ebook img

Robust Control for Nonlinear Time-Delay Systems PDF

299 Pages·2017·4.762 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust Control for Nonlinear Time-Delay Systems

Changchun Hua Liuliu Zhang (cid:129) Xinping Guan Robust Control for Nonlinear Time-Delay Systems 123 Changchun Hua XinpingGuan Institute of Electrical Engineering Department ofAutomation Yanshan University ShanghaiJiao Tong University Qinhuangdao Shanghai China China Liuliu Zhang Institute of Electrical Engineering Yanshan University Qinhuangdao China ISBN978-981-10-5130-2 ISBN978-981-10-5131-9 (eBook) DOI 10.1007/978-981-10-5131-9 LibraryofCongressControlNumber:2017943106 ©SpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721,Singapore Preface Timedelayappearsinmanyphysicalprocessesduetotheperiodoftimeittakesfor the signals to transmit. Time-delay systems are largely encountered in modeling propagation phenomena, population dynamics, interconnected systems, supply chains,andsystemscontrolledovercommunicationnetworks.Itiswellknownthat time delay in control systems may lead to deterioration of the closed-loop perfor- mance or even destabilize the systems; therefore, specific analysis techniques and design methods are needed to be developed for control systems in the presence of time delay. The time-delay systems can be divided into linear time-delay systems and nonlinear time-delay systems. Recently, the stability analysis and control designoflineartime-delaysystemshavebeenextensivelystudiedwiththepopular tools—Lyapunov–Krasovskii functional method and Lyapunov–Razumikhin method.Thestabilityandstabilizationconditionscanbetransformed into solvable linear matrix inequalities (LMIs) with the help of Schur complement lemma. Compared with linear time-delay systems, the study of nonlinear time-delay systems is more important for control theory and control applications, as most of practical systems have nonlinear dynamics and nonlinear uncertainties generally exist in practical engineering systems due to the modeling error and external dis- turbances.However,theanalysisandsynthesisofnonlineartime-delaysystemsare moredifficultandchallenging.Themainreasonsareasfollows:(i)Itisnoteasyto select Lyapunov functional for nonlinear time-delay systems. The Lyapunov functionalforlineartime-delaysystemsisgenerallychosentobequadratic.Butfor nonlinear time-delay systems, we should construct Lyapunov functional based on the specific system structure, which increases the difficulties of stability analysis and control design. (ii) It is difficult to compensate for the time-delay effect while designing nonlinear controllers. For the control design of time-delay systems, we aim to design memoryless controllers independent of time delay, because the time delayisvariableinpracticalsystemsanditisimpossibletoobtaintheexactvalues of time delay. Hence, the controller design of nonlinear time-delay systems is different from that of the nonlinear systems free of time delay, as how to system- atically design controllers to overcome the effect of time delay is very difficult. v vi Preface This book is devoted to report the latest results on nonlinear time-delay control theory and applications, especially the robust control of time-delay systems with nonlinearuncertainties. Thisbook collects some novel worksrelated to commonly encountered nonlinear time-delay systems, such as the nonlinear systems in the form of high-order polynomial dynamics, systems with nonlinear input, and tri- angular nonlinear systems. Undoubtedly, the results in this book will enrich non- linear system theory and time-delay system theory. Our treatment is theoretically oriented, although some illustrative examples are includedinthisbook.Thereaderisassumedtohavesomebackgroundinnonlinear systems and control. Although this book is primarily intended for students and practitionersofcontroltheory,itisalsoavaluablereferenceforthoseinfieldssuch ascommunicationengineeringandeconomics.Moreover,webelievethatthisbook should be suitable for certain advanced courses or seminars. In Chap. 1, the background and some descriptions of nonlinear time-delay system are provided. Then, the rest of this book will be presented under the following parts: PartI:Thefirstpartofthisbookisconcernedwithnonlineartime-delaysystems with uncertainties in high-order polynomial form. In Chap. 2, based on the Lyapunov–Krasovskii functional and Razumikhin lemma, two classes of memo- rylesscontroldesignmethodsareproposedforsinglenonlineartime-delaysystem. InChap.3,theresultsareextendedtoaclassoflarge-scaletime-delaysystemswith interrelated N subsystems