ebook img

Robust Dual Topological Character with Spin-Valley Polarization in a Monolayer of the Dirac Semimetal Na$_3$Bi PDF

2.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust Dual Topological Character with Spin-Valley Polarization in a Monolayer of the Dirac Semimetal Na$_3$Bi

RobustDualTopologicalCharacterwithSpin-ValleyPolarizationinaMonolayeroftheDirac SemimetalNa Bi 3 Chengwang Niu1,∗ Patrick M. Buhl1, Gustav Bihlmayer1, Daniel Wortmann1, Ying Dai2, Stefan Blu¨gel1, and Yuriy Mokrousov1 1Peter Gru¨nberg Institut and Institute for Advanced Simulation, Forschungszentrum Ju¨lich and JARA, 52425 Ju¨lich, Germany 2School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 250100 Jinan, People’s Republic of China Topologicalmaterialswithbothinsulatingandsemimetalphasescanbeprotectedbycrystalline(e.g.mirror) symmetry.Theinsulatingphase,calledtopologicalcrystallineinsulator(TCI),hasbeenintensivelyinvestigated 7 andobservedinthree-dimensionalmaterials.However,thepredictedtwo-dimensional(2D)materialswithTCI 1 0 phase are explored much less than 3D TCIs and 2D topological insulator, while so far considered 2D TCIs 2 almostexclusivelypossessasquarelatticestructurewiththemirrorChernnumberCM =−2.Here,wepredict theoretically that hexagonal monolayer of Dirac semimetal Na3Bi is a 2D TCI with a mirror Chern number n C = −1. Thelargenontrivialgapof0.31eVistunableandcanbemademuchlargerviastrainengineering M a whilethetopologicalphasesarerobustagainststrain,indicatingahighpossibilityforroom-temperatureobser- J vationofquantizedconductance. Inaddition,anonzerospinChernnumberCS = −1isobtained,indicating 5 the coexistence of 2D topological insulator and 2D TCI, i.e. the dual topological character. Remarkably, a 2 spin-valleypolarizationisrevealedinNa Bimonolayerduetothebreakingofcrystalinversionsymmetry.The 3 dualtopologicalcharacterisfurtherexplicitlyconfirmedviaunusualedgestates’behaviorundercorresponding ] i symmetrybreaking. c s - l Thediscoveryoftopologicalinsulator(TI)1,2 hastriggered together with inversion symmetry breaking can lead to cou- r t anexplosionofnoveltopologicallynontrivialphases,suchas pled spin and valley physics, in which the new degree of m thetopologicalcrystallineinsulator(TCI),forwhichtherole freedom offers a promising route to the eventual realization . ofthetime-reversalsymmetryisreplacedbythecrystal(mir- of valleytronic devices28,29. The spin-valley polarization has t a ror) symmetry3–5. The hallmark of a TCI, similar to a TI, is been observed experimentally in MoS monolayer30, which 2 m thepresenceofgaplesssurface/edgestateswithDiracpoints isatopologicallytrivialinsulator. Therefore, anaturalques- - insideoftheinsulatingbulkenergygap.Inpresenceofcrystal tion arises as to whether the spin-valley polarization in non- d mirror symmetry, the coexistence of TI and TCI phases has trivial insulators, such as 2D TIs and 2D TCIs, is possible. n been predicted in three dimensions (3D) for Bi Sb 6 and Recently, thin films of the Dirac semimetal Na Bi31,32 have o 1−x x 3 c Bichalcogenides7–9, andthustheyexhibitadualtopological been fabricated by