ebook img

Robotics PDF

249 Pages·2013·6.747 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robotics

Matjaž Mihelj · Tadej Bajd Aleš Ude · Jadran Lenarčič Aleš Stanovnik · Marko Munih Jure Rejc · Sebastjan Šlajpah Robotics Second Edition Robotics ž š Matja Mihelj Tadej Bajd Ale Ude (cid:129) (cid:129) č č š Jadran Lenar i Ale Stanovnik (cid:129) Š Marko Munih Jure Rejc Sebastjan lajpah (cid:129) (cid:129) Robotics Second Edition 123 MatjažMihelj AlešStanovnik Faculty of Electrical Engineering Faculty of Electrical Engineering University of Ljubljana University of Ljubljana Ljubljana, Slovenia Ljubljana, Slovenia TadejBajd MarkoMunih Faculty of Electrical Engineering Faculty of Electrical Engineering University of Ljubljana University of Ljubljana Ljubljana, Slovenia Ljubljana, Slovenia AlešUde Jure Rejc Department ofAutomatics, Faculty of Electrical Engineering Biocybernetics andRobotics University of Ljubljana Jožef StefanInstitute Ljubljana, Slovenia Ljubljana, Slovenia SebastjanŠlajpah JadranLenarčič Faculty of Electrical Engineering Jožef StefanInstitute University of Ljubljana Ljubljana, Slovenia Ljubljana, Slovenia ISBN978-3-319-72910-7 ISBN978-3-319-72911-4 (eBook) https://doi.org/10.1007/978-3-319-72911-4 LibraryofCongressControlNumber:2018946678 1stedition:©SpringerScience+BusinessMediaB.V.2010 2ndedition:©SpringerInternationalPublishingAG,partofSpringerNature2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface It is perhaps difficult to agree on what a robot is, but most people working in robotics would probably quote the “Father of Robotics”, Joseph F. Engelberger (1925–2015), a pioneer in industrial robotics, stating “I can’t define a robot, but I know one when I see one”. The word robot does not originate from a scientific or engineering vocabulary, but was first used in the Czech drama “R.U.R.” (Rossum’s Universal Robots) by KarelČapek,thatwasfirstplayedinPraguein1921.Theworditselfwasinvented by his brother Josef. In the drama the robot is an artificial human being which is a brilliant worker, deprived of all “unnecessary qualities”, such as emotions, cre- ativity,andthecapacityforfeelingpain.Intheprologueofthedramathefollowing definitionofrobotsisgiven:“Robotsarenotpeople(Robotinejsoulidé).Theyare mechanically more perfect than we are, they have an astounding intellectual capacity, but they have no soul. The creation of an engineer is technically more refined than the product of nature”. The book Robotics evolved through decades of teaching robotics at the Faculty of Electrical Engineering, University of Ljubljana, Slovenia, where the first text- book on industrial robotics was published in 1980 (A. Kralj and T. Bajd, “Industrijska robotika”). The way of presenting this rather demanding subject was successfully tested with several generations of undergraduate students. Thesecondeditionofthebookcontinuesthelegacyofthefirsteditionthatwon the Outstanding Academic Title distinction from the library magazine CHOICE in 2011. The major feature of the book remains its simplicity. The introductory chapternowcomprehensivelycoversdifferentrobotclasseswiththemainfocuson industrial robots. The position, orientation, and displacement of an object are described by homogenous transformation matrices. These matrices, which are the basis for any analysis of robot mechanisms, are introduced through simple geo- metricalreasoning.Geometricalmodelsoftherobotmechanismareexplainedwith the help of an original, user-friendly vector description. With the world of the roboticist being six-dimensional, orientation of robot end effectors received more attention in this edition. v vi Preface Robot kinematics and dynamics are introduced via a mechanism with only two rotational degrees of freedom, which is however an important part of the most popularindustrial robot structures. The presentation ofrobot dynamics isbasedon only the knowledge of Newton’s law and was additionally simplified for easier understandingofthisrelativelycomplexmatter.Theworkspaceplaysanimportant roleinselectingarobotappropriatefortheplannedtask.Thekinematicsofparallel robots is significantly different from the kinematics of serial manipulators and merits additional attention. Robot sensors presented in this edition are relevant not only for industrial manipulators,butalsoforcomplexsystemssuchashumanoidrobots.Robotvision has an increasingly important role in industrial applications and robot trajectory planning is a prerequisite for successful robot control. Basic control schemes, resultingineitherthedesiredend-pointtrajectoryorintheforcebetweentherobot and its environment, are explained. Robot environments are illustrated by product assembly processes, where robots are a part of a production line or operate as completely independent units. Robot grippers, tools, and feeding devices are also described. With the factory floor becoming ever more complex, interaction between humans and robots will be inevitable. Collaborative robots are designed for safe human-robotinteraction.Flexibilityofproductioncanbefurtherincreasedwiththe use