and the decentralized robust model reference adaptive controller is constructed. Part II: The second part of this book focuses on some new results on nonlinear time-delay systems with general uncertainties. In Chap. 4, the decentralized adaptive state feedback control strategy is proposed for interconnected systems. In Chap. 5, the stabilization problem is investigated for a class of single uncertain mismatched systems with multiple time delays and a memoryless state feedback controllerisconstructed. InChap.6, theresult isextendedtoaclass oflarge-scale systems and the solution of the resulting closed-loop system can exponentially converge to a ball with adjustable radius. In Chap. 7, the control problem of nonlinear time-delay systems is studied via the T-S fuzzy approach. PartIII:Thethirdpartofthisbookisdedicatedtononlineartime-delaysystems withtwokindsofnonlinearinputs.InChap.8,theadaptivetrackingcontrollawfor nonlinear time-delay system with non-symmetric dead-zone input is presented. In Chap. 9, based on T-S fuzzy approach, the decentralized networked control prob- lem is investigated for large-scale time-delay systems with sector input. Part IV: The last part of this book is devoted to controller design for nonlinear time-delay systems with triangular structure. In Chap. 10, the robust control problemisinvestigatedfornonlineartime-delaysystemswiththeformoftriangular structureviaRazumikhinlemma.InChap.11,thestatefeedbackcontrolproblemis addressed for a class of nonlinear time-delay systems via Lyapunov–Krasovskii function.InChap.12,therobustoutputtrackingcontrolproblemisinvestigatedfor a class of nonlinear time-delay systems with unmodeled dynamics. In Chap. 13, decentralizeddynamicoutputfeedbackcontrolproblemisconsideredforaclassof Preface vii nonlinearinterconnectedsystemswithtimedelay.InChap.14,theoutputfeedback problem is investigated for a class of uncertain nonlinear time-delay systems with unknowncontrol direction.InChap.15,dynamicoutputfeedbacktrackingcontrol strategy is presented for stochastic interconnected time-delay systems with pre- scribed performance requirement. ThesupportfromtheNationalNaturalScienceFoundationofChina(61673335, 61290322, 61322303, 61273222, 60974018, 60604004), Nature Science Foundation of Hebei Province (F2016203467, F2014203267, F2011203110, 15967629D,GCC2014033),ProgramfortheOutstandingYoungInnovativeTalent of China is gratefully acknowledged. Qinhuangdao, China Changchun Hua Qinhuangdao, China Liuliu Zhang Shanghai, China Xinping Guan January 2017 Contents 1 Introduction... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 Background .. .... ..... .... .... .... .... .... ..... .... 1 1.2 Description of Nonlinear Time-Delay Systems. .... ..... .... 3 1.2.1 Quasi Nonlinear Time-Delay Systems. .... ..... .... 3 1.2.2 Pure Nonlinear Time-Delay Systems.. .... ..... .... 4 1.2.3 Interconnected Nonlinear Time-Delay Systems... .... 5 1.3 Problems Studied in This Book .... .... .... .... ..... .... 6 1.3.1 High-Order Polynomial Uncertainties . .... ..... .... 6 1.3.2 General Uncertainties . .... .... .... .... ..... .... 7 1.3.3 Nonlinear Input.. .... .... .... .... .... ..... .... 7 1.3.4 System with Lower Triangular Structure... ..... .... 8 1.4 Summary .... .... ..... .... .... .... .... .... ..... .... 9 Part I High-Order Polynomial Nonlinear Uncertainties 2 Robust Stabilization of Single Nonlinear Time-Delay System . .... 13 2.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 13 2.2 System Formulation and Preliminaries ... .... .... ..... .... 14 2.3 Adaptive Robust State Feedback Controller ... .... ..... .... 16 2.4 Novel Nonlinear Feedback Controller.... .... .... ..... .... 19 2.5 Simulations... .... ..... .... .... .... .... .... ..... .... 22 2.6 Conclusion ... .... ..... .... .... .... .... .... ..... .... 26 3 Robust Model Reference Adaptive Control for Interconnected Time-Delay Systems .... ..... .... .... .... .... .... ..... .... 27 3.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 27 3.2 System Formulation and Preliminaries ... .... .... ..... .... 28 3.3 Main Results.. .... ..... .... .... .... .... .... ..... .... 30 3.4 Numerical Example ..... .... .... .... .... .... ..... .... 35 3.5 Conclusion ... .... ..... .... .... .... .... .... ..... .... 39 ix x Contents Part II General Nonlinear Uncertainties 4 Decentralized Adaptive Control for Interconnected Time-Delay Systems .... ..... .... .... .... .... .... ..... .... 43 4.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 43 4.2 System Formulation and Preliminaries ... .... .... ..... .... 