molecular beam epitaxy33 and, therefore, [ character(DTC).Recently,unusualtopologicalsurfacestates in the present study, we take Na Bi as an example and pro- 3 for a 3D DTC system have been observed experimentally8,9. posetherealizationofthe2DDTCinamonolayerofNa Bi 1 3 In the 2D case, graphene maybe a prototypical example of with a band gap of 0.31 eV, which is well above the energy v 1 DTC10,11.However,theextremelysmallbandgapofgraphene scale of room temperature. The calculated spin Chern num- 0 makes it very difficult to verify the DTC in this material ex- ber C = −1 and mirror Chern number C = −1 confirm S M 3 perimentally12. Todate,the2DTIsareidentifiedexperimen- the 2D DTC phase directly. In addition, the spin-valley po- 7 tallyinHgTe/CdTe13 andInAs/GaSb14 quantumwellsatlow larizationduetothelackofthespatialinversionsymmetryis 0 temperatures, and a lot of 2D TIs with giant band gaps have investigated. . 1 been predicted to exist as a result of substrate interaction ef- Thedensityfunctionalcalculationsareperformedusingthe 0 fect15,chemicalfunctionalization16–20,orglobalstructureop- generalizedgradientapproximation(GGA)ofPerdew-Burke- 7 timization21. In many cases the complex structures and the Ernzerhof (PBE)34 for the exchange correlation potential as 1 lack of mirror symmetry in such materials forbid the forma- implemented in the FLEUR code35 as well as in the Vienna : v tionofa2DTCIphase. Ontheotherhand,2DTCIsaresofar ab-initiosimulationpackage(VASP)36,37. A20A˚ thickvac- Xi limitedtotheoreticalpredictionsthataremainlyrestrictedto uumlayerisusedtoavoidinteractionsbetweennearestslabs SnTemultilayers10,(Sn/Pb)(Se/Te)monolayers22–24,Tl(S/Se) forVASPwhilethefilmcalculationsarecarriedoutwiththe r a monolayers25, and SnTe/NaCl quantum wells26 with mirror filmversionoftheFLEURcode38. SOCisincludedinthecal- Chern number CM = −2. The even number of band inver- culationsself-consistently. ThemaximallylocalizedWannier sions leads to a vanishing Z2 invariant. Therefore, 2D TCIs functions (MLWFs) are constructed using the wannier90 withCM =−2cannotbe2DTIsprotectedbythetimerever- codeinconjunctionwiththeFLEURpackage.39,40 salsymmetry. Thus,forfurtherinvestigationandapplications Bulk Na Bi in hexagonal P6 /mmc structure is a three- 3 3 ofDTCintwodimensions,itisessentialtoextendthedomain dimensional (3D) counterpart of graphene, which hosts 3D ofcandidate2DTIsandTCIsbothwithrespecttotopological Dirac points in its electronic structure and is called a topo- manifestations(i.e. differentCM27)andmaterialrealisation. logical Dirac semimetal31,32. The bulk crystal structure con- For both 2D TIs and 2D TCIs, the spin-orbit coupling sistsofstackedtriplelayersalongthez-direction. Eachtriple (SOC) is known to play a vital role. In addition, the SOC layerhasfouratomswhichareoneBiinWyckoff2cposition, 2 FIG.1. (a)Topand(b)sideviewofhoneycombNa Bimonolayer, 3 wheretheunitcellisindicatedbythedashedlines.(c)TheBrillouin zoneof2DNa Bimonolayerandtheprojected1DBrillouinzones. 