of wheeled mobile robots. Aglimpse into the future, when humans and robots will be companions, is presented in the chapter on humanoid robotics, the com- plexity of which requires more advanced knowledge of mathematics. The chapter onstandardizationandmeasurementofaccuracy andrepeatability isofinterestfor users of industrial robots. The book requires aminimal advancedknowledge of mathematics andphysics. It is therefore appropriate for introductory courses in robotics at engineering fac- ulties (electrical, mechanical, computer, civil). It could also be of interest for engineers who had not studied robotics, but who have encountered robots in the working environment and wish to acquire some basic knowledge in a simple and fast manner. Ljubljana, Slovenia Matjaž Mihelj April 2018 Tadej Bajd Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Robot Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Industrial Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Homogenous Transformation Matrices. . . . . . . . . . . . . . . . . . . . . . 11 2.1 Translational Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Rotational Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Pose and Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Geometrical Robot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Geometric Description of the Robot Mechanism. . . . . . . . . . . . . . . 27 3.1 Vector Parameters of a Kinematic Pair. . . . . . . . . . . . . . . . . . . 27 3.2 Vector Parameters of the Mechanism. . . . . . . . . . . . . . . . . . . . 31 4 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Two-Segment Robot Manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.4 Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Parallel Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1 Characteristics of Parallel Robots. . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Kinematic Arrangements of Parallel Robots . . . . . . . . . . . . . . . 73 6.3 Modelling and Design of Parallel Robots . . . . . . . . . . . . . . . . . 78 7 Robot Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.1 Principles of Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Sensors of Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2.1 Placing of Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2.2 Potentiometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 vii viii Contents 7.2.3 Optical Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7.2.4 Magnetic Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.2.5 Tachometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2.6 Inertial Measurement Unit. . . . . . . . . . . . . . . . . . . . . . 94 7.3 Contact Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.1 Tactile Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2 Limit Switch and Bumper. . . . . . . . . . . . . . . . . . . . . . 98 7.3.3 Force and Torque Sensor . . . . . . . . . . . . . . . . . . . . . . 98 7.3.4 Joint Torque Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.4 Proximity and Ranging Sensors. . . . . . . . . . . . . . . . . . . . . . . . 102 7.4.1 Ultrasonic Rangefinder . . . . . . . . . . . . . . . . . . . . . . . . 102 7.4.2 Laser Rangefinder and Laser Scanner . . . . . . . . . . . . . 103 8 Robot Vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.2 Forward Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.3 Backward Projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.3.1 Single Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.3.2 Stereo Vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.4 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.5 Object Pose from Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.5.1 Camera Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.5.2 Object Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9 Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.1 Interpolation of the Trajectory Between Two Points . . . . . . . . . 123 9.2 Interpolation by Use of via Points . . . . . . . . . . . . . . . . . . . . . . 126 10 Robot Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.1 Control of the Robot in Internal Coordinates . . . . . . . . . . . . . . 134 10.1.1 PD Control of Position. . . . . . . . . . . . . . . . . . . . . . . . 135 10.1.2 PD Control of Position with Gravity Compensation . . . 136 10.1.3 Control of the Robot Based on Inverse Dynamics . . . . 137 10.2 Control of the Robot in External Coordinates. . . . . . . . . . . . . . 141 10.2.1 Control Based on the Transposed Jacobian Matrix . . . . 142 10.2.2 Control Based on the Inverse Jacobian Matrix . . . . . . . 143 10.2.3 PD Control of Position with Gravity Compensation . . . 144 10.2.4 Control of the Robot Based on Inverse Dynamics . . . . 144 10.3 Control of the Contact Force. . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.3.1 Linearization of a Robot System Through Inverse Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.3.2 Force Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Contents ix 11 Robot Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.1 Robot Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.2 Robot Peripherals in Assembly Processes. . . . . . . . . . . . . . . . . 