44 4.3 Decentralized Feedback Control.... .... .... .... ..... .... 46 4.4 Application to Decentralized Control for a Class of Interconnected Systems .... .... .... .... .... ..... .... 50 4.5 Illustrative Examples..... .... .... .... .... .... ..... .... 54 4.6 Conclusion ... .... ..... .... .... .... .... .... ..... .... 59 5 Memoryless State Feedback Control for Uncertain Nonlinear Time-Delay System . .... .... .... .... .... ..... .... 61 5.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 61 5.2 System Description. ..... .... .... .... .... .... ..... .... 62 5.3 Controller Design.. ..... .... .... .... .... .... ..... .... 63 5.4 Simulation Example ..... .... .... .... .... .... ..... .... 71 5.5 Conclusion ... .... ..... .... .... .... .... .... ..... .... 73 6 Exponential Stabilization for Interconnected Time-Delay Systems... .... .... .... ..... .... .... .... .... .... ..... .... 75 6.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 75 6.2 System Formulation and Preliminaries ... .... .... ..... .... 76 6.3 Controller Design.. ..... .... .... .... .... .... ..... .... 78 6.4 Numerical Example ..... .... .... .... .... .... ..... .... 88 6.5 Conclusion ... .... ..... .... .... .... .... .... ..... .... 90 7 Robust Adaptive Control for Time-Delay System via T-S Fuzzy Approach. ..... .... .... .... .... .... ..... .... 93 7.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 93 7.2 System Formulation and Assumptions ... .... .... ..... .... 94 7.3 Virtual Control Design... .... .... .... .... .... ..... .... 98 7.4 Controller Design.. ..... .... .... .... .... .... ..... .... 101 7.5 Simulation ... .... ..... .... .... .... .... .... ..... .... 107 7.6 Conclusion ... .... ..... .... .... .... .... .... ..... .... 112 Part III Nonlinear Input 8 Adaptive Tracking of Time-Delay System with Unknown Dead-Zone Input... .... ..... .... .... .... .... .... ..... .... 115 8.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 115 8.2 System Description. ..... .... .... .... .... .... ..... .... 116 8.3 Controller Design.. ..... .... .... .... .... .... ..... .... 118 8.4 Simulation Examples .... .... .... .... .... .... ..... .... 125 8.5 Conclusion ... .... ..... .... .... .... .... .... ..... .... 128 Contents xi 9 Decentralized Fuzzy Networked Control Systems Design with Sector Input... .... ..... .... .... .... .... .... ..... .... 129 9.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 129 9.2 System Formulation and Assumptions ... .... .... ..... .... 130 9.3 Virtual Control Design... .... .... .... .... .... ..... .... 133 9.4 Controller Design.. ..... .... .... .... .... .... ..... .... 136 9.4.1 Parameters Known Case ... .... .... .... ..... .... 137 9.4.2 Parameters Unknown Case . .... .... .... ..... .... 144 9.5 Simulations... .... ..... .... .... .... .... .... ..... .... 147 9.6 Conclusion ... .... ..... .... .... .... .... .... ..... .... 155 Part IV Time-Delay System with Lower Triangular Structure 10 Robust Control for a Class of Time-Delay System via Razumikhin Lemma . ..... .... .... .... .... .... ..... .... 159 10.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 159 10.2 Problem Formulation and Preliminaries .. .... .... ..... .... 160 10.3 Main Results.. .... ..... .... .... .... .... .... ..... .... 162 10.4 Conclusion ... .... ..... .... .... .... .... .... ..... .... 171 11 Backstepping Control for Nonlinear Time-Delay System via L-K Function... .... ..... .... .... .... .... .... ..... .... 173 11.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 173 11.2 System Description and Preliminaries.... .... .... ..... .... 174 11.3 Controller Design for the Second-Order System.... ..... .... 176 11.4 Extension to the nth-Order System.. .... .... .... ..... .... 180 11.5 Application to Chemical Reactor Systems .... .... ..... .... 185 11.6 Simulations... .... ..... .... .... .... .... .... ..... .... 187 11.7 Conclusion ... .... ..... .... .... .... .... .... ..... .... 191 12 NN-Based Output Feedback Tracking of Nonlinear Time-Delay System ... .... .... .... ..... .... .... .... .... .... ..... .... 193 12.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 193 12.2 System Formulation and Some Assumptions .. .... ..... .... 194 12.3 Preliminary Knowledge .. .... .... .... .... .... ..... .... 197 12.4 Observer Design... ..... .... .... .... .... .... ..... .... 198 12.5 Controller Design.. ..... .... .... .... .... .... ..... .... 200 12.6 Choosing Proper Functions.... .... .... .... .... ..... .... 208 12.7 Simulation Example ..... .... .... .... .... .... ..... .... 211 12.8 Conclusion ... .... ..... .... .... .... .... .... ..... .... 