3 one Na(1) in 2b position, and two Na(2) in 4f position. In Figs. 1(a) and (b) the side and top view of the Na Bi triple 3 layerarepresented,withBiandNaatomsformingthehoney- comblattice. Unlikeinthebulkmaterial, theinversionsym- metryisbrokeninaNa Bitriplelayerbutthemirrorsymme- 3 tryz → −z ispreserved, inexactanalogytoaMoS mono- 2 layer41. Hereafter,wecallsuchatriplelayeraNa Bimono- 3 layer. To check its energetic stability, the formation energy FIG.2. Orbitally-resolvedbandstructuresforNa Bimonolayer(a) 3 iscalculatedbyEf = ENa3Bi −3µNa −µBi, whereENa3Bi withoutand(b)withSOC,weightedwiththecontributionofBi-sand is the total energy of the Na3Bi monolayer, µNa and µBi are Bi-px,py states. TheFermilevelisindicatedwithadashedline. (c) thechemicalpotentialsofNaandBiatoms,respectively. The Momentum-resolvedpolarizationofspinperpendiculartothemirror calculated formation energy of −0.78 eV indicates that the planeforthehighestoccupiedband.(d)Berrycurvaturedistribution Na Bimonolayerisenergeticallystable. ofthehighestoccupiedbandsintheK−Γ−K(cid:48)direction. 3 Figures 2(a) and (b) present the orbitally resolved band structuresofNa BimonolayerwithoutandwithSOC,respec- 3 tively,thatdeliverpreliminaryinsightintotopologicalproper- andΩ±i(k)istheBerrycurvatureofalloccupiedbandscon- tiesofthesystem. Duetothepresenceoftime-reversalsym- structed from respective mirror projected states in the mirror metry,thebandsatvalleysKandK(cid:48) areenergeticallydegen- plane,calculatedaccordingto erate,andthusweonlyshowthedispersionaroundK.Inthe absence of SOC, Bi-px and Bi-py orbitals contribute to the Ω(k)=−2Im (cid:88) (cid:104)ψnk|υx|ψmk(cid:105)(cid:104)ψmk|υy|ψnk(cid:105), (2) valence band maximum (VBM) while the conduction band (εmk−εnk)2 m(cid:54)=n minimum (CBM) is dominated by Bi-s orbitals with a direct bandgapof0.16eV.SwitchingonSOCleadstoaninversion wherem,narebandindices,ψ andε arethecorre- m/nk m/nk oftheVBMandtheCBM,andans-pbandinversionoccursat spondingwavefunctionsandeigenenergiesofbandm/n, re- Γpoint. Theinsulatingcharacterispreservedwithabandgap spectively, and υ arethevelocityoperators. TheMLWFs x/y of0.31eV,indicatingthefeasibilityofexperimentalobserva- are constructed to calculate the Berry curvature efficiently. tionofthe2Dtopologicalpropertiesofthismaterialatroom With z → −z mirror symmetry, the calculated Chern num- temperature.Tofurtherconfirmourresults,thebandstructure bers are respectively C±i = ∓1, leading to a mirror Chern is checked by using the more sophisticated Heyd-Scuseria- numberCM = −1. ThisindicatesthattheNa3Bimonolayer Ernzerhof hybrid functional method (HSE06)42. Similar to is a 2D TCI. Interestingly, the CM = −1 case we consider 1-T(cid:48) MoS 43, the nontrivial phase has a larger band gap (∼ hereistopologicallydistinctfromthepreviouslyreported2D 2 0.4eV)whenSOCisincluded. TCIs,suchas(Sn/Pb)Te10,23,24andTl(S/Se)25withCM =−2. The existence of the mirror symmetry z → −z (see Here, in Na Bi monolayer, band inversion occurs at Γ 3 Figs. 1(a) and (b)) for Na Bi monolayer promises the pos- point, i.e., weacquireanoddnumberofbandinversions. To 3 sibility of realizing the TCI that is characterized by the so- identifytherelationshipbetweenthe2DTIandtheoddnum- called mirror