158 11.2.1 Assembly Production Line Configurations . . . . . . . . . . 158 11.3 Feeding Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 11.4 Conveyors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.5 Robot Grippers and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12 Collaborative Robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 12.1 Collaborative Industrial Robot System . . . . . . . . . . . . . . . . . . . 173 12.2 Collaborative Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 12.3 Collaborative Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 12.3.1 Safety-Rated Monitored Stop . . . . . . . . . . . . . . . . . . . 178 12.3.2 Hand Guiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 12.3.3 Speed and Separation Monitoring . . . . . . . . . . . . . . . . 180 12.3.4 Power and Force Limiting . . . . . . . . . . . . . . . . . . . . . 181 12.4 Collaborative Robot Grippers . . . . . . . . . . . . . . . . . . . . . . . . . 184 12.5 Applications of Collaborative Robotic System . . . . . . . . . . . . . 185 13 Mobile Robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 13.1 Mobile Robot Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 13.2 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 13.2.1 Localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 13.2.2 Path Planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 13.2.3 Path Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 14 Humanoid Robotics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 14.1 Biped Locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 14.1.1 Zero-Moment Point . . . . . . . . . . . . . . . . . . . . . . . . . . 211 14.1.2 Generation of Walking Patterns. . . . . . . . . . . . . . . . . . 213 14.2 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 14.2.1 Observation of Human Motion and Its Transfer to Humanoid Robot Motion . . . . . . . . . . . . . . . . . . . . 217 14.2.2 Dynamic Movement Primitives . . . . . . . . . . . . . . . . . . 221 14.2.3 Convergence Properties of Linear Dynamic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 14.2.4 Dynamic Movement Primitives for Point-to-Point Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 14.2.5 Estimation of DMP Parameters from a Single Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.2.6 Modulation of DMPs . . . . . . . . . . . . . . . . . . . . . . . . . 227 15 Accuracy and Repeatability of Industrial Manipulators . . . . . . . . . 231 Derivation of the Acceleration in Circular Motion. .... .... ..... .... 243 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 247 Chapter 1 Introduction Today’sroboticscanbedescribedasasciencedealingwithintelligentmovementof variousrobotmechanismswhichcanbeclassifiedinthefollowingfourgroups:robot manipulators, robot vehicles, man-robot systems and biologically inspired robots (Fig.1.1).Themostfrequentlyencounteredrobotmanipulatorsareserialrobotmech- anisms.Therobotmanipulatorisrepresentedbyaserialchainofrigidbodies,called robotsegments,connectedbyjoints.Serialrobotmanipulatorswillbedescribedin more details in the next section of this chapter. Parallel robots are of considerable interest both in science and in industry. With these, the robot base and platform are connected to each other with parallel segments, called legs. The segments are equippedwithtranslationalactuators,whilethejointsatthebaseandplatformare passive. Parallel robots are predominantly used for pick-and-place tasks. They are characterized by high accelerations, repeatability, and accuracy. As the robot ma- nipulatorsreplacethehumanoperatoratvariousproductionjobs,theirsizeisoften similartothatofahumanarm.Manufacturerscanalsoproviderobotmanipulators whichareuptotentimeslarger,capableofmanipulatingcompletecarbodies.By contrastintheareasofbiotechnologyandnewmaterialsmicro-andnanorobotsare used.Nanorobotsenablepushing,pulling,pick-and-placemanipulations,orienting, bending,andgroovingonthescaleofmoleculesandparticles.Themostwidespread nanomanipulatorisbasedontheprincipleofatomicforcemicroscope.Theactuator ofthisnanomanipulatorisapiezoelectriccrystal,themovementofwhichisassessed bytheuseofalasersourceandphotocell. Autonomous robot vehicles are found on land, in the water and in the air. The land-based mobile robots are most often applied in man-made environments, such as apartments, hospitals, department stores, or museums, but can increasingly be foundonhighwaysandevenpathlessgrounds.Mostmobilerobotsarenevertheless usedonflatgroundwithmovementenabledbywheels,withthreewheelsproviding the necessary stability. Often the wheels are specially designed to enable omnidi- rectionalmovements.Robotvehiclescanbefoundasvacuumcleaners,autonomous lawnmowers,intelligentguidesthroughdepartmentstoresormuseums,attendants ©SpringerInternationalPublishingAG,partofSpringerNature2019 1 M.Miheljetal.,Robotics,https://doi.org/10.1007/978-3-319-72911-4_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.