214 13 Output Feedback Stabilization for Interconnected Time-Delay Systems... .... .... .... ..... .... .... .... .... .... ..... .... 215 13.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 215 13.2 System Formulation ..... .... .... .... .... .... ..... .... 216 xii Contents 13.3 Robust Controller Design. .... .... .... .... .... ..... .... 220 13.3.1 Observer Design . .... .... .... .... .... ..... .... 220 13.3.2 Controller Design .... .... .... .... .... ..... .... 222 13.4 Adaptive Neural Network Control .. .... .... .... ..... .... 232 13.5 Simulation Investigation.. .... .... .... .... .... ..... .... 240 13.6 Conclusion ... .... ..... .... .... .... .... .... ..... .... 246 14 Robust Control of Time-Delay System with Unknown Control Direction . .... .... .... ..... .... .... .... .... .... ..... .... 247 14.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 247 14.2 Problem Formulation .... .... .... .... .... .... ..... .... 248 14.3 Preliminaries.. .... ..... .... .... .... .... .... ..... .... 249 14.4 Observer Design... ..... .... .... .... .... .... ..... .... 251 14.5 Controller Design: Known Bound Functions .. .... ..... .... 253 14.6 Controller Design: Unknown Bound Functions .... ..... .... 260 14.7 Simulation Example ..... .... .... .... .... .... ..... .... 264 14.8 Conclusion ... .... ..... .... .... .... .... .... ..... .... 270 15 Decentralized Prescribed Performance Tracking of Stochastic Time-Delay System . .... ..... .... .... .... .... .... ..... .... 271 15.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 271 15.2 System Formulation and Preliminaries ... .... .... ..... .... 272 15.2.1 Problem Formulation.. .... .... .... .... ..... .... 272 15.2.2 Basic Knowledge on Stochastic System ... ..... .... 275 15.3 Controller Design.. ..... .... .... .... .... .... ..... .... 276 15.3.1 Reduced-Order Observer Design. .... .... ..... .... 276 15.3.2 Prescribed Performance Transformation.... ..... .... 278 15.3.3 Adaptive Neural Network Controller Design..... .... 278 15.4 Simulation Example ..... .... .... .... .... .... ..... .... 287 15.5 Conclusion ... .... ..... .... .... .... .... .... ..... .... 290 References.... .... .... .... ..... .... .... .... .... .... ..... .... 291 Chapter 1 Introduction 1.1 Background Timedelayisaninherentcharacteristicofphysicalsystemwhenmaterialsorenergyis transmittingthroughacertainroute.Thephenomenonoftimedelayexistsinvarious engineeringsystemssuchaschemicalprocess,powersystem,rollingsystems,long transmissionlinesinpneumaticsystems,andsystemscontrolledbycommunication networks.Theexistenceoftimedelaymayleadtodeteriorationoftheclosed-loop performance,andevendestabilizethesystems.Therefore,thestabilityanalysisand controldesignoftime-delaysystemsaresignificantforpracticalengineeringappli- cations. Itiswellknownthatmostofthesystemsencounteredinengineeringprocesses arenonlinearinessence.Forexample,inamechatronicsystem,theactuatorscan- notincreaseitspowerinfinitely,andtherealwaysexistsaturationnonlinearities.In general,linearmodelisanapproximationofarealnonlinearsystemandmodeling errorsalwaysexist.Earlystudiesofcontroltheorymainlyfocusedonlinearsystem models, because the system is relatively simple and high accuracy performance is not required. However, with the rapid development of science and technology, the industrialapplicationsystemsarebecomingmuchmorecomplexandtheaccuracy requirementisalsoincreasing.Itisnoteasytoachieveexpectedcontrolobjectives basedonlinearizedmodelsofindustrialprocesses,becausetheglobalstabilitycould not be achieved as the linearized model is only locally feasible. Therefore, direct researchworkonpracticalnonlinearsystemmodelsshouldbelaunchedinorderto obtaineffectivenonlinearcontrollers. In addition, the uncertainties in practical systems cannot be avoided due to the inaccuracy of modeling, external disturbances, change of working conditions, and component aging. The uncertainties could affect systems’ performance and even destabilize the systems. It is well known that the development of modern control theory based on state-space model has made a big breakthrough in 1960–1970s; however,ithasbeenprovedthatthesetheoriesareseriouslydependentonaccurate mathematicalmodelsthatresultintheinvalidnessofmoderncontroltheorywhenit isappliedforpracticalengineeringapplications.Thus,thestudyofuncertaintiesin systemsisofimportanceinboththeoreticalresearchandpracticalapplications. ©SpringerNatureSingaporePteLtd.2018 1 C.Huaetal.,RobustControlforNonlinearTime-DelaySystems, DOI10.1007/978-981-10-5131-9_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.