Chern number3,6, which is defined as C = berofband inversionsinNa Bimonolayer, wecalculate the M 3 (C − C )/2, where C and C are the Chern numbers spinChernnumberC 45–47whichcanbedirectlyrelatedtothe +i −i +i −i S formirroreigenvalues+iand−i,44 Z topologicalinvariantofthesystem.C providesequivalent 2 S characterization to Z number in that for time-reversal sym- 1 (cid:88) (cid:90) 2 C = Ω (k)d2k, (1) metric and inversion symmetric systems the even values of ±i 2π ±i n<EF BZ CS correspondtoatopologicallytrivialinsulatorstate, while 3 mimic a magnetic environment, we compute the matrix el- ementsofthePaulimatricesσ (α = x,y,z)inthebasisof α MLWFs,whichallowsustoconsidertheeffectofanexchange fieldappliedalongdifferentdirections. Foranexchangefield perpendiculartothemirrorplane,H =B ·σ ,thetime- mag ⊥ z reversal symmetry is broken while the mirror symmetry is maintained. In this case, as shown in Fig. 3(c) for the Bi- Na(1)termination,theDiracpointmovesslightlyawayfrom theΓ¯ point,whileabandgapdoesnotopenasaconsequence of2DTCIphase’ssurvival. Iftheexchangefield,ontheother hand, is in the plane, H = B · σ , both time-reversal mag (cid:107) x andmirrorsymmetriesarebrokenandtheedgestatesbecome gapped (Fig. 3(d)). This behavior is reminiscent of that in Bi (Se/Te) 7,48, but with different directions of an exchange 2 3 field owing to a different sense of the mirror sysmmetry in thesetwocompounds(B inthe3DTIcorrespondstoB in z (cid:107) the2DTI)7,48. Exposinghoneycomblatticestoinversionsymmetrybreak- ing provides a new, so-called valley, tunable degree of free- dom in addition to spin and charge. The valley degree of freedom is receiving considerable attention these days due FIG. 3. Localization-resolved edge states of Na Bi monolayer for 3 differentconfigurations.(a)Bi-Na(1)terminationwithoutamagnetic to potential application in valleytronics28,30. To demonstrate field, (b) Bi-Na(1)-Na(2) termination without a magnetic field, (c) theeffectoftheinversionsymmetrybreaking,wefocusnow Bi-Na(1) termination a magnetic field perpendicular to the mirror on the spin-valley coupling of the Na Bi monolayer by con- 3 plane,and(d)Bi-Na(1)terminationwithamagneticfieldwithinthe sideringthespin-polarizationofoccupiedstatesinreciprocal mirrorplane. Insetsshowthecorrespondingzoom-inattheΓ¯point. space. Since the in-plane components of the spin polariza- Colorfromlightgreentoredrepresentstheweightofatomslocated tionarevanishingduetothepresenceofmirrorsymmetry,in frommiddletooneedgeoftheribbonstructures. Fig. 2(c) we plot the momentum-resolved out-of-plane spin polarizationofthehighestoccupiedband. Itisclearlyvisible that the highest occupied state exhibits the spin polarization odd values of CS indicate the emergence of a TI phase45–47. whichisofoppositesignatvalleysK andK(cid:48). Wefurtherin- The CS is given by the difference of the Chern numbers for specttheBerrycurvatureofthehighestoccupiedbandalong the spin-up (C+) and spin-down (C−) projected manifolds, the K −Γ−K(cid:48) path, plotted in Fig. 2(d). An odd behav- CS = (C+−C−)/245. Theσz matrix,(cid:104)φmk|σz|φnk(cid:105),iscon- ior of