragement and inspiration in study and research. The second author would liketoexpresshissincerethankstothefirstauthorforhisguidanceandinstruction in the second author’s study and academic career. Undoubtedly, the authors’ deepest gratitude is forever dedicated to their families for their unreservedly understanding, love and encouragement. The writing of the book is financially supported in part by the National 973 ProjectunderGrant2009CB320600973,theNationalNaturalScience Foundation ofChinaunderGrants61333012,61273201,61329301,60825303and61203035, and the Key Laboratory of Integrated Automation for the Process Industry, Northeast University. ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Robust Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Uncertainty in Systems . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Uncertainty in Signals. . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Quadratic Robust Filter Design. . . . . . . . . . . . . . . . . . . 5 1.3 Parameter-Dependent Robust Filtering. . . . . . . . . . . . . . . . . . . 7 1.3.1 Significance of Parameter Dependence . . . . . . . . . . . . . 7 1.3.2 Parameter-Dependent Robust Filter Design . . . . . . . . . . 8 1.3.3 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Organization of the Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 Schur Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.2 Elimination Lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.3 GKYP Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.4 Jensen Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Part I Quadratic and Parameter-Dependent Filter Design 2 Quadratic Robust Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 Quadratic Robust H Filter Design . . . . . . . . . . . . . . . . . . . . . 26 2 2.1.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.2 H Filtering for Nominal Systems: Continuous-Time. . . . 28 2 2.1.3 Connectiontothe Kalman Filtering: Continuous-Time. . . 35 2.1.4 H Filtering for Nominal Systems: Discrete-Time. . . . . . 39 2 2.1.5 Connection to the Kalman Filtering: Discrete-Time. . . . . 44 2.1.6 Quadratic Robust H Filtering . . . . . . . . . . . . . . . . . . . 47 2 2.2 Quadratic Robust H Filter Design. . . . . . . . . . . . . . . . . . . . . 52 1 2.2.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.2 H Filtering for Nominal Systems . . . . . . . . . . . . . . . . 54 1 2.2.3 Quadratic Robust H Filtering. . . . . . . . . . . . . . . . . . . 58 1 xi xii Contents 2.3 Quadratic Robust Energy-to-Peak Filter Design. . . . . . . . . . . . . 61 2.3.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.3.2 Energy-to-Peak Filtering for Nominal Systems. . . . . . . . 63 2.3.3 Quadratic Robust Energy-to-Peak Filtering. . . . . . . . . . . 64 2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.5 Summary and Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.5.1 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.5.2 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3 Parameter-Dependent Robust Filter Design . . . . . . . . . . . . . . . . . 83 3.1 Slack Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1.1 H Performance Criterion. . . . . . . . . . . . . . . . . . . . . . . 84 2 3.1.2 H Performance Criterion. . . . . . . . . . . . . . . . . . . . . . 87 1 3.2 Filter Realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.2.1 H Filter Realization. . . . . . . . . . . . . . . . . . . . . . . . . . 90 2 3.2.2 H Filter Realization . . . . . . . . . . . . . . . . . . . . . . . . . 94 1 3.3 Linearly Parameter-Dependent Approaches. . . . . . . . . . . . . . . . 96 3.3.1 H Filter Design I. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2 3.3.2 H Filter Design I . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 1 3.4 Polynomially Parameter-Dependent Approaches . . . . . . . . . . . . 100 3.4.1 Homogeneous Polynomial . . . . . . . . . . . . . . . . . . . . . . 101 3.4.2 H Filter Design II . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 2 3.4.3 H Filter Design II. . . . . . . . . . . . . . . . . . . . . . . . . . . 109 1 3.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.6 Summary and Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.6.1 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.6.2 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Part II Robust Filtering for Time-Delay Systems and 2-D Systems 4 Robust Filtering for Continuous Time-Delay Systems . . . . . . . . . . 125 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3 Filter Analysis and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.3.1 Filter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.3.2 Filter Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.3.3 Polynomially Parameter-Dependent Approach to Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.