the Berry curvature with respect to the valley agrees structedanddiagonalizedtodistinguishthespin-upandspin- with the symmetry analysis in terms of time- and structural- downmanifolds47. TheChernnumberforeachspinmanifold inversionsymmetry,similarlytothewell-knowncaseofspin- is C+ = −1 and C− = 1, yielding the spin Chern number valleycouplinginMoS2monolayer49.Valleypolarizationthat CS = −1. Thisclearlydemonstratesthe2DTInatureofthe iscoupledwithspinwillsuppressesspinandvalleyrelaxation Na3Bi monolayer. Therefore, Na3Bi monolayer exhibits the and is promising to prepare the information carriers for the DTCwithrespecttothe2DTIand2DTCIphases. next-generationelectronicandoptoelectronicdevices30. TofurtherconfirmtheDTC,weinvestigatetheedgestates Havingestablishedourmaterial’sDTC,accompaniedbya of 1D nanoribbons of Na3Bi monolayer. The nonzero CM bandgapof0.31eV(whichislargeenoughforpracticalap- and/or CS should support the gapless edge states bridging plications at room temperature), we finally test its stability. the conduction and valence bands, which exhibit a band gap The phonon spectrum calculation shows imaginary frequen- when both the time-reversal and mirror symmetries are bro- ciesaroundtheMpoint,butnotattheΓpoint,indicatingthat ken. Based on a description in terms of MLWFs of the thebandinversionatthispointisrobust. Wedemonstratethis Na3Bimonolayer,thetight-bindingHamiltoniansofnanorib- by investigating the band inversion under various strains as bons along two different directions with a width of 60 unit wellassubstrates50. Themagnitudeofstrainisdescribedby cells are constructed. The calculated band structures on one the ratio a/a , where ”a ” and ”a” denote the lattice parame- 0 0 sideoftheribbonsarepresentedinFigs.3(a)and(b),respec- ters of the unstrained (5.31 A˚) and strained systems, respec- tively. Onecanclearlyseeapairofgaplessedgestatesinthe tively.TheresultsofthecalculationsshowninFig.4,indicate 2Dgap. TheDiracpointaroundΓ¯ isaclearconsequenceof that the band gap of Na Bi monolayer can be significantly 3 thenon-trivialtopologicalcharacterofthesystem. enhanceduponstraining,similarlytotheresultsreportedpre- Generally, time-reversal symmetry breaking generates a viously18,25. Thereisnoband-gapclosing-reopeningprocess gap in the surface/edge states of TIs1,2 while mirror symme- between the valence and conduction bands (∆E and E ) Γ gap trybreakingisindispensablefortheformationofabandgap inalargerangeofstrainfrom−12%to20%. Thepersistent inthesurface/edgestatesofTCIs3. Onewaytodestroythese band inversion indicates that the topological character of the symmetries is to introduce the magnetism in the system. To systemisrobustagainstthesubstrate-imposedstrain,whichis 4 FIG.4. (a)VariationoftheenergygapsforNa Bimonolayerasafunctionofstrain. Thegaps(∆E andE ininset)betweenthevalence 3 Γ gap andconductionbandsremainwhileastrain-inducedbandinversionbetweenthevalencebands√(∆EV√ininset)occurs. (b)Orbitally-resolved bandstructuresforNa Bimonolayersandwichedbetweenasubstrateof(b)BNwith2×2and 7× 7supercellsand(c)Na Sb,weighted 3 3 withthecontributionofBi-sandBi-p ,p states.TheDTCremainsintactwithcorrespondingsubstrates. x y important for further experimental investigations and device In summary, based on first-principles calculations, we re- applicationsduetothefactthatafreestandingfilmisusually vealedthatthe2DTIand2DTCIphasescancoexistinNa Bi 3 hard to grow. Figure 4(b) shows the calculated band struc- monolayer with a large band gap of 0.31 eV. Nonzero spin tures of quantum well structures, that retain the mirror sym- ChernnumberandmirrorChernnumber,aswellasnontrivial m√etry,√withNa3Bimonolayersandwichedbetween2×2and topologicaledgestatesconfirmthedualtopologicalcharacter 7× 7BNmonolayers. Aswecansee,theenergygapat clearly. As the mirror symmetry is perserved for an out-of- theMpointchangesmuchstrongerthanatΓwiththeinverted planeexchangefield,thegaplessedgestatessurvivebutmove band gap at the Γ point surviving in both cases (although a away from the time-reversal invariant momenta, while a gap f√urther√band inversion occurs between valence bands for the opensforin-planeexchangefields. Atlast,strainengineering 7× 7case,seealso∆E ofFig.4(a)),whichprovesthat showsthatthedualtopologicalcharacterinNa Bimonolayer V 3 DTC is preserved with respective substrate-induced strain of isrobustinalargerangeofstraininwhichthenontrivialband −6.2%and19.7%. Aweakinterlayerinteractionisexpected gapcanbetunedefficiently. betweenBNandNa Bibecauseofthelargerelaxedinterlayer This work was supported by the Priority Program 1666 of 3 distances∼4.0A˚.Wethenconsiderastronginterlayerinter- theGermanResearchFoundation(DFG)andtheVirtualInsti- action via the topologically trivial substrate Na Sb that has tuteforTopologicalInsulators(VITI).Weacknowledgecom- 3 thesamecrystalstructureasNa Bibutcreates−2%epitaxial putingtimeonthesupercomputersJUQUEENandJURECA 3 strain. As shown in Fig. 4(c), the band inversion remains at at Ju¨lich Supercomputing Centre and JARA-HPC of RWTH theΓpoint. AachenUniversity. ∗ [email protected] arXiv:1604.08886. 1 M.Z.HasanandC.L.Kane,Rev.Mod.Phys.82,3045(2010). 10 J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and L. Fu, 2 X.-L.QiandS.-C.Zhang,Rev.Mod.Phys.83,1057(2011). Nat.Mater.13,178(2014). 3 L.Fu,Phys.Rev.Lett.106,106802(2011). 11 C.L.KaneandE.J.Mele,Phys.Rev.Lett.95,226801(2005). 4 T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, 12 Y.Yao,F.Ye,X.-L.Qi,S.-C.Zhang,andZ.Fang,Phys.Rev.B Nat.Commun.3,982(2012). 75,041401(2007). 5 Y. Ando and L. Fu, Annu. Rev. Condens. Matter Phys. 6, 361 13 M. Ko¨nig, S. Wiedmann, C. Bru¨ne, A. Roth, H. Buhmann, L. (2015). Molenkamp,X.-L.Qi,andS.-C.Zhang,Science318,766(2007). 6 J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B 78, 045426 14 I.Knez,R.R.Du,andG.Sullivan,Phys.Rev.Lett.107,136603 (2008). (2011). 7 T. Rauch, M. Flieger, J. Henk, I. Mertig, and A. Ernst, 15 M. Zhou, W. Ming, Z. Liu, Z. Wang, P. Li, and F. Liu, Phys.Rev.Lett.112,016802(2014). Proc.Natl.Acad.Sci.USA111,14378(2014). 8 A.P.Weber,Q.D.Gibson,H.Ji,A.N.Caruso,A.V.Fedorov,R. 16 Y.Xu,B.H.Yan,H.J.Zhang,J.Wang,G.Xu,P.Z.Tang,W.H. J.Cava,andT.Valla,Phys.Rev.Lett.114,256401(2015). Duan,andS.-C.Zhang,Phys.Rev.Lett.111,136804(2013). 9 M. Eschbach, M. Lanius, C. Niu, E. Młyn´czak, P. Gospodaricˇ, 17 Z. Song, C.-C. Liu, J. Yang, J. Han, B. Fu, M. Ye, Y. Yang, Q. J. Kellner, P. Schu¨ffelgen, M. Gehlmann, S. Do¨ring, E. Neu- Niu,J.Lu,andY.Yao,NPGAsia Mater.6,e147(2014). mann, M. Luysberg, G. Mussler, L. Plucinski, M. Morgenstern, 18 C.Niu,G.Bihlmayer,H.Zhang,D.Wortmann,S.Blu¨gel,andY. D.Gru¨tzmacher, G.Bihlmayer, S.Blu¨gel, andC.M.Schneider, Mokrousov,Phys.Rev.B91,041303(R)(2015). 5 19 L. Li, X. Zhang, X. Chen, and M. Zhao, Nano. Lett. 15, 1296 3865(1996). (2015). 35 www.flapw.de. 20 C. P. Crisostomo, L.-Z. Yao, Z.-Q. Huang, C.-H. Hsu, F.-C. 36 G.KresseandJ.Hafner,Phys.Rev.B47,558(1993). Chuang,H.Lin,M.A.Albao,andA.Bansil,Nano.Lett.15,6568 37 G.KresseandJ.Furthmu¨ller,Phys.Rev.B54,11169(1996). (2015). 38 H.Krakauer,M.Posternak,andA.J.Freeman,Phys.Rev.B19, 21 W.LuoandH.Xiang,Nano.Lett.15,3230(2015). 1706(1979). 22 E.O.WrasseandT.M.Schmidt,Nano.Lett.14,5717(2014). 39 A.A.Mostofi,J.R.Yates,Y.S.Lee,I.Souza,D.Vanderbilt,and 23 J.Liu,X.Qian,andL.Fu,Nano.Lett.15,2657(2015). N.Marzari,Comput.Phys.Commun.178,685(2008). 24 C.Niu,P.M.Buhl,G.Bihlmayer,D.Wortmann,S.Blu¨gel,and 40 F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze, and S. Y.Mokrousov,Phys.Rev.B91,201401(R)(2015). Blu¨gel,Phys.Rev.B78,035120(2008). 25 C.Niu,P.M.Buhl,G.Bihlmayer,D.Wortmann,S.Blu¨gel,and 41 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Y.Mokrousov,Nano.Lett.15,6071(2015). Galli,andF.Wang,NanoLett.10,1271(2010). 26 C.Niu,P.M.Buhl,G.Bihlmayer,D.Wortmann,S.Blu¨gel,and 42 A.V.Krukau,O.A.Vydrov,A.F.Izmaylov,andG.E.Scuseria, Y.Mokrousov,2DMater.3,025037(2016). J.Chem.Phys.125,224106(2006) 27 R. Takahashi and S. Murakami, Phys. Rev. Lett. 107, 166805 43 X.Qian,J.Liu,L.Fu,andJ.Li,Science346,1344(2014). (2011). 44 Y. G. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jung- 28 D.Xiao,W.Yao,andQ.Niu,Phys.Rev.Lett.99,236809(2007). wirth, D.-S. Wang, E. Wang, and Q. Niu, Phys. Rev. Lett. 92, 29 A.Rycerz, J.Tworzydlo, andC.W.J.Beenakker, Nat.Phys.3, 037204(2004). 172(2007). 45 Y.Yang,Z.Xu,L.Sheng,B.Wang,D.Y.Xing,andD.N.Sheng, 30 K.F.Mak,K.L.McGill,J.Park,andP.L.McEuen,Science344, Phys.Rev.Lett.107,066602(2011). 1489(2014). 46 E.Prodan,Phys.Rev.B83,195119(2011). 31 Z.Wang,Y.Sun,X.-Q.Chen,C.Franchini,G.Xu,H.Weng,X. 47 H. Zhang, F. Freimuth, G. Bihlmayer, S. Blu¨gel, and Y. Dai,andZ.Fang,Phys.Rev.B85,195320(2012). Mokrousov,Phys.Rev.B86,035104(2012). 32 Z.K.Liu,B.Zhou,Y.Zhang,Z.J.Wang,H.M.Weng,D.Prab- 48 L.A.Wray,S.-Y.Xu,Y.Xia,D.Hsieh,A.V.Fedorov,Y.S.Hor, hakaran,S.-K.Mo,Z.X.Shen,Z.Fang,X.Dai,Z.Hussain,and R.J.Cava,A.Bansil,H.Lin,andM.Z.Hasan,Nat.Phys.7,32 Y.L.Chen,Science343,864(2014). (2011). 33 J.Hellerstedt,M.T.Edmonds,N.Ramakrishnan,C.Liu,B.We- 49 T.Cao,G.Wang,W.Han,H.Ye,C.Zhu,J.Shi,Q.Niu,P.Tan, ber, A. Tadich, K. M. O’Donnell, S. Adam, and M. S. Fuhrer, E.Wang,B.Liu,andJ.Feng,Nat.Commun.3,887(2012). NanoLett.16,3210(2016). 50 K.Yang,W.Setyawan,S.Wang,M.B.Nardelli,andS.Curtarolo, 34 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, Nat.Mater.